// PI
#ifndef M_PI
-#define M_PI CV_PI // 3.14159265358979323846
+#define M_PI CV_PI
+#endif
+#define M_3_2_PI (3 * CV_PI) / 2 // 3/2 pi
+#define M_2__PI (2 * CV_PI) // 2 pi
+
+#ifndef M_LN10
+#define M_LN10 2.30258509299404568402
#endif
-#define M_3_2_PI (3 * CV_PI) / 2 // 4.71238898038 // 3/2 pi
-#define M_2__PI 2 * CV_PI // 6.28318530718 // 2 pi
#define NOTDEF double(-1024.0) // Label for pixels with undefined gradient.
}
//Store the relevant data
- lines.push_back(Vec4i(rec.x1, rec.y1, rec.x2, rec.y2));
+ lines.push_back(Vec4i(int(rec.x1), int(rec.y1), int(rec.x2), int(rec.y2)));
if (widths) widths->push_back(rec.width);
if (precisions) precisions->push_back(rec.p);
if (nfas && doRefine >= LSD_REFINE_ADV) nfas->push_back(log_nfa);
}
else
{
- angles_data[addr] = cv::fastAtan2(gx, -gy) * DEG_TO_RADS; // gradient angle computation
+ angles_data[addr] = double(cv::fastAtan2(gx, -gy)) * DEG_TO_RADS; // gradient angle computation
if (norm > max_grad) { max_grad = norm; }
}
reg[0].angle = reg_angle;
reg[0].modgrad = modgrad_data[addr];
- float sumdx = cos(reg_angle);
- float sumdy = sin(reg_angle);
+ float sumdx = float(std::cos(reg_angle));
+ float sumdy = float(std::sin(reg_angle));
*reg[0].used = USED;
//Try neighboring regions
// Compute angle
double theta = (fabs(Ixx)>fabs(Iyy))?
- cv::fastAtan2(lambda - Ixx, Ixy):cv::fastAtan2(Ixy, lambda - Iyy); // in degs
+ double(cv::fastAtan2(float(lambda - Ixx), float(Ixy))):
+ double(cv::fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
theta *= DEG_TO_RADS;
// Correct angle by 180 deg if necessary
edge* min_y = &ordered_x[0];
edge* max_y = &ordered_x[0]; // Will be used for loop range
- ordered_x[0].p.x = rec.x1 - dyhw; ordered_x[0].p.y = rec.y1 + dxhw; ordered_x[0].taken = false;
- ordered_x[1].p.x = rec.x2 - dyhw; ordered_x[1].p.y = rec.y2 + dxhw; ordered_x[1].taken = false;
- ordered_x[2].p.x = rec.x2 + dyhw; ordered_x[2].p.y = rec.y2 - dxhw; ordered_x[2].taken = false;
- ordered_x[3].p.x = rec.x1 + dyhw; ordered_x[3].p.y = rec.y1 - dxhw; ordered_x[3].taken = false;
+ ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
+ ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
+ ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
+ ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;
std::sort(ordered_x.begin(), ordered_x.end(), AsmallerB_XoverY);
double lstep = flstep, rstep = frstep;
- int left_x = min_y->p.x, right_x = min_y->p.x;
+ double left_x = min_y->p.x, right_x = min_y->p.x;
// Loop around all points in the region and count those that are aligned.
int min_iter = std::max(min_y->p.y, 0);
int max_iter = std::min(max_y->p.y, img_height - 1);
for(int y = min_iter; y <= max_iter; ++y)
{
- int adx = y * img_width + left_x;
- for(int x = left_x; x <= right_x; ++x, ++adx)
+ int adx = y * img_width + int(left_x);
+ for(int x = int(left_x); x <= int(right_x); ++x, ++adx)
{
++total_pts;
if(isAligned(adx, rec.theta, rec.prec))