--- /dev/null
+//===- AffineToGPUPass.h - Pass converting loops to GPU kernels -*- C++ -*-===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+#ifndef MLIR_CONVERSION_AFFINETOGPU_AFFINETOGPUPASS_H_
+#define MLIR_CONVERSION_AFFINETOGPU_AFFINETOGPUPASS_H_
+
+namespace mlir {
+class FunctionPassBase;
+
+/// Create a pass that converts loop nests into GPU kernels. It considers
+/// top-level affine.for operations as roots of loop nests and converts them
+/// to the gpu.launch operations if possible.
+///
+/// No check on the size of the block or grid, or on the validity of
+/// parallelization is performed, it is under the responsibility of the caller
+/// to strip-mine the loops and to perform the dependence analysis before
+/// calling the conversion.
+FunctionPassBase *createSimpleAffineToGPUPass(unsigned numBlockDims,
+ unsigned numThreadDims);
+} // namespace mlir
+
+#endif // MLIR_CONVERSION_AFFINETOGPU_AFFINETOGPUPASS_H_
// limitations under the License.
// =============================================================================
+#include "mlir/Conversion/AffineToGPU/AffineToGPUPass.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Conversion/AffineToGPU/AffineToGPU.h"
#include "mlir/Pass/Pass.h"
// GPU launch operations. Nested launches are not allowed, so this does not
// walk the function recursively to avoid considering nested loops.
struct AffineForGPUMapper : public FunctionPass<AffineForGPUMapper> {
+ AffineForGPUMapper(unsigned numBlockDims, unsigned numThreadDims)
+ : numBlockDims(numBlockDims), numThreadDims(numThreadDims) {}
+
void runOnFunction() override {
for (Block &block : getFunction())
for (Operation &op : llvm::make_early_inc_range(block))
if (auto forOp = dyn_cast<AffineForOp>(&op))
- if (failed(convertAffineLoopNestToGPULaunch(
- forOp, clNumBlockDims.getValue(),
- clNumThreadDims.getValue())))
+ if (failed(convertAffineLoopNestToGPULaunch(forOp, numBlockDims,
+ numThreadDims)))
signalPassFailure();
}
+
+ unsigned numBlockDims;
+ unsigned numThreadDims;
+};
+
+struct AffineForGPUMapperCLI : public AffineForGPUMapper {
+ AffineForGPUMapperCLI()
+ : AffineForGPUMapper(clNumBlockDims.getValue(),
+ clNumThreadDims.getValue()) {}
};
} // namespace
-static PassRegistration<AffineForGPUMapper>
+FunctionPassBase *mlir::createSimpleAffineToGPUPass(unsigned numBlockDims,
+ unsigned numThreadDims) {
+ return new AffineForGPUMapper(numBlockDims, numThreadDims);
+}
+
+static PassRegistration<AffineForGPUMapperCLI>
registration(PASS_NAME, "Convert top-level affine loops to GPU kernels");