--- /dev/null
+# Copyright 2020 NXP
+# SPDX-License-Identifier: MIT
+
+from urllib.parse import urlparse
+import os
+from PIL import Image
+import pyarmnn as ann
+import numpy as np
+import requests
+import argparse
+import warnings
+
+
+def parse_command_line(desc: str = ""):
+ """Adds arguments to the script.
+
+ Args:
+ desc(str): Script description.
+
+ Returns:
+ Namespace: Arguments to the script command.
+ """
+ parser = argparse.ArgumentParser(description=desc)
+ parser.add_argument("-v", "--verbose", help="Increase output verbosity",
+ action="store_true")
+ return parser.parse_args()
+
+
+def __create_network(model_file: str, backends: list, parser=None):
+ """Creates a network based on a file and parser type.
+
+ Args:
+ model_file (str): Path of the model file.
+ backends (list): List of backends to use when running inference.
+ parser_type: Parser instance. (pyarmnn.ITFliteParser/pyarmnn.IOnnxParser...)
+
+ Returns:
+ int: Network ID.
+ int: Graph ID.
+ IParser: TF Lite parser instance.
+ IRuntime: Runtime object instance.
+ """
+ args = parse_command_line()
+ options = ann.CreationOptions()
+ runtime = ann.IRuntime(options)
+
+ if parser is None:
+ # try to determine what parser to create based on model extension
+ _, ext = os.path.splitext(model_file)
+ if ext == ".onnx":
+ parser = ann.IOnnxParser()
+ elif ext == ".tflite":
+ parser = ann.ITfLiteParser()
+ assert (parser is not None)
+
+ network = parser.CreateNetworkFromBinaryFile(model_file)
+
+ preferred_backends = []
+ for b in backends:
+ preferred_backends.append(ann.BackendId(b))
+
+ opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(),
+ ann.OptimizerOptions())
+ if args.verbose:
+ for m in messages:
+ warnings.warn(m)
+
+ net_id, w = runtime.LoadNetwork(opt_network)
+ if args.verbose and w:
+ warnings.warn(w)
+
+ return net_id, parser, runtime
+
+
+def create_tflite_network(model_file: str, backends: list = ['CpuAcc', 'CpuRef']):
+ """Creates a network from an onnx model file.
+
+ Args:
+ model_file (str): Path of the model file.
+ backends (list): List of backends to use when running inference.
+
+ Returns:
+ int: Network ID.
+ int: Graph ID.
+ ITFliteParser: TF Lite parser instance.
+ IRuntime: Runtime object instance.
+ """
+ net_id, parser, runtime = __create_network(model_file, backends, ann.ITfLiteParser())
+ graph_id = parser.GetSubgraphCount() - 1
+
+ return net_id, graph_id, parser, runtime
+
+
+def create_onnx_network(model_file: str, backends: list = ['CpuAcc', 'CpuRef']):
+ """Creates a network from a tflite model file.
+
+ Args:
+ model_file (str): Path of the model file.
+ backends (list): List of backends to use when running inference.
+
+ Returns:
+ int: Network ID.
+ IOnnxParser: ONNX parser instance.
+ IRuntime: Runtime object instance.
+ """
+ return __create_network(model_file, backends, ann.IOnnxParser())
+
+
+def preprocess_default(img: Image, width: int, height: int, data_type, scale: float, mean: list,
+ stddev: list):
+ """Default preprocessing image function.
+
+ Args:
+ img (PIL.Image): PIL.Image object instance.
+ width (int): Width to resize to.
+ height (int): Height to resize to.
+ data_type: Data Type to cast the image to.
+ scale (float): Scaling value.
+ mean (list): RGB mean offset.
+ stddev (list): RGB standard deviation.
+
+ Returns:
+ np.array: Resized and preprocessed image.
+ """
+ img = img.resize((width, height), Image.BILINEAR)
+ img = img.convert('RGB')
+ img = np.array(img)
+ img = np.reshape(img, (-1, 3)) # reshape to [RGB][RGB]...
+ img = ((img / scale) - mean) / stddev
+ img = img.flatten().astype(data_type)
+ return img
+
+
+def load_images(image_files: list, input_width: int, input_height: int, data_type=np.uint8,
+ scale: float = 1., mean: list = [0., 0., 0.], stddev: list = [1., 1., 1.],
+ preprocess_fn=preprocess_default):
+ """Loads images, resizes and performs any additional preprocessing to run inference.
+
+ Args:
+ img (list): List of PIL.Image object instances.
+ input_width (int): Width to resize to.
+ input_height (int): Height to resize to.
+ data_type: Data Type to cast the image to.
+ scale (float): Scaling value.
+ mean (list): RGB mean offset.
+ stddev (list): RGB standard deviation.
+ preprocess_fn: Preprocessing function.
+
+ Returns:
+ np.array: Resized and preprocessed images.
+ """
+ images = []
+ for i in image_files:
+ img = Image.open(i)
+ img = preprocess_fn(img, input_width, input_height, data_type, scale, mean, stddev)
+ images.append(img)
+ return images
+
+
+def load_labels(label_file: str):
+ """Loads a labels file containing a label per line.
+
+ Args:
+ label_file (str): Labels file path.
+
+ Returns:
+ list: List of labels read from a file.
+ """
+ with open(label_file, 'r') as f:
+ labels = [l.rstrip() for l in f]
+ return labels
+ return None
+
+
+def print_top_n(N: int, results: list, labels: list, prob: list):
+ """Prints TOP-N results
+
+ Args:
+ N (int): Result count to print.
+ results (list): Top prediction indices.
+ labels (list): A list of labels for every class.
+ prob (list): A list of probabilities for every class.
+
+ Returns:
+ None
+ """
+ assert (len(results) >= 1 and len(results) == len(labels) == len(prob))
+ for i in range(min(len(results), N)):
+ print("class={0} ; value={1}".format(labels[results[i]], prob[results[i]]))
+
+
+def download_file(url: str, force: bool = False, filename: str = None, dest: str = "tmp"):
+ """Downloads a file.
+
+ Args:
+ url (str): File url.
+ force (bool): Forces to download the file even if it exists.
+ filename (str): Renames the file when set.
+
+ Returns:
+ str: Path to the downloaded file.
+ """
+ if filename is None: # extract filename from url when None
+ filename = urlparse(url)
+ filename = os.path.basename(filename.path)
+
+ if str is not None:
+ if not os.path.exists(dest):
+ os.makedirs(dest)
+ filename = os.path.join(dest, filename)
+
+ print("Downloading '{0}' from '{1}' ...".format(filename, url))
+ if not os.path.exists(filename) or force is True:
+ r = requests.get(url)
+ with open(filename, 'wb') as f:
+ f.write(r.content)
+ print("Finished.")
+ else:
+ print("File already exists.")
+
+ return filename
--- /dev/null
+# Copyright 2020 NXP
+# SPDX-License-Identifier: MIT
+
+import pyarmnn as ann
+import numpy as np
+from PIL import Image
+import example_utils as eu
+
+
+def preprocess_onnx(img: Image, width: int, height: int, data_type, scale: float, mean: list,
+ stddev: list):
+ """Preprocessing function for ONNX imagenet models based on:
+ https://github.com/onnx/models/blob/master/vision/classification/imagenet_inference.ipynb
+
+ Args:
+ img (PIL.Image): Loaded PIL.Image
+ width (int): Target image width
+ height (int): Target image height
+ data_type: Image datatype (np.uint8 or np.float32)
+ scale (float): Scaling factor
+ mean: RGB mean values
+ stddev: RGB standard deviation
+
+ Returns:
+ np.array: Preprocess image as Numpy array
+ """
+ img = img.resize((256, 256), Image.BILINEAR)
+ # first rescale to 256,256 and then center crop
+ left = (256 - width) / 2
+ top = (256 - height) / 2
+ right = (256 + width) / 2
+ bottom = (256 + height) / 2
+ img = img.crop((left, top, right, bottom))
+ img = img.convert('RGB')
+ img = np.array(img)
+ img = np.reshape(img, (-1, 3)) # reshape to [RGB][RGB]...
+ img = ((img / scale) - mean) / stddev
+ # NHWC to NCHW conversion, by default NHWC is expected
+ # image is loaded as [RGB][RGB][RGB]... transposing it makes it [RRR...][GGG...][BBB...]
+ img = np.transpose(img)
+ img = img.flatten().astype(data_type) # flatten into a 1D tensor and convert to float32
+ return img
+
+
+if __name__ == "__main__":
+ # Download resources
+ kitten_filename = eu.download_file('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
+ labels_filename = eu.download_file('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
+ model_filename = eu.download_file(
+ 'https://s3.amazonaws.com/onnx-model-zoo/mobilenet/mobilenetv2-1.0/mobilenetv2-1.0.onnx')
+
+ # Create a network from a model file
+ net_id, parser, runtime = eu.create_onnx_network(model_filename)
+
+ # Load input information from the model and create input tensors
+ input_binding_info = parser.GetNetworkInputBindingInfo("data")
+
+ # Load output information from the model and create output tensors
+ output_binding_info = parser.GetNetworkOutputBindingInfo("mobilenetv20_output_flatten0_reshape0")
+ output_tensors = ann.make_output_tensors([output_binding_info])
+
+ # Load labels
+ labels = eu.load_labels(labels_filename)
+
+ # Load images and resize to expected size
+ image_names = [kitten_filename]
+ images = eu.load_images(image_names,
+ 224, 224,
+ np.float32,
+ 255.0,
+ [0.485, 0.456, 0.406],
+ [0.229, 0.224, 0.225],
+ preprocess_onnx)
+
+ for idx, im in enumerate(images):
+ # Create input tensors
+ input_tensors = ann.make_input_tensors([input_binding_info], [im])
+
+ # Run inference
+ print("Running inference on '{0}' ...".format(image_names[idx]))
+ runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
+
+ # Process output
+ out_tensor = ann.workload_tensors_to_ndarray(output_tensors)[0][0]
+ results = np.argsort(out_tensor)[::-1]
+ eu.print_top_n(5, results, labels, out_tensor)
--- /dev/null
+# Copyright 2020 NXP
+# SPDX-License-Identifier: MIT
+
+from zipfile import ZipFile
+import numpy as np
+import pyarmnn as ann
+import example_utils as eu
+import os
+
+
+def unzip_file(filename):
+ """Unzips a file to its current location.
+
+ Args:
+ filename (str): Name of the archive.
+
+ Returns:
+ str: Directory path of the extracted files.
+ """
+ with ZipFile(filename, 'r') as zip_obj:
+ zip_obj.extractall(os.path.dirname(filename))
+ return os.path.dirname(filename)
+
+
+if __name__ == "__main__":
+ # Download resources
+ archive_filename = eu.download_file(
+ 'https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_v1_1.0_224_quant_and_labels.zip')
+ dir_path = unzip_file(archive_filename)
+ # names of the files in the archive
+ labels_filename = os.path.join(dir_path, 'labels_mobilenet_quant_v1_224.txt')
+ model_filename = os.path.join(dir_path, 'mobilenet_v1_1.0_224_quant.tflite')
+ kitten_filename = eu.download_file('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
+
+ # Create a network from the model file
+ net_id, graph_id, parser, runtime = eu.create_tflite_network(model_filename)
+
+ # Load input information from the model
+ # tflite has all the need information in the model unlike other formats
+ input_names = parser.GetSubgraphInputTensorNames(graph_id)
+ assert len(input_names) == 1 # there should be 1 input tensor in mobilenet
+
+ input_binding_info = parser.GetNetworkInputBindingInfo(graph_id, input_names[0])
+ input_width = input_binding_info[1].GetShape()[1]
+ input_height = input_binding_info[1].GetShape()[2]
+
+ # Load output information from the model and create output tensors
+ output_names = parser.GetSubgraphOutputTensorNames(graph_id)
+ assert len(output_names) == 1 # and only one output tensor
+ output_binding_info = parser.GetNetworkOutputBindingInfo(graph_id, output_names[0])
+ output_tensors = ann.make_output_tensors([output_binding_info])
+
+ # Load labels file
+ labels = eu.load_labels(labels_filename)
+
+ # Load images and resize to expected size
+ image_names = [kitten_filename]
+ images = eu.load_images(image_names, input_width, input_height)
+
+ for idx, im in enumerate(images):
+ # Create input tensors
+ input_tensors = ann.make_input_tensors([input_binding_info], [im])
+
+ # Run inference
+ print("Running inference on '{0}' ...".format(image_names[idx]))
+ runtime.EnqueueWorkload(net_id, input_tensors, output_tensors)
+
+ # Process output
+ out_tensor = ann.workload_tensors_to_ndarray(output_tensors)[0][0]
+ results = np.argsort(out_tensor)[::-1]
+ eu.print_top_n(5, results, labels, out_tensor)