libmvec-supported-funcs = acos \
asin \
+ atan \
cos \
exp \
exp10 \
_ZGVnN2v_asin;
_ZGVsMxv_asinf;
_ZGVsMxv_asin;
+ _ZGVnN4v_atanf;
+ _ZGVnN2v_atan;
+ _ZGVsMxv_atanf;
+ _ZGVsMxv_atan;
_ZGVnN4v_exp10f;
_ZGVnN2v_exp10;
_ZGVsMxv_exp10f;
--- /dev/null
+/* Double-precision AdvSIMD inverse tan
+
+ Copyright (C) 2023 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+#include "poly_advsimd_f64.h"
+
+static const struct data
+{
+ float64x2_t pi_over_2;
+ float64x2_t poly[20];
+} data = {
+ /* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
+ [2**-1022, 1.0]. */
+ .poly = { V2 (-0x1.5555555555555p-2), V2 (0x1.99999999996c1p-3),
+ V2 (-0x1.2492492478f88p-3), V2 (0x1.c71c71bc3951cp-4),
+ V2 (-0x1.745d160a7e368p-4), V2 (0x1.3b139b6a88ba1p-4),
+ V2 (-0x1.11100ee084227p-4), V2 (0x1.e1d0f9696f63bp-5),
+ V2 (-0x1.aebfe7b418581p-5), V2 (0x1.842dbe9b0d916p-5),
+ V2 (-0x1.5d30140ae5e99p-5), V2 (0x1.338e31eb2fbbcp-5),
+ V2 (-0x1.00e6eece7de8p-5), V2 (0x1.860897b29e5efp-6),
+ V2 (-0x1.0051381722a59p-6), V2 (0x1.14e9dc19a4a4ep-7),
+ V2 (-0x1.d0062b42fe3bfp-9), V2 (0x1.17739e210171ap-10),
+ V2 (-0x1.ab24da7be7402p-13), V2 (0x1.358851160a528p-16), },
+ .pi_over_2 = V2 (0x1.921fb54442d18p+0),
+};
+
+#define SignMask v_u64 (0x8000000000000000)
+#define TinyBound 0x3e10000000000000 /* asuint64(0x1p-30). */
+#define BigBound 0x4340000000000000 /* asuint64(0x1p53). */
+
+/* Fast implementation of vector atan.
+ Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
+ z=1/x and shift = pi/2. Maximum observed error is 2.27 ulps:
+ _ZGVnN2v_atan (0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
+ want 0x1.9225645bdd7c3p-1. */
+float64x2_t VPCS_ATTR V_NAME_D1 (atan) (float64x2_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ /* Small cases, infs and nans are supported by our approximation technique,
+ but do not set fenv flags correctly. Only trigger special case if we need
+ fenv. */
+ uint64x2_t ix = vreinterpretq_u64_f64 (x);
+ uint64x2_t sign = vandq_u64 (ix, SignMask);
+
+#if WANT_SIMD_EXCEPT
+ uint64x2_t ia12 = vandq_u64 (ix, v_u64 (0x7ff0000000000000));
+ uint64x2_t special = vcgtq_u64 (vsubq_u64 (ia12, v_u64 (TinyBound)),
+ v_u64 (BigBound - TinyBound));
+ /* If any lane is special, fall back to the scalar routine for all lanes. */
+ if (__glibc_unlikely (v_any_u64 (special)))
+ return v_call_f64 (atan, x, v_f64 (0), v_u64 (-1));
+#endif
+
+ /* Argument reduction:
+ y := arctan(x) for x < 1
+ y := pi/2 + arctan(-1/x) for x > 1
+ Hence, use z=-1/a if x>=1, otherwise z=a. */
+ uint64x2_t red = vcagtq_f64 (x, v_f64 (1.0));
+ /* Avoid dependency in abs(x) in division (and comparison). */
+ float64x2_t z = vbslq_f64 (red, vdivq_f64 (v_f64 (1.0), x), x);
+ float64x2_t shift = vreinterpretq_f64_u64 (
+ vandq_u64 (red, vreinterpretq_u64_f64 (d->pi_over_2)));
+ /* Use absolute value only when needed (odd powers of z). */
+ float64x2_t az = vbslq_f64 (
+ SignMask, vreinterpretq_f64_u64 (vandq_u64 (SignMask, red)), z);
+
+ /* Calculate the polynomial approximation.
+ Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
+ full scheme to avoid underflow in x^16.
+ The order 19 polynomial P approximates
+ (atan(sqrt(x))-sqrt(x))/x^(3/2). */
+ float64x2_t z2 = vmulq_f64 (z, z);
+ float64x2_t x2 = vmulq_f64 (z2, z2);
+ float64x2_t x4 = vmulq_f64 (x2, x2);
+ float64x2_t x8 = vmulq_f64 (x4, x4);
+ float64x2_t y
+ = vfmaq_f64 (v_estrin_7_f64 (z2, x2, x4, d->poly),
+ v_estrin_11_f64 (z2, x2, x4, x8, d->poly + 8), x8);
+
+ /* Finalize. y = shift + z + z^3 * P(z^2). */
+ y = vfmaq_f64 (az, y, vmulq_f64 (z2, az));
+ y = vaddq_f64 (y, shift);
+
+ /* y = atan(x) if x>0, -atan(-x) otherwise. */
+ y = vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), sign));
+ return y;
+}
--- /dev/null
+/* Double-precision SVE inverse tan
+
+ Copyright (C) 2023 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "sv_math.h"
+#include "poly_sve_f64.h"
+
+static const struct data
+{
+ float64_t poly[20];
+ float64_t pi_over_2;
+} data = {
+ /* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
+ [2**-1022, 1.0]. */
+ .poly = { -0x1.5555555555555p-2, 0x1.99999999996c1p-3, -0x1.2492492478f88p-3,
+ 0x1.c71c71bc3951cp-4, -0x1.745d160a7e368p-4, 0x1.3b139b6a88ba1p-4,
+ -0x1.11100ee084227p-4, 0x1.e1d0f9696f63bp-5, -0x1.aebfe7b418581p-5,
+ 0x1.842dbe9b0d916p-5, -0x1.5d30140ae5e99p-5, 0x1.338e31eb2fbbcp-5,
+ -0x1.00e6eece7de8p-5, 0x1.860897b29e5efp-6, -0x1.0051381722a59p-6,
+ 0x1.14e9dc19a4a4ep-7, -0x1.d0062b42fe3bfp-9, 0x1.17739e210171ap-10,
+ -0x1.ab24da7be7402p-13, 0x1.358851160a528p-16, },
+ .pi_over_2 = 0x1.921fb54442d18p+0,
+};
+
+/* Useful constants. */
+#define SignMask (0x8000000000000000)
+
+/* Fast implementation of SVE atan.
+ Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
+ z=1/x and shift = pi/2. Largest errors are close to 1. The maximum observed
+ error is 2.27 ulps:
+ _ZGVsMxv_atan (0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
+ want 0x1.9225645bdd7c3p-1. */
+svfloat64_t SV_NAME_D1 (atan) (svfloat64_t x, const svbool_t pg)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ /* No need to trigger special case. Small cases, infs and nans
+ are supported by our approximation technique. */
+ svuint64_t ix = svreinterpret_u64 (x);
+ svuint64_t sign = svand_x (pg, ix, SignMask);
+
+ /* Argument reduction:
+ y := arctan(x) for x < 1
+ y := pi/2 + arctan(-1/x) for x > 1
+ Hence, use z=-1/a if x>=1, otherwise z=a. */
+ svbool_t red = svacgt (pg, x, 1.0);
+ /* Avoid dependency in abs(x) in division (and comparison). */
+ svfloat64_t z = svsel (red, svdivr_x (pg, x, 1.0), x);
+ /* Use absolute value only when needed (odd powers of z). */
+ svfloat64_t az = svabs_x (pg, z);
+ az = svneg_m (az, red, az);
+
+ /* Use split Estrin scheme for P(z^2) with deg(P)=19. */
+ svfloat64_t z2 = svmul_x (pg, z, z);
+ svfloat64_t x2 = svmul_x (pg, z2, z2);
+ svfloat64_t x4 = svmul_x (pg, x2, x2);
+ svfloat64_t x8 = svmul_x (pg, x4, x4);
+
+ svfloat64_t y
+ = svmla_x (pg, sv_estrin_7_f64_x (pg, z2, x2, x4, d->poly),
+ sv_estrin_11_f64_x (pg, z2, x2, x4, x8, d->poly + 8), x8);
+
+ /* y = shift + z + z^3 * P(z^2). */
+ svfloat64_t z3 = svmul_x (pg, z2, az);
+ y = svmla_x (pg, az, z3, y);
+
+ /* Apply shift as indicated by `red` predicate. */
+ y = svadd_m (red, y, d->pi_over_2);
+
+ /* y = atan(x) if x>0, -atan(-x) otherwise. */
+ y = svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (y), sign));
+
+ return y;
+}
--- /dev/null
+/* Single-precision AdvSIMD inverse tan
+
+ Copyright (C) 2023 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+#include "poly_advsimd_f32.h"
+
+static const struct data
+{
+ float32x4_t poly[8];
+ float32x4_t pi_over_2;
+} data = {
+ /* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
+ [2**-128, 1.0].
+ Generated using fpminimax between FLT_MIN and 1. */
+ .poly = { V4 (-0x1.55555p-2f), V4 (0x1.99935ep-3f), V4 (-0x1.24051ep-3f),
+ V4 (0x1.bd7368p-4f), V4 (-0x1.491f0ep-4f), V4 (0x1.93a2c0p-5f),
+ V4 (-0x1.4c3c60p-6f), V4 (0x1.01fd88p-8f) },
+ .pi_over_2 = V4 (0x1.921fb6p+0f),
+};
+
+#define SignMask v_u32 (0x80000000)
+
+#define P(i) d->poly[i]
+
+#define TinyBound 0x30800000 /* asuint(0x1p-30). */
+#define BigBound 0x4e800000 /* asuint(0x1p30). */
+
+#if WANT_SIMD_EXCEPT
+static float32x4_t VPCS_ATTR NOINLINE
+special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
+{
+ return v_call_f32 (atanf, x, y, special);
+}
+#endif
+
+/* Fast implementation of vector atanf based on
+ atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1]
+ using z=-1/x and shift = pi/2. Maximum observed error is 2.9ulps:
+ _ZGVnN4v_atanf (0x1.0468f6p+0) got 0x1.967f06p-1 want 0x1.967fp-1. */
+float32x4_t VPCS_ATTR V_NAME_F1 (atan) (float32x4_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ /* Small cases, infs and nans are supported by our approximation technique,
+ but do not set fenv flags correctly. Only trigger special case if we need
+ fenv. */
+ uint32x4_t ix = vreinterpretq_u32_f32 (x);
+ uint32x4_t sign = vandq_u32 (ix, SignMask);
+
+#if WANT_SIMD_EXCEPT
+ uint32x4_t ia = vandq_u32 (ix, v_u32 (0x7ff00000));
+ uint32x4_t special = vcgtq_u32 (vsubq_u32 (ia, v_u32 (TinyBound)),
+ v_u32 (BigBound - TinyBound));
+ /* If any lane is special, fall back to the scalar routine for all lanes. */
+ if (__glibc_unlikely (v_any_u32 (special)))
+ return special_case (x, x, v_u32 (-1));
+#endif
+
+ /* Argument reduction:
+ y := arctan(x) for x < 1
+ y := pi/2 + arctan(-1/x) for x > 1
+ Hence, use z=-1/a if x>=1, otherwise z=a. */
+ uint32x4_t red = vcagtq_f32 (x, v_f32 (1.0));
+ /* Avoid dependency in abs(x) in division (and comparison). */
+ float32x4_t z = vbslq_f32 (red, vdivq_f32 (v_f32 (1.0f), x), x);
+ float32x4_t shift = vreinterpretq_f32_u32 (
+ vandq_u32 (red, vreinterpretq_u32_f32 (d->pi_over_2)));
+ /* Use absolute value only when needed (odd powers of z). */
+ float32x4_t az = vbslq_f32 (
+ SignMask, vreinterpretq_f32_u32 (vandq_u32 (SignMask, red)), z);
+
+ /* Calculate the polynomial approximation.
+ Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However,
+ a standard implementation using z8 creates spurious underflow
+ in the very last fma (when z^8 is small enough).
+ Therefore, we split the last fma into a mul and an fma.
+ Horner and single-level Estrin have higher errors that exceed
+ threshold. */
+ float32x4_t z2 = vmulq_f32 (z, z);
+ float32x4_t z4 = vmulq_f32 (z2, z2);
+
+ float32x4_t y = vfmaq_f32 (
+ v_pairwise_poly_3_f32 (z2, z4, d->poly), z4,
+ vmulq_f32 (z4, v_pairwise_poly_3_f32 (z2, z4, d->poly + 4)));
+
+ /* y = shift + z * P(z^2). */
+ y = vaddq_f32 (vfmaq_f32 (az, y, vmulq_f32 (z2, az)), shift);
+
+ /* y = atan(x) if x>0, -atan(-x) otherwise. */
+ y = vreinterpretq_f32_u32 (veorq_u32 (vreinterpretq_u32_f32 (y), sign));
+
+ return y;
+}
--- /dev/null
+/* Single-precision SVE inverse tan
+
+ Copyright (C) 2023 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "sv_math.h"
+#include "poly_sve_f32.h"
+
+static const struct data
+{
+ float32_t poly[8];
+ float32_t pi_over_2;
+} data = {
+ /* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
+ [2**-128, 1.0]. */
+ .poly = { -0x1.55555p-2f, 0x1.99935ep-3f, -0x1.24051ep-3f, 0x1.bd7368p-4f,
+ -0x1.491f0ep-4f, 0x1.93a2c0p-5f, -0x1.4c3c60p-6f, 0x1.01fd88p-8f },
+ .pi_over_2 = 0x1.921fb6p+0f,
+};
+
+#define SignMask (0x80000000)
+
+/* Fast implementation of SVE atanf based on
+ atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
+ z=-1/x and shift = pi/2.
+ Largest observed error is 2.9 ULP, close to +/-1.0:
+ _ZGVsMxv_atanf (0x1.0468f6p+0) got -0x1.967f06p-1
+ want -0x1.967fp-1. */
+svfloat32_t SV_NAME_F1 (atan) (svfloat32_t x, const svbool_t pg)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ /* No need to trigger special case. Small cases, infs and nans
+ are supported by our approximation technique. */
+ svuint32_t ix = svreinterpret_u32 (x);
+ svuint32_t sign = svand_x (pg, ix, SignMask);
+
+ /* Argument reduction:
+ y := arctan(x) for x < 1
+ y := pi/2 + arctan(-1/x) for x > 1
+ Hence, use z=-1/a if x>=1, otherwise z=a. */
+ svbool_t red = svacgt (pg, x, 1.0f);
+ /* Avoid dependency in abs(x) in division (and comparison). */
+ svfloat32_t z = svsel (red, svdiv_x (pg, sv_f32 (1.0f), x), x);
+ /* Use absolute value only when needed (odd powers of z). */
+ svfloat32_t az = svabs_x (pg, z);
+ az = svneg_m (az, red, az);
+
+ /* Use split Estrin scheme for P(z^2) with deg(P)=7. */
+ svfloat32_t z2 = svmul_x (pg, z, z);
+ svfloat32_t z4 = svmul_x (pg, z2, z2);
+ svfloat32_t z8 = svmul_x (pg, z4, z4);
+
+ svfloat32_t y = sv_estrin_7_f32_x (pg, z2, z4, z8, d->poly);
+
+ /* y = shift + z + z^3 * P(z^2). */
+ svfloat32_t z3 = svmul_x (pg, z2, az);
+ y = svmla_x (pg, az, z3, y);
+
+ /* Apply shift as indicated by 'red' predicate. */
+ y = svadd_m (red, y, sv_f32 (d->pi_over_2));
+
+ /* y = atan(x) if x>0, -atan(-x) otherwise. */
+ return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign));
+}
__vpcs __f32x4_t _ZGVnN4v_acosf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinf (__f32x4_t);
+__vpcs __f32x4_t _ZGVnN4v_atanf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_expf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_exp10f (__f32x4_t);
__vpcs __f64x2_t _ZGVnN2v_acos (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asin (__f64x2_t);
+__vpcs __f64x2_t _ZGVnN2v_atan (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_exp (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_exp10 (__f64x2_t);
__sv_f32_t _ZGVsMxv_acosf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinf (__sv_f32_t, __sv_bool_t);
+__sv_f32_t _ZGVsMxv_atanf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_expf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_exp10f (__sv_f32_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_acos (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asin (__sv_f64_t, __sv_bool_t);
+__sv_f64_t _ZGVsMxv_atan (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_exp (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_exp10 (__sv_f64_t, __sv_bool_t);
VPCS_VECTOR_WRAPPER (acos_advsimd, _ZGVnN2v_acos)
VPCS_VECTOR_WRAPPER (asin_advsimd, _ZGVnN2v_asin)
+VPCS_VECTOR_WRAPPER (atan_advsimd, _ZGVnN2v_atan)
VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos)
VPCS_VECTOR_WRAPPER (exp_advsimd, _ZGVnN2v_exp)
VPCS_VECTOR_WRAPPER (exp10_advsimd, _ZGVnN2v_exp10)
SVE_VECTOR_WRAPPER (acos_sve, _ZGVsMxv_acos)
SVE_VECTOR_WRAPPER (asin_sve, _ZGVsMxv_asin)
+SVE_VECTOR_WRAPPER (atan_sve, _ZGVsMxv_atan)
SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos)
SVE_VECTOR_WRAPPER (exp_sve, _ZGVsMxv_exp)
SVE_VECTOR_WRAPPER (exp10_sve, _ZGVsMxv_exp10)
VPCS_VECTOR_WRAPPER (acosf_advsimd, _ZGVnN4v_acosf)
VPCS_VECTOR_WRAPPER (asinf_advsimd, _ZGVnN4v_asinf)
+VPCS_VECTOR_WRAPPER (atanf_advsimd, _ZGVnN4v_atanf)
VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf)
VPCS_VECTOR_WRAPPER (expf_advsimd, _ZGVnN4v_expf)
VPCS_VECTOR_WRAPPER (exp10f_advsimd, _ZGVnN4v_exp10f)
SVE_VECTOR_WRAPPER (acosf_sve, _ZGVsMxv_acosf)
SVE_VECTOR_WRAPPER (asinf_sve, _ZGVsMxv_asinf)
+SVE_VECTOR_WRAPPER (atanf_sve, _ZGVsMxv_atanf)
SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf)
SVE_VECTOR_WRAPPER (expf_sve, _ZGVsMxv_expf)
SVE_VECTOR_WRAPPER (exp10f_sve, _ZGVsMxv_exp10f)
float: 1
ldouble: 2
+Function: "atan_advsimd":
+double: 1
+float: 1
+
Function: "atan_downward":
double: 1
float: 2
ldouble: 2
+Function: "atan_sve":
+double: 1
+float: 1
+
Function: "atan_towardzero":
double: 1
float: 1
GLIBC_2.38 _ZGVsMxv_sinf F
GLIBC_2.39 _ZGVnN2v_acos F
GLIBC_2.39 _ZGVnN2v_asin F
+GLIBC_2.39 _ZGVnN2v_atan F
GLIBC_2.39 _ZGVnN2v_exp10 F
GLIBC_2.39 _ZGVnN2v_exp2 F
GLIBC_2.39 _ZGVnN2v_log10 F
GLIBC_2.39 _ZGVnN2v_tan F
GLIBC_2.39 _ZGVnN4v_acosf F
GLIBC_2.39 _ZGVnN4v_asinf F
+GLIBC_2.39 _ZGVnN4v_atanf F
GLIBC_2.39 _ZGVnN4v_exp10f F
GLIBC_2.39 _ZGVnN4v_exp2f F
GLIBC_2.39 _ZGVnN4v_log10f F
GLIBC_2.39 _ZGVsMxv_acosf F
GLIBC_2.39 _ZGVsMxv_asin F
GLIBC_2.39 _ZGVsMxv_asinf F
+GLIBC_2.39 _ZGVsMxv_atan F
+GLIBC_2.39 _ZGVsMxv_atanf F
GLIBC_2.39 _ZGVsMxv_exp10 F
GLIBC_2.39 _ZGVsMxv_exp10f F
GLIBC_2.39 _ZGVsMxv_exp2 F