have multiple ecc steps within each writesize region.
In the case of devices lacking any ECC capability, it is 0.
+
+What: /sys/class/mtd/mtdX/bitflip_threshold
+Date: April 2012
+KernelVersion: 3.4
+Contact: linux-mtd@lists.infradead.org
+Description:
+ This allows the user to examine and adjust the criteria by which
+ mtd returns -EUCLEAN from mtd_read(). If the maximum number of
+ bit errors that were corrected on any single region comprising
+ an ecc step (as reported by the driver) equals or exceeds this
+ value, -EUCLEAN is returned. Otherwise, absent an error, 0 is
+ returned. Higher layers (e.g., UBI) use this return code as an
+ indication that an erase block may be degrading and should be
+ scrutinized as a candidate for being marked as bad.
+
+ The initial value may be specified by the flash device driver.
+ If not, then the default value is ecc_strength.
+
+ The introduction of this feature brings a subtle change to the
+ meaning of the -EUCLEAN return code. Previously, it was
+ interpreted to mean simply "one or more bit errors were
+ corrected". Its new interpretation can be phrased as "a
+ dangerously high number of bit errors were corrected on one or
+ more regions comprising an ecc step". The precise definition of
+ "dangerously high" can be adjusted by the user with
+ bitflip_threshold. Users are discouraged from doing this,
+ however, unless they know what they are doing and have intimate
+ knowledge of the properties of their device. Broadly speaking,
+ bitflip_threshold should be low enough to detect genuine erase
+ block degradation, but high enough to avoid the consequences of
+ a persistent return value of -EUCLEAN on devices where sticky
+ bitflips occur. Note that if bitflip_threshold exceeds
+ ecc_strength, -EUCLEAN is never returned by the read functions.
+
+ This is generally applicable only to NAND flash devices with ECC
+ capability. It is ignored on devices lacking ECC capability.
}
static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
+static ssize_t mtd_bitflip_threshold_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct mtd_info *mtd = dev_get_drvdata(dev);
+
+ return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
+}
+
+static ssize_t mtd_bitflip_threshold_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct mtd_info *mtd = dev_get_drvdata(dev);
+ unsigned int bitflip_threshold;
+ int retval;
+
+ retval = kstrtouint(buf, 0, &bitflip_threshold);
+ if (retval)
+ return retval;
+
+ mtd->bitflip_threshold = bitflip_threshold;
+ return count;
+}
+static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
+ mtd_bitflip_threshold_show,
+ mtd_bitflip_threshold_store);
+
static struct attribute *mtd_attrs[] = {
&dev_attr_type.attr,
&dev_attr_flags.attr,
&dev_attr_numeraseregions.attr,
&dev_attr_name.attr,
&dev_attr_ecc_strength.attr,
+ &dev_attr_bitflip_threshold.attr,
NULL,
};
mtd->index = i;
mtd->usecount = 0;
+ /* default value if not set by driver */
+ if (mtd->bitflip_threshold == 0)
+ mtd->bitflip_threshold = mtd->ecc_strength;
+
if (is_power_of_2(mtd->erasesize))
mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
else
slave->mtd.ecclayout = master->ecclayout;
slave->mtd.ecc_strength = master->ecc_strength;
+ slave->mtd.bitflip_threshold = master->bitflip_threshold;
+
if (master->_block_isbad) {
uint64_t offs = 0;
unsigned int erasesize_mask;
unsigned int writesize_mask;
+ /*
+ * read ops return -EUCLEAN if max number of bitflips corrected on any
+ * one region comprising an ecc step equals or exceeds this value.
+ * Settable by driver, else defaults to ecc_strength. User can override
+ * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
+ * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
+ */
+ unsigned int bitflip_threshold;
+
// Kernel-only stuff starts here.
const char *name;
int index;