/* kernel >= 2.6.38 last refcount is decreased after this function. */
LASSERT(d_count(de) == 1);
- /* Disable this piece of code temproarily because this is called
+ /* Disable this piece of code temporarily because this is called
* inside dcache_lock so it's not appropriate to do lots of work
* here. ATTENTION: Before this piece of code enabling, LU-2487 must be
* resolved. */
vio->u.splice.cui_flags = args->u.splice.via_flags;
break;
default:
- CERROR("Unknow IO type - %u\n", vio->cui_io_subtype);
+ CERROR("Unknown IO type - %u\n", vio->cui_io_subtype);
LBUG();
}
result = cl_io_loop(env, io);
llss->ia2.ia_valid = ATTR_MTIME | ATTR_ATIME;
}
- /* ultimate check, before swaping the layouts we check if
+ /* ultimate check, before swapping the layouts we check if
* dataversion has changed (if requested) */
if (llss->check_dv1) {
rc = ll_data_version(llss->inode1, &dv, 0);
LASSERT((cmd == F_SETLKW) || (cmd == F_SETLK));
/* flocks are whole-file locks */
flock.l_flock.end = OFFSET_MAX;
- /* For flocks owner is determined by the local file desctiptor*/
+ /* For flocks owner is determined by the local file descriptor*/
flock.l_flock.owner = (unsigned long)file_lock->fl_file;
} else if (file_lock->fl_flags & FL_POSIX) {
flock.l_flock.owner = (unsigned long)file_lock->fl_owner;
.get_acl = ll_get_acl,
};
-/* dynamic ioctl number support routins */
+/* dynamic ioctl number support routines */
static struct llioc_ctl_data {
struct rw_semaphore ioc_sem;
struct list_head ioc_head;
if (result == 0) {
/* it can only be allowed to match after layout is
* applied to inode otherwise false layout would be
- * seen. Applying layout shoud happen before dropping
+ * seen. Applying layout should happen before dropping
* the intent lock. */
ldlm_lock_allow_match(lock);
}
break;
inode = ll_info2i(lli);
- CDEBUG(D_INFO, "done_writting for inode %lu/%u\n",
+ CDEBUG(D_INFO, "done_writing for inode %lu/%u\n",
inode->i_ino, inode->i_generation);
ll_done_writing(inode);
iput(inode);
atomic_t ll_agl_total; /* AGL thread started count */
dev_t ll_sdev_orig; /* save s_dev before assign for
- * clustred nfs */
+ * clustered nfs */
struct rmtacl_ctl_table ll_rct;
struct eacl_table ll_et;
__kernel_fsid_t ll_fsid;
void vvp_write_pending (struct ccc_object *club, struct ccc_page *page);
void vvp_write_complete(struct ccc_object *club, struct ccc_page *page);
-/* specific achitecture can implement only part of this list */
+/* specific architecture can implement only part of this list */
enum vvp_io_subtype {
/** normal IO */
IO_NORMAL,
return do_statahead_enter(dir, dentryp, only_unplug);
}
-/* llite ioctl register support rountine */
+/* llite ioctl register support routine */
enum llioc_iter {
LLIOC_CONT = 0,
LLIOC_STOP
* Rules to write a callback function:
*
* Parameters:
- * @magic: Dynamic ioctl call routine will feed this vaule with the pointer
+ * @magic: Dynamic ioctl call routine will feed this value with the pointer
* returned to ll_iocontrol_register. Callback functions should use this
* data to check the potential collasion of ioctl cmd. If collasion is
* found, callback function should return LLIOC_CONT.
* @cb: callback function, it will be called if an ioctl command is found to
* belong to the command list @cmd.
*
- * Return vaule:
+ * Return value:
* A magic pointer will be returned if success;
* otherwise, NULL will be returned.
* */
* separate locks in different namespaces, Master MDT,
* where the name entry is, will grant LOOKUP lock,
* remote MDT, where the object is, will grant
- * UPDATE|PERM lock. The inode will be attched to both
+ * UPDATE|PERM lock. The inode will be attached to both
* LOOKUP and PERM locks, so revoking either locks will
* case the dcache being cleared */
if (it->d.lustre.it_remote_lock_mode) {
/* For mount, we only need fs info from MDT0, and also in DNE, it
* can make sure the client can be mounted as long as MDT0 is
- * avaible */
+ * available */
err = obd_statfs(NULL, sbi->ll_md_exp, osfs,
cfs_time_shift_64(-OBD_STATFS_CACHE_SECONDS),
OBD_STATFS_FOR_MDT0);
return;
sbi = ll_s2sbi(sb);
- /* we need restore s_dev from changed for clustred NFS before put_super
+ /* we need to restore s_dev from changed for clustered NFS before put_super
* because new kernels have cached s_dev and change sb->s_dev in
* put_super not affected real removing devices */
if (sbi) {
* Lustre implementation of a vm_operations_struct::fault() method, called by
* VM to server page fault (both in kernel and user space).
*
- * \param vma - is virtiual area struct related to page fault
+ * \param vma - is virtual area struct related to page fault
* \param vmf - structure which describe type and address where hit fault
*
* \return allocated and filled _locked_ page for address
* to store parity;
* 2. Reserve the # of (page_count * depth) cl_pages from the reserved
* pool. Afterwards, the clio would allocate the pages from reserved
- * pool, this guarantees we neeedn't allocate the cl_pages from
+ * pool, this guarantees we needn't allocate the cl_pages from
* generic cl_page slab cache.
* Of course, if there is NOT enough pages in the pool, we might
* be asked to write less pages once, this purely depends on
bio = &(*bio)->bi_next;
}
if (*bio) {
- /* Some of bios can't be mergable. */
+ /* Some of bios can't be mergeable. */
lo->lo_bio = *bio;
*bio = NULL;
} else {
* ll_iocontrol_call.
*
* This is a llite regular file ioctl function. It takes the responsibility
- * of attaching or detaching a file by a lloop's device numner.
+ * of attaching or detaching a file by a lloop's device number.
*/
static enum llioc_iter lloop_ioctl(struct inode *unused, struct file *file,
unsigned int cmd, unsigned long arg,
}
/* Only hash *de if it is unhashed (new dentry).
- * Atoimc_open may passin hashed dentries for open.
+ * Atoimc_open may passing hashed dentries for open.
*/
if (d_unhashed(*de)) {
struct dentry *alias;
* striped over, rather than having a constant value for all files here. */
/* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
- * Temprarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
+ * Temporarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
* by default, this should be adjusted corresponding with max_read_ahead_mb
* and max_read_ahead_per_file_mb otherwise the readahead budget can be used
- * up quickly which will affect read performance siginificantly. See LU-2816 */
+ * up quickly which will affect read performance significantly. See LU-2816 */
#define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
static inline int stride_io_mode(struct ll_readahead_state *ras)
}
/* The function calculates how much pages will be read in
* [off, off + length], in such stride IO area,
- * stride_offset = st_off, stride_lengh = st_len,
+ * stride_offset = st_off, stride_length = st_len,
* stride_pages = st_pgs
*
* |------------------|*****|------------------|*****|------------|*****|....
ras_set_start(inode, ras, index);
if (stride_io_mode(ras))
- /* Since stride readahead is sentivite to the offset
+ /* Since stride readahead is sensitive to the offset
* of read-ahead, so we use original offset here,
* instead of ras_window_start, which is RPC aligned */
ras->ras_next_readahead = max(index, ras->ras_next_readahead);
* Someone triggered glimpse within 1 sec before.
* 1) The former glimpse succeeded with glimpse lock granted by OST, and
* if the lock is still cached on client, AGL needs to do nothing. If
- * it is cancelled by other client, AGL maybe cannot obtaion new lock
+ * it is cancelled by other client, AGL maybe cannot obtain new lock
* for no glimpse callback triggered by AGL.
* 2) The former glimpse succeeded, but OST did not grant glimpse lock.
* Under such case, it is quite possible that the OST will not grant
if (cfio->fault.ft_flags & VM_FAULT_RETRY)
return -EAGAIN;
- CERROR("unknow error in page fault %d!\n", cfio->fault.ft_flags);
+ CERROR("Unknown error in page fault %d!\n", cfio->fault.ft_flags);
return -EINVAL;
}
if (result == -ENOENT)
/* If the inode on MDS has been removed, but the objects
* on OSTs haven't been destroyed (async unlink), layout
- * fetch will return -ENOENT, we'd ingore this error
+ * fetch will return -ENOENT, we'd ignore this error
* and continue with dirty flush. LU-3230. */
result = 0;
if (result < 0)
static struct vvp_io *cl2vvp_io(const struct lu_env *env,
const struct cl_io_slice *slice)
{
- /* Caling just for assertion */
+ /* Calling just for assertion */
cl2ccc_io(env, slice);
return vvp_env_io(env);
}
*
* Free all xattr memory. @lli is the inode info pointer.
*
- * \retval 0 no error occured
+ * \retval 0 no error occurred
*/
static int ll_xattr_cache_destroy_locked(struct ll_inode_info *lli)
{
* the function handles it with a separate enq lock.
* If successful, the function exits with the list lock held.
*
- * \retval 0 no error occured
+ * \retval 0 no error occurred
* \retval -ENOMEM not enough memory
*/
static int ll_xattr_find_get_lock(struct inode *inode,
* a read or a write xattr lock depending on operation in @oit.
* Intent is dropped on exit unless the operation is setxattr.
*
- * \retval 0 no error occured
+ * \retval 0 no error occurred
* \retval -EPROTO network protocol error
* \retval -ENOMEM not enough memory for the cache
*/
* The resulting value/list is stored in @buffer if the former
* is not larger than @size.
*
- * \retval 0 no error occured
+ * \retval 0 no error occurred
* \retval -EPROTO network protocol error
* \retval -ENOMEM not enough memory for the cache
* \retval -ERANGE the buffer is not large enough