ULONG ulMCUcodeRomStartAddr;
ULONG ulMCUcodeLength;
USHORT usMcRegInitTableOffset; // offset of ATOM_REG_INIT_SETTING array for MC core register settings.
- USHORT usReserved; // offset of ATOM_INIT_REG_BLOCK for MC SEQ/PHY regsiter setting
+ USHORT usReserved; // offset of ATOM_INIT_REG_BLOCK for MC SEQ/PHY register setting
}ATOM_MC_INIT_PARAM_TABLE_V2_1;
* evergreen cards need to use the 3D engine to blit data which requires
* quite a bit of hw state setup. Rather than pull the whole 3D driver
* (which normally generates the 3D state) into the DRM, we opt to use
- * statically generated state tables. The regsiter state and shaders
+ * statically generated state tables. The register state and shaders
* were hand generated to support blitting functionality. See the 3D
* driver or documentation for descriptions of the registers and
* shader instructions.
* evergreen cards need to use the 3D engine to blit data which requires
* quite a bit of hw state setup. Rather than pull the whole 3D driver
* (which normally generates the 3D state) into the DRM, we opt to use
- * statically generated state tables. The regsiter state and shaders
+ * statically generated state tables. The register state and shaders
* were hand generated to support blitting functionality. See the 3D
* driver or documentation for descriptions of the registers and
* shader instructions.
* R6xx+ cards need to use the 3D engine to blit data which requires
* quite a bit of hw state setup. Rather than pull the whole 3D driver
* (which normally generates the 3D state) into the DRM, we opt to use
- * statically generated state tables. The regsiter state and shaders
+ * statically generated state tables. The register state and shaders
* were hand generated to support blitting functionality. See the 3D
* driver or documentation for descriptions of the registers and
* shader instructions.