attr['channels'] = input_shape[3] * depth_mult
if 'dilations' in attr:
- attr['dilations'] = (attr['dilations'][0], attr['dilations'][1])
+ attr['dilations'] = (attr['dilations'][1], attr['dilations'][2])
attr['strides'] = (attr['strides'][1], attr['strides'][2])
elif attr['data_format'] == 'NCHW':
depth_mult, _, kernel_h, kernel_w = weights_shape
in_h = input_shape[2]
in_w = input_shape[3]
- pad_v = _get_pad_pair(in_h, kernel_h, stride_h)
- pad_h = _get_pad_pair(in_w, kernel_w, stride_w)
+ dilation_h = attr['dilations'][0]
+ dilation_w = attr['dilations'][1]
+ dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
+ dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
+ pad_v = _get_pad_pair(in_h, dilated_kernel_h, stride_h)
+ pad_h = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
if attr['data_format'] == 'NHWC':
inputs[0] = _sym.pad(data=inputs[0],
)(inputs, attr)
return _impl
+def _split():
+ def _impl(inputs, attr, params):
+ axis = params.pop(inputs[0].list_output_names()[0])
+ return AttrCvt(
+ op_name="split", ignores=['T'],
+ transforms={'num_split': 'indices_or_sections'},
+ extras={'axis': axis.asnumpy()[0]})(inputs[1], attr)
+ return _impl
+
# compatible operators that do NOT require any conversion.
_identity_list = []
'Add' : _elemwise('add'),
'Sub' : _elemwise('sub'),
'Mul' : _elemwise('mul'),
+ 'RealDiv' : _elemwise('div'),
'Maximum' : _elemwise('max'),
'Minimum' : _elemwise('min'),
'Sum' : _sum(),
'GreaterEqual' : _broadcast('greater_equal'),
'Equal' : _broadcast('equal'),
'NotEqual' : _broadcast('not_equal'),
+ 'Split' : _split(),
}
# _convert_map_rnn defines maps of rnn operator name to
# Pass the target layout
attr["_target_layout"] = layout
- #ToDo: Some of the tensorflow operators internaly maintain
- #execution layers and its output name will the layer number along with
- #graph node name.eg: Node name:- 'Model/RNN/cell_0/RnnCell', but the
- #output name will be 'Model/RNN/cell_0/RnnCell:0'. In this case,
- #the digit has to be ignored.
- if ":" in node.input[0]:
- in_name, _ = node.input[0].split(':')
- node.input[0] = in_name
-
# Fill shapes for all inputs in a list
inputs = []
for i in node.input:
- if i in self._nodes:
- inputs.append(self._nodes[i])
- input_shapes[self._nodes[i]] = self._output_shapes[i]
+ #ToDo: Some of the tensorflow operators internaly maintain
+ #execution layers and its output name will the layer number along with
+ #graph node name.eg: Node name:- 'Model/RNN/cell_0/RnnCell', but the
+ #output name will be 'Model/RNN/cell_0/RnnCell:0'. In this case,
+ #the digit has to be ignored.
+ tensor_name = i.split(':')
+ node_name = tensor_name[0]
+ if node_name in self._nodes:
+ in_sym = self._nodes[node_name]
+ if len(in_sym.list_output_names()) > 1:
+ tensor_slot = int(tensor_name[1]) if len(tensor_name) > 1 else 0
+ in_sym = in_sym[tensor_slot]
+ input_shape = (self._output_shapes[node_name])[tensor_slot]
+ else:
+ input_shape = self._output_shapes[node_name][0]
+ inputs.append(in_sym)
+ input_shapes[in_sym] = [input_shape]
attr['_input_shapes'] = input_shapes
inputs = self._fix_extranodes(node.op, attr, inputs)
_test_gather((4,3,5,6), (1,4), [[2,1,0,0]], 0, 'float32')
+#######################################################################
+# Split
+# -----
+
+def _test_split(in_shape, axis, num_split, dtype):
+ """ One iteration of a Split """
+
+ with tf.Graph().as_default():
+ in_data = tf.placeholder(dtype, in_shape, name="in_data")
+ tf.split(in_data, num_split, axis)
+ np_data = np.random.uniform(size=in_shape).astype(dtype)
+ compare_tf_with_tvm(np_data, 'in_data:0', 'split:0')
+
+def test_forward_split():
+ '''test split layer'''
+ # rank 1
+ _test_split((3,), 0, 1, 'float32')
+ _test_split((3,), 0, 3, 'float32')
+ _test_split((6,), 0, 3, 'float32')
+ # rank 2
+ _test_split((6, 2), 0, 3, 'float32')
+ _test_split((2, 6), 1, 3, 'float32')
+ # rank 3
+ _test_split((6, 2, 4), 0, 3, 'float32')
+ _test_split((2, 6, 4), 1, 3, 'float32')
+ _test_split((2, 4, 6), 2, 3, 'float32')
+ # rank 4
+ _test_split((6, 1, 3, 5), 0, 3, 'float32')
+ _test_split((1, 6, 3, 5), 1, 3, 'float32')
+ _test_split((1, 3, 6, 5), 2, 3, 'float32')
+ _test_split((1, 3, 5, 6), 3, 3, 'float32')
+ # split along negative axis
+ _test_split((6, 1, 3, 5), -4, 3, 'float32')
+ _test_split((1, 6, 3, 5), -3, 3, 'float32')
+ _test_split((1, 3, 6, 5), -2, 3, 'float32')
+ _test_split((1, 3, 5, 6), -1, 3, 'float32')
+
+
+#######################################################################
+# Split followed by concat
+# ------------------------
+
+def _test_split_concat(in_shape, axis, num_split, dtype):
+ """ One iteration of a split_concat pair"""
+
+ with tf.Graph().as_default():
+ in_data = tf.placeholder(dtype, in_shape, name="in_data")
+ splitted = tf.split(in_data, num_split, axis)
+ tf.concat(splitted, axis)
+ np_data = np.random.uniform(size=in_shape).astype(dtype)
+ compare_tf_with_tvm(np_data, 'in_data:0', 'concat:0')
+
+def test_forward_split_concat():
+ '''test split followed by concat layers'''
+ # rank 1
+ _test_split_concat((3,), 0, 1, 'float32')
+ _test_split_concat((3,), 0, 3, 'float32')
+ _test_split_concat((6,), 0, 3, 'float32')
+ # rank 2
+ _test_split_concat((6, 2), 0, 3, 'float32')
+ _test_split_concat((2, 6), 1, 3, 'float32')
+ # rank 3
+ _test_split_concat((6, 2, 4), 0, 3, 'float32')
+ _test_split_concat((2, 6, 4), 1, 3, 'float32')
+ _test_split_concat((2, 4, 6), 2, 3, 'float32')
+ # rank 4
+ _test_split((6, 1, 3, 5), 0, 3, 'float32')
+ _test_split((1, 6, 3, 5), 1, 3, 'float32')
+ _test_split((1, 3, 6, 5), 2, 3, 'float32')
+ _test_split((1, 3, 5, 6), 3, 3, 'float32')
+ # split along negative axis
+ _test_split((6, 1, 3, 5), -4, 3, 'float32')
+ _test_split((1, 6, 3, 5), -3, 3, 'float32')
+ _test_split((1, 3, 6, 5), -2, 3, 'float32')
+ _test_split((1, 3, 5, 6), -1, 3, 'float32')
+
+
#######################################################################
# Multi Input to graph
# --------------------
test_forward_pad()
test_forward_gather()
test_forward_stridedslice()
+ test_forward_split()
+ test_forward_split_concat()
# Activations
test_forward_sigmoid()