Merge pull request #20155 from dbudniko:dbudniko/G-API_mtcnn_demo_queue_option
authorDmitry Budnikov <Dmitry.Budnikov@intel.com>
Thu, 27 May 2021 15:50:13 +0000 (18:50 +0300)
committerGitHub <noreply@github.com>
Thu, 27 May 2021 15:50:13 +0000 (18:50 +0300)
Add streaming queue capacity option choice to MTCNN G-API sample

* Add streaming queue capacity option

* trying to fix mac build

* rename face detection sample

modules/gapi/samples/face_detection.cpp [deleted file]
modules/gapi/samples/face_detection_mtcnn.cpp [new file with mode: 0644]

diff --git a/modules/gapi/samples/face_detection.cpp b/modules/gapi/samples/face_detection.cpp
deleted file mode 100644 (file)
index 56f3f18..0000000
+++ /dev/null
@@ -1,757 +0,0 @@
-#include <algorithm>
-#include <cctype>
-#include <cmath>
-#include <iostream>
-#include <limits>
-#include <numeric>
-#include <stdexcept>
-#include <string>
-#include <vector>
-
-#include <opencv2/gapi.hpp>
-#include <opencv2/gapi/core.hpp>
-#include <opencv2/gapi/imgproc.hpp>
-#include <opencv2/gapi/cpu/gcpukernel.hpp>
-#include <opencv2/gapi/infer.hpp>
-#include <opencv2/gapi/infer/ie.hpp>
-#include <opencv2/gapi/streaming/cap.hpp>
-#include <opencv2/gapi/gopaque.hpp>
-#include <opencv2/highgui.hpp>
-
-const std::string about =
-"This is an OpenCV-based version of OMZ MTCNN Face Detection example";
-const std::string keys =
-"{ h help     |                           | Print this help message }"
-"{ input      |                           | Path to the input video file }"
-"{ mtcnnpm    | mtcnn-p.xml               | Path to OpenVINO MTCNN P (Proposal) detection model (.xml)}"
-"{ mtcnnpd    | CPU                       | Target device for the MTCNN P (e.g. CPU, GPU, VPU, ...) }"
-"{ mtcnnrm    | mtcnn-r.xml               | Path to OpenVINO MTCNN R (Refinement) detection model (.xml)}"
-"{ mtcnnrd    | CPU                       | Target device for the MTCNN R (e.g. CPU, GPU, VPU, ...) }"
-"{ mtcnnom    | mtcnn-o.xml               | Path to OpenVINO MTCNN O (Output) detection model (.xml)}"
-"{ mtcnnod    | CPU                       | Target device for the MTCNN O (e.g. CPU, GPU, VPU, ...) }"
-"{ thrp       | 0.6                       | MTCNN P confidence threshold}"
-"{ thrr       | 0.7                       | MTCNN R confidence threshold}"
-"{ thro       | 0.7                       | MTCNN O confidence threshold}"
-"{ half_scale | false                     | MTCNN P use half scale pyramid}"
-;
-
-namespace {
-std::string weights_path(const std::string& model_path) {
-    const auto EXT_LEN = 4u;
-    const auto sz = model_path.size();
-    CV_Assert(sz > EXT_LEN);
-
-    const auto ext = model_path.substr(sz - EXT_LEN);
-    CV_Assert(cv::toLowerCase(ext) == ".xml");
-    return model_path.substr(0u, sz - EXT_LEN) + ".bin";
-}
-//////////////////////////////////////////////////////////////////////
-} // anonymous namespace
-
-namespace custom {
-namespace {
-
-// Define custom structures and operations
-#define NUM_REGRESSIONS 4
-#define NUM_PTS 5
-
-struct BBox {
-    int x1;
-    int y1;
-    int x2;
-    int y2;
-
-    cv::Rect getRect() const { return cv::Rect(x1,
-                                               y1,
-                                               x2 - x1,
-                                               y2 - y1); }
-
-    BBox getSquare() const {
-        BBox bbox;
-        float bboxWidth = static_cast<float>(x2 - x1);
-        float bboxHeight = static_cast<float>(y2 - y1);
-        float side = std::max(bboxWidth, bboxHeight);
-        bbox.x1 = static_cast<int>(static_cast<float>(x1) + (bboxWidth - side) * 0.5f);
-        bbox.y1 = static_cast<int>(static_cast<float>(y1) + (bboxHeight - side) * 0.5f);
-        bbox.x2 = static_cast<int>(static_cast<float>(bbox.x1) + side);
-        bbox.y2 = static_cast<int>(static_cast<float>(bbox.y1) + side);
-        return bbox;
-    }
-};
-
-struct Face {
-    BBox bbox;
-    float score;
-    std::array<float, NUM_REGRESSIONS> regression;
-    std::array<float, 2 * NUM_PTS> ptsCoords;
-
-    static void applyRegression(std::vector<Face>& faces, bool addOne = false) {
-        for (auto& face : faces) {
-            float bboxWidth =
-                face.bbox.x2 - face.bbox.x1 + static_cast<float>(addOne);
-            float bboxHeight =
-                face.bbox.y2 - face.bbox.y1 + static_cast<float>(addOne);
-            face.bbox.x1 = static_cast<int>(static_cast<float>(face.bbox.x1) + (face.regression[1] * bboxWidth));
-            face.bbox.y1 = static_cast<int>(static_cast<float>(face.bbox.y1) + (face.regression[0] * bboxHeight));
-            face.bbox.x2 = static_cast<int>(static_cast<float>(face.bbox.x2) + (face.regression[3] * bboxWidth));
-            face.bbox.y2 = static_cast<int>(static_cast<float>(face.bbox.y2) + (face.regression[2] * bboxHeight));
-        }
-    }
-
-    static void bboxes2Squares(std::vector<Face>& faces) {
-        for (auto& face : faces) {
-            face.bbox = face.bbox.getSquare();
-        }
-    }
-
-    static std::vector<Face> runNMS(std::vector<Face>& faces, const float threshold,
-                                    const bool useMin = false) {
-        std::vector<Face> facesNMS;
-        if (faces.empty()) {
-            return facesNMS;
-        }
-
-        std::sort(faces.begin(), faces.end(), [](const Face& f1, const Face& f2) {
-            return f1.score > f2.score;
-        });
-
-        std::vector<int> indices(faces.size());
-        std::iota(indices.begin(), indices.end(), 0);
-
-        while (indices.size() > 0) {
-            const int idx = indices[0];
-            facesNMS.push_back(faces[idx]);
-            std::vector<int> tmpIndices = indices;
-            indices.clear();
-            const float area1 = static_cast<float>(faces[idx].bbox.x2 - faces[idx].bbox.x1 + 1) *
-                static_cast<float>(faces[idx].bbox.y2 - faces[idx].bbox.y1 + 1);
-            for (size_t i = 1; i < tmpIndices.size(); ++i) {
-                int tmpIdx = tmpIndices[i];
-                const float interX1 = static_cast<float>(std::max(faces[idx].bbox.x1, faces[tmpIdx].bbox.x1));
-                const float interY1 = static_cast<float>(std::max(faces[idx].bbox.y1, faces[tmpIdx].bbox.y1));
-                const float interX2 = static_cast<float>(std::min(faces[idx].bbox.x2, faces[tmpIdx].bbox.x2));
-                const float interY2 = static_cast<float>(std::min(faces[idx].bbox.y2, faces[tmpIdx].bbox.y2));
-
-                const float bboxWidth = std::max(0.0f, (interX2 - interX1 + 1));
-                const float bboxHeight = std::max(0.0f, (interY2 - interY1 + 1));
-
-                const float interArea = bboxWidth * bboxHeight;
-                const float area2 = static_cast<float>(faces[tmpIdx].bbox.x2 - faces[tmpIdx].bbox.x1 + 1) *
-                    static_cast<float>(faces[tmpIdx].bbox.y2 - faces[tmpIdx].bbox.y1 + 1);
-                float overlap = 0.0;
-                if (useMin) {
-                    overlap = interArea / std::min(area1, area2);
-                } else {
-                    overlap = interArea / (area1 + area2 - interArea);
-                }
-                if (overlap <= threshold) {
-                    indices.push_back(tmpIdx);
-                }
-            }
-        }
-        return facesNMS;
-    }
-};
-
-const float P_NET_WINDOW_SIZE = 12.0f;
-
-std::vector<Face> buildFaces(const cv::Mat& scores,
-                             const cv::Mat& regressions,
-                             const float scaleFactor,
-                             const float threshold) {
-
-    auto w = scores.size[3];
-    auto h = scores.size[2];
-    auto size = w * h;
-
-    const float* scores_data = scores.ptr<float>();
-    scores_data += size;
-
-    const float* reg_data = regressions.ptr<float>();
-
-    auto out_side = std::max(h, w);
-    auto in_side = 2 * out_side + 11;
-    float stride = 0.0f;
-    if (out_side != 1)
-    {
-        stride = static_cast<float>(in_side - P_NET_WINDOW_SIZE) / static_cast<float>(out_side - 1);
-    }
-
-    std::vector<Face> boxes;
-
-    for (int i = 0; i < size; i++) {
-        if (scores_data[i] >= (threshold)) {
-            float y = static_cast<float>(i / w);
-            float x = static_cast<float>(i - w * y);
-
-            Face faceInfo;
-            BBox& faceBox = faceInfo.bbox;
-
-            faceBox.x1 = std::max(0, static_cast<int>((x * stride) / scaleFactor));
-            faceBox.y1 = std::max(0, static_cast<int>((y * stride) / scaleFactor));
-            faceBox.x2 = static_cast<int>((x * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor);
-            faceBox.y2 = static_cast<int>((y * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor);
-            faceInfo.regression[0] = reg_data[i];
-            faceInfo.regression[1] = reg_data[i + size];
-            faceInfo.regression[2] = reg_data[i + 2 * size];
-            faceInfo.regression[3] = reg_data[i + 3 * size];
-            faceInfo.score = scores_data[i];
-            boxes.push_back(faceInfo);
-        }
-    }
-
-    return boxes;
-}
-
-// Define networks for this sample
-using GMat2 = std::tuple<cv::GMat, cv::GMat>;
-using GMat3 = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
-using GMats = cv::GArray<cv::GMat>;
-using GRects = cv::GArray<cv::Rect>;
-using GSize = cv::GOpaque<cv::Size>;
-
-G_API_NET(MTCNNRefinement,
-          <GMat2(cv::GMat)>,
-          "sample.custom.mtcnn_refinement");
-
-G_API_NET(MTCNNOutput,
-          <GMat3(cv::GMat)>,
-          "sample.custom.mtcnn_output");
-
-using GFaces = cv::GArray<Face>;
-G_API_OP(BuildFaces,
-         <GFaces(cv::GMat, cv::GMat, float, float)>,
-         "sample.custom.mtcnn.build_faces") {
-         static cv::GArrayDesc outMeta(const cv::GMatDesc&,
-                                       const cv::GMatDesc&,
-                                       const float,
-                                       const float) {
-              return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(RunNMS,
-         <GFaces(GFaces, float, bool)>,
-         "sample.custom.mtcnn.run_nms") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
-                                       const float, const bool) {
-             return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(AccumulatePyramidOutputs,
-         <GFaces(GFaces, GFaces)>,
-         "sample.custom.mtcnn.accumulate_pyramid_outputs") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
-                                       const cv::GArrayDesc&) {
-             return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(ApplyRegression,
-         <GFaces(GFaces, bool)>,
-         "sample.custom.mtcnn.apply_regression") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const bool) {
-             return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(BBoxesToSquares,
-         <GFaces(GFaces)>,
-         "sample.custom.mtcnn.bboxes_to_squares") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&) {
-              return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(R_O_NetPreProcGetROIs,
-         <GRects(GFaces, GSize)>,
-         "sample.custom.mtcnn.bboxes_r_o_net_preproc_get_rois") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const cv::GOpaqueDesc&) {
-              return cv::empty_array_desc();
-    }
-};
-
-
-G_API_OP(RNetPostProc,
-         <GFaces(GFaces, GMats, GMats, float)>,
-         "sample.custom.mtcnn.rnet_postproc") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
-                                       const cv::GArrayDesc&,
-                                       const cv::GArrayDesc&,
-                                       const float) {
-             return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(ONetPostProc,
-         <GFaces(GFaces, GMats, GMats, GMats, float)>,
-         "sample.custom.mtcnn.onet_postproc") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
-                                       const cv::GArrayDesc&,
-                                       const cv::GArrayDesc&,
-                                       const cv::GArrayDesc&,
-                                       const float) {
-             return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(SwapFaces,
-         <GFaces(GFaces)>,
-         "sample.custom.mtcnn.swap_faces") {
-         static cv::GArrayDesc outMeta(const cv::GArrayDesc&) {
-              return cv::empty_array_desc();
-    }
-};
-
-G_API_OP(Transpose,
-         <cv::GMat(cv::GMat)>,
-         "sample.custom.mtcnn.transpose") {
-          static cv::GMatDesc outMeta(const cv::GMatDesc in) {
-               return in.withSize(cv::Size(in.size.height, in.size.width));
-    }
-};
-
-//Custom kernels implementation
-GAPI_OCV_KERNEL(OCVBuildFaces, BuildFaces) {
-    static void run(const cv::Mat & in_scores,
-                    const cv::Mat & in_regresssions,
-                    const float scaleFactor,
-                    const float threshold,
-                    std::vector<Face> &out_faces) {
-        out_faces = buildFaces(in_scores, in_regresssions, scaleFactor, threshold);
-    }
-};// GAPI_OCV_KERNEL(BuildFaces)
-
-GAPI_OCV_KERNEL(OCVRunNMS, RunNMS) {
-    static void run(const std::vector<Face> &in_faces,
-                    const float threshold,
-                    const bool useMin,
-                    std::vector<Face> &out_faces) {
-                    std::vector<Face> in_faces_copy = in_faces;
-        out_faces = Face::runNMS(in_faces_copy, threshold, useMin);
-    }
-};// GAPI_OCV_KERNEL(RunNMS)
-
-GAPI_OCV_KERNEL(OCVAccumulatePyramidOutputs, AccumulatePyramidOutputs) {
-    static void run(const std::vector<Face> &total_faces,
-                    const std::vector<Face> &in_faces,
-                    std::vector<Face> &out_faces) {
-                    out_faces = total_faces;
-        out_faces.insert(out_faces.end(), in_faces.begin(), in_faces.end());
-    }
-};// GAPI_OCV_KERNEL(AccumulatePyramidOutputs)
-
-GAPI_OCV_KERNEL(OCVApplyRegression, ApplyRegression) {
-    static void run(const std::vector<Face> &in_faces,
-                    const bool addOne,
-                    std::vector<Face> &out_faces) {
-        std::vector<Face> in_faces_copy = in_faces;
-        Face::applyRegression(in_faces_copy, addOne);
-        out_faces.clear();
-        out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end());
-    }
-};// GAPI_OCV_KERNEL(ApplyRegression)
-
-GAPI_OCV_KERNEL(OCVBBoxesToSquares, BBoxesToSquares) {
-    static void run(const std::vector<Face> &in_faces,
-                    std::vector<Face> &out_faces) {
-        std::vector<Face> in_faces_copy = in_faces;
-        Face::bboxes2Squares(in_faces_copy);
-        out_faces.clear();
-        out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end());
-    }
-};// GAPI_OCV_KERNEL(BBoxesToSquares)
-
-GAPI_OCV_KERNEL(OCVR_O_NetPreProcGetROIs, R_O_NetPreProcGetROIs) {
-    static void run(const std::vector<Face> &in_faces,
-                    const cv::Size & in_image_size,
-                    std::vector<cv::Rect> &outs) {
-        outs.clear();
-        for (const auto& face : in_faces) {
-            cv::Rect tmp_rect = face.bbox.getRect();
-            //Compare to transposed sizes width<->height
-            tmp_rect &= cv::Rect(tmp_rect.x, tmp_rect.y, in_image_size.height - tmp_rect.x - 4, in_image_size.width - tmp_rect.y - 4);
-            outs.push_back(tmp_rect);
-        }
-    }
-};// GAPI_OCV_KERNEL(R_O_NetPreProcGetROIs)
-
-
-GAPI_OCV_KERNEL(OCVRNetPostProc, RNetPostProc) {
-    static void run(const std::vector<Face> &in_faces,
-                    const std::vector<cv::Mat> &in_scores,
-                    const std::vector<cv::Mat> &in_regresssions,
-                    const float threshold,
-                    std::vector<Face> &out_faces) {
-        out_faces.clear();
-        for (unsigned int k = 0; k < in_faces.size(); ++k) {
-            const float* scores_data = in_scores[k].ptr<float>();
-            const float* reg_data = in_regresssions[k].ptr<float>();
-            if (scores_data[1] >= threshold) {
-                Face info = in_faces[k];
-                info.score = scores_data[1];
-                std::copy_n(reg_data, NUM_REGRESSIONS, info.regression.begin());
-                out_faces.push_back(info);
-            }
-        }
-    }
-};// GAPI_OCV_KERNEL(RNetPostProc)
-
-GAPI_OCV_KERNEL(OCVONetPostProc, ONetPostProc) {
-    static void run(const std::vector<Face> &in_faces,
-                    const std::vector<cv::Mat> &in_scores,
-                    const std::vector<cv::Mat> &in_regresssions,
-                    const std::vector<cv::Mat> &in_landmarks,
-                    const float threshold,
-                    std::vector<Face> &out_faces) {
-        out_faces.clear();
-        for (unsigned int k = 0; k < in_faces.size(); ++k) {
-            const float* scores_data = in_scores[k].ptr<float>();
-            const float* reg_data = in_regresssions[k].ptr<float>();
-            const float* landmark_data = in_landmarks[k].ptr<float>();
-            if (scores_data[1] >= threshold) {
-                Face info = in_faces[k];
-                info.score = scores_data[1];
-                for (size_t i = 0; i < 4; ++i) {
-                    info.regression[i] = reg_data[i];
-                }
-                float w = info.bbox.x2 - info.bbox.x1 + 1.0f;
-                float h = info.bbox.y2 - info.bbox.y1 + 1.0f;
-
-                for (size_t p = 0; p < NUM_PTS; ++p) {
-                    info.ptsCoords[2 * p] =
-                        info.bbox.x1 + static_cast<float>(landmark_data[NUM_PTS + p]) * w - 1;
-                    info.ptsCoords[2 * p + 1] = info.bbox.y1 + static_cast<float>(landmark_data[p]) * h - 1;
-                }
-
-                out_faces.push_back(info);
-            }
-        }
-    }
-};// GAPI_OCV_KERNEL(ONetPostProc)
-
-GAPI_OCV_KERNEL(OCVSwapFaces, SwapFaces) {
-    static void run(const std::vector<Face> &in_faces,
-                    std::vector<Face> &out_faces) {
-        std::vector<Face> in_faces_copy = in_faces;
-        out_faces.clear();
-        if (!in_faces_copy.empty()) {
-            for (size_t i = 0; i < in_faces_copy.size(); ++i) {
-                std::swap(in_faces_copy[i].bbox.x1, in_faces_copy[i].bbox.y1);
-                std::swap(in_faces_copy[i].bbox.x2, in_faces_copy[i].bbox.y2);
-                for (size_t p = 0; p < NUM_PTS; ++p) {
-                    std::swap(in_faces_copy[i].ptsCoords[2 * p], in_faces_copy[i].ptsCoords[2 * p + 1]);
-                }
-            }
-            out_faces = in_faces_copy;
-        }
-    }
-};// GAPI_OCV_KERNEL(SwapFaces)
-
-GAPI_OCV_KERNEL(OCVTranspose, Transpose) {
-    static void run(const cv::Mat &in_mat,
-                    cv::Mat &out_mat) {
-        cv::transpose(in_mat, out_mat);
-    }
-};// GAPI_OCV_KERNEL(Transpose)
-} // anonymous namespace
-} // namespace custom
-
-namespace vis {
-namespace {
-void bbox(const cv::Mat& m, const cv::Rect& rc) {
-    cv::rectangle(m, rc, cv::Scalar{ 0,255,0 }, 2, cv::LINE_8, 0);
-};
-
-using rectPoints = std::pair<cv::Rect, std::vector<cv::Point>>;
-
-static cv::Mat drawRectsAndPoints(const cv::Mat& img,
-    const std::vector<rectPoints> data) {
-    cv::Mat outImg;
-    img.copyTo(outImg);
-
-    for (const auto& el : data) {
-        vis::bbox(outImg, el.first);
-        auto pts = el.second;
-        for (size_t i = 0; i < pts.size(); ++i) {
-            cv::circle(outImg, pts[i], 3, cv::Scalar(0, 255, 255), 1);
-        }
-    }
-    return outImg;
-}
-} // anonymous namespace
-} // namespace vis
-
-
-//Infer helper function
-namespace {
-static inline std::tuple<cv::GMat, cv::GMat> run_mtcnn_p(cv::GMat &in, const std::string &id) {
-    cv::GInferInputs inputs;
-    inputs["data"] = in;
-    auto outputs = cv::gapi::infer<cv::gapi::Generic>(id, inputs);
-    auto regressions = outputs.at("conv4-2");
-    auto scores = outputs.at("prob1");
-    return std::make_tuple(regressions, scores);
-}
-
-//Operator fot PNet network package creation in the loop
-inline cv::gapi::GNetPackage& operator += (cv::gapi::GNetPackage& lhs, const cv::gapi::GNetPackage& rhs) {
-    lhs.networks.reserve(lhs.networks.size() + rhs.networks.size());
-    lhs.networks.insert(lhs.networks.end(), rhs.networks.begin(), rhs.networks.end());
-    return lhs;
-}
-
-static inline std::string get_pnet_level_name(const cv::Size &in_size) {
-    return "MTCNNProposal_" + std::to_string(in_size.width) + "x" + std::to_string(in_size.height);
-}
-
-int calculate_scales(const cv::Size &input_size, std::vector<double> &out_scales, std::vector<cv::Size> &out_sizes ) {
-    //calculate multi - scale and limit the maxinum side to 1000
-    //pr_scale: limit the maxinum side to 1000, < 1.0
-    double pr_scale = 1.0;
-    double h = static_cast<double>(input_size.height);
-    double w = static_cast<double>(input_size.width);
-    if (std::min(w, h) > 1000)
-    {
-        pr_scale = 1000.0 / std::min(h, w);
-        w = w * pr_scale;
-        h = h * pr_scale;
-    }
-    else if (std::max(w, h) < 1000)
-    {
-        w = w * pr_scale;
-        h = h * pr_scale;
-    }
-    //multi - scale
-    out_scales.clear();
-    out_sizes.clear();
-    const double factor = 0.709;
-    int factor_count = 0;
-    double minl = std::min(h, w);
-    while (minl >= 12)
-    {
-        const double current_scale = pr_scale * std::pow(factor, factor_count);
-        cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale),
-                              static_cast<int>(static_cast<double>(input_size.height) * current_scale));
-        out_scales.push_back(current_scale);
-        out_sizes.push_back(current_size);
-        minl *= factor;
-        factor_count += 1;
-    }
-    return factor_count;
-}
-
-int calculate_half_scales(const cv::Size &input_size, std::vector<double>& out_scales, std::vector<cv::Size>& out_sizes) {
-    double pr_scale = 0.5;
-    const double h = static_cast<double>(input_size.height);
-    const double w = static_cast<double>(input_size.width);
-    //multi - scale
-    out_scales.clear();
-    out_sizes.clear();
-    const double factor = 0.5;
-    int factor_count = 0;
-    double minl = std::min(h, w);
-    while (minl >= 12.0*2.0)
-    {
-        const double current_scale = pr_scale;
-        cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale),
-                              static_cast<int>(static_cast<double>(input_size.height) * current_scale));
-        out_scales.push_back(current_scale);
-        out_sizes.push_back(current_size);
-        minl *= factor;
-        factor_count += 1;
-        pr_scale *= 0.5;
-    }
-    return factor_count;
-}
-
-const int MAX_PYRAMID_LEVELS = 13;
-//////////////////////////////////////////////////////////////////////
-} // anonymous namespace
-
-int main(int argc, char* argv[]) {
-    cv::CommandLineParser cmd(argc, argv, keys);
-    cmd.about(about);
-    if (cmd.has("help")) {
-        cmd.printMessage();
-        return 0;
-    }
-    const auto input_file_name = cmd.get<std::string>("input");
-    const auto model_path_p = cmd.get<std::string>("mtcnnpm");
-    const auto target_dev_p = cmd.get<std::string>("mtcnnpd");
-    const auto conf_thresh_p = cmd.get<float>("thrp");
-    const auto model_path_r = cmd.get<std::string>("mtcnnrm");
-    const auto target_dev_r = cmd.get<std::string>("mtcnnrd");
-    const auto conf_thresh_r = cmd.get<float>("thrr");
-    const auto model_path_o = cmd.get<std::string>("mtcnnom");
-    const auto target_dev_o = cmd.get<std::string>("mtcnnod");
-    const auto conf_thresh_o = cmd.get<float>("thro");
-    const auto use_half_scale = cmd.get<bool>("half_scale");
-
-    std::vector<cv::Size> level_size;
-    std::vector<double> scales;
-    //MTCNN input size
-    cv::VideoCapture cap;
-    cap.open(input_file_name);
-    if (!cap.isOpened())
-        CV_Assert(false);
-    auto in_rsz = cv::Size{ static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)),
-                            static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)) };
-    //Calculate scales, number of pyramid levels and sizes for PNet pyramid
-    auto pyramid_levels = use_half_scale ? calculate_half_scales(in_rsz, scales, level_size) :
-                                           calculate_scales(in_rsz, scales, level_size);
-    CV_Assert(pyramid_levels <= MAX_PYRAMID_LEVELS);
-
-    //Proposal part of MTCNN graph
-    //Preprocessing BGR2RGB + transpose (NCWH is expected instead of NCHW)
-    cv::GMat in_original;
-    cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original);
-    cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original);
-    cv::GMat in_resized[MAX_PYRAMID_LEVELS];
-    cv::GMat in_transposed[MAX_PYRAMID_LEVELS];
-    cv::GMat regressions[MAX_PYRAMID_LEVELS];
-    cv::GMat scores[MAX_PYRAMID_LEVELS];
-    cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS];
-    cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS];
-    cv::GArray<custom::Face> faces_init(std::vector<custom::Face>{});
-
-    //The very first PNet pyramid layer to init total_faces[0]
-    in_resized[0] = cv::gapi::resize(in_originalRGB, level_size[0]);
-    in_transposed[0] = custom::Transpose::on(in_resized[0]);
-    std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposed[0], get_pnet_level_name(level_size[0]));
-    cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p);
-    cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true);
-    cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares);
-    nms_p_faces[0] = custom::RunNMS::on(final_faces_pnet0, 0.5f, false);
-    total_faces[0] = custom::AccumulatePyramidOutputs::on(faces_init, nms_p_faces[0]);
-    //The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
-    for (int i = 1; i < pyramid_levels; ++i)
-    {
-        in_resized[i] = cv::gapi::resize(in_originalRGB, level_size[i]);
-        in_transposed[i] = custom::Transpose::on(in_resized[i]);
-        std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposed[i], get_pnet_level_name(level_size[i]));
-        cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p);
-        cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true);
-        cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i);
-        nms_p_faces[i] = custom::RunNMS::on(final_faces_pnet_i, 0.5f, false);
-        total_faces[i] = custom::AccumulatePyramidOutputs::on(total_faces[i - 1], nms_p_faces[i]);
-    }
-
-    //Proposal post-processing
-    cv::GArray<custom::Face> final_faces_pnet = custom::RunNMS::on(total_faces[pyramid_levels - 1], 0.7f, true);
-
-    //Refinement part of MTCNN graph
-    cv::GArray<cv::Rect> faces_roi_pnet = custom::R_O_NetPreProcGetROIs::on(final_faces_pnet, in_sz);
-    cv::GArray<cv::GMat> regressionsRNet, scoresRNet;
-    cv::GMat in_originalRGB_transposed = custom::Transpose::on(in_originalRGB);
-    std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_originalRGB_transposed);
-
-    //Refinement post-processing
-    cv::GArray<custom::Face> rnet_post_proc_faces = custom::RNetPostProc::on(final_faces_pnet, scoresRNet, regressionsRNet, conf_thresh_r);
-    cv::GArray<custom::Face> nms07_r_faces_total = custom::RunNMS::on(rnet_post_proc_faces, 0.7f, false);
-    cv::GArray<custom::Face> final_r_faces_for_bb2squares = custom::ApplyRegression::on(nms07_r_faces_total, true);
-    cv::GArray<custom::Face> final_faces_rnet = custom::BBoxesToSquares::on(final_r_faces_for_bb2squares);
-
-    //Output part of MTCNN graph
-    cv::GArray<cv::Rect> faces_roi_rnet = custom::R_O_NetPreProcGetROIs::on(final_faces_rnet, in_sz);
-    cv::GArray<cv::GMat> regressionsONet, scoresONet, landmarksONet;
-    std::tie(regressionsONet, landmarksONet, scoresONet) = cv::gapi::infer<custom::MTCNNOutput>(faces_roi_rnet, in_originalRGB_transposed);
-
-    //Output post-processing
-    cv::GArray<custom::Face> onet_post_proc_faces = custom::ONetPostProc::on(final_faces_rnet, scoresONet, regressionsONet, landmarksONet, conf_thresh_o);
-    cv::GArray<custom::Face> final_o_faces_for_nms07 = custom::ApplyRegression::on(onet_post_proc_faces, true);
-    cv::GArray<custom::Face> nms07_o_faces_total = custom::RunNMS::on(final_o_faces_for_nms07, 0.7f, true);
-    cv::GArray<custom::Face> final_faces_onet = custom::SwapFaces::on(nms07_o_faces_total);
-
-    cv::GComputation graph_mtcnn(cv::GIn(in_original), cv::GOut(cv::gapi::copy(in_original), final_faces_onet));
-
-    // MTCNN Refinement detection network
-    auto mtcnnr_net = cv::gapi::ie::Params<custom::MTCNNRefinement>{
-        model_path_r,                // path to topology IR
-        weights_path(model_path_r),  // path to weights
-        target_dev_r,                // device specifier
-    }.cfgOutputLayers({ "conv5-2", "prob1" }).cfgInputLayers({ "data" });
-
-    // MTCNN Output detection network
-    auto mtcnno_net = cv::gapi::ie::Params<custom::MTCNNOutput>{
-        model_path_o,                // path to topology IR
-        weights_path(model_path_o),  // path to weights
-        target_dev_o,                // device specifier
-    }.cfgOutputLayers({ "conv6-2", "conv6-3", "prob1" }).cfgInputLayers({ "data" });
-
-    auto networks_mtcnn = cv::gapi::networks(mtcnnr_net, mtcnno_net);
-
-    // MTCNN Proposal detection network
-    for (int i = 0; i < pyramid_levels; ++i)
-    {
-        std::string net_id = get_pnet_level_name(level_size[i]);
-        std::vector<size_t> reshape_dims = { 1, 3, (size_t)level_size[i].width, (size_t)level_size[i].height };
-        cv::gapi::ie::Params<cv::gapi::Generic> mtcnnp_net{
-                    net_id,                      // tag
-                    model_path_p,                // path to topology IR
-                    weights_path(model_path_p),  // path to weights
-                    target_dev_p,                // device specifier
-        };
-        mtcnnp_net.cfgInputReshape({ {"data", reshape_dims} });
-        networks_mtcnn += cv::gapi::networks(mtcnnp_net);
-    }
-
-    auto kernels_mtcnn = cv::gapi::kernels< custom::OCVBuildFaces
-                                          , custom::OCVRunNMS
-                                          , custom::OCVAccumulatePyramidOutputs
-                                          , custom::OCVApplyRegression
-                                          , custom::OCVBBoxesToSquares
-                                          , custom::OCVR_O_NetPreProcGetROIs
-                                          , custom::OCVRNetPostProc
-                                          , custom::OCVONetPostProc
-                                          , custom::OCVSwapFaces
-                                          , custom::OCVTranspose
-    >();
-    auto pipeline_mtcnn = graph_mtcnn.compileStreaming(cv::compile_args(networks_mtcnn, kernels_mtcnn));
-
-    std::cout << "Reading " << input_file_name << std::endl;
-    // Input stream
-    auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);
-
-    // Set the pipeline source & start the pipeline
-    pipeline_mtcnn.setSource(cv::gin(in_src));
-    pipeline_mtcnn.start();
-
-    // Declare the output data & run the processing loop
-    cv::TickMeter tm;
-    cv::Mat image;
-    std::vector<custom::Face> out_faces;
-
-    tm.start();
-    int frames = 0;
-    while (pipeline_mtcnn.pull(cv::gout(image, out_faces))) {
-        frames++;
-        std::cout << "Final Faces Size " << out_faces.size() << std::endl;
-        std::vector<vis::rectPoints> data;
-        // show the image with faces in it
-        for (const auto& out_face : out_faces) {
-            std::vector<cv::Point> pts;
-            for (size_t p = 0; p < NUM_PTS; ++p) {
-                pts.push_back(
-                    cv::Point(static_cast<int>(out_face.ptsCoords[2 * p]), static_cast<int>(out_face.ptsCoords[2 * p + 1])));
-            }
-            auto rect = out_face.bbox.getRect();
-            auto d = std::make_pair(rect, pts);
-            data.push_back(d);
-        }
-        // Visualize results on the frame
-        auto resultImg = vis::drawRectsAndPoints(image, data);
-        tm.stop();
-        const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS";
-        cv::putText(resultImg, fps_str, { 0,32 }, cv::FONT_HERSHEY_SIMPLEX, 1.0, { 0,255,0 }, 2);
-        cv::imshow("Out", resultImg);
-        cv::waitKey(1);
-        out_faces.clear();
-        tm.start();
-    }
-    tm.stop();
-    std::cout << "Processed " << frames << " frames"
-        << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
-    return 0;
-}
diff --git a/modules/gapi/samples/face_detection_mtcnn.cpp b/modules/gapi/samples/face_detection_mtcnn.cpp
new file mode 100644 (file)
index 0000000..b1944dd
--- /dev/null
@@ -0,0 +1,762 @@
+#include <algorithm>
+#include <cctype>
+#include <cmath>
+#include <iostream>
+#include <limits>
+#include <numeric>
+#include <stdexcept>
+#include <string>
+#include <vector>
+
+#include <opencv2/gapi.hpp>
+#include <opencv2/gapi/core.hpp>
+#include <opencv2/gapi/imgproc.hpp>
+#include <opencv2/gapi/cpu/gcpukernel.hpp>
+#include <opencv2/gapi/infer.hpp>
+#include <opencv2/gapi/infer/ie.hpp>
+#include <opencv2/gapi/streaming/cap.hpp>
+#include <opencv2/gapi/gopaque.hpp>
+#include <opencv2/highgui.hpp>
+
+const std::string about =
+"This is an OpenCV-based version of OMZ MTCNN Face Detection example";
+const std::string keys =
+"{ h help           |                           | Print this help message }"
+"{ input            |                           | Path to the input video file }"
+"{ mtcnnpm          | mtcnn-p.xml               | Path to OpenVINO MTCNN P (Proposal) detection model (.xml)}"
+"{ mtcnnpd          | CPU                       | Target device for the MTCNN P (e.g. CPU, GPU, VPU, ...) }"
+"{ mtcnnrm          | mtcnn-r.xml               | Path to OpenVINO MTCNN R (Refinement) detection model (.xml)}"
+"{ mtcnnrd          | CPU                       | Target device for the MTCNN R (e.g. CPU, GPU, VPU, ...) }"
+"{ mtcnnom          | mtcnn-o.xml               | Path to OpenVINO MTCNN O (Output) detection model (.xml)}"
+"{ mtcnnod          | CPU                       | Target device for the MTCNN O (e.g. CPU, GPU, VPU, ...) }"
+"{ thrp             | 0.6                       | MTCNN P confidence threshold}"
+"{ thrr             | 0.7                       | MTCNN R confidence threshold}"
+"{ thro             | 0.7                       | MTCNN O confidence threshold}"
+"{ half_scale       | false                     | MTCNN P use half scale pyramid}"
+"{ queue_capacity   | 1                         | Streaming executor queue capacity. Calculated automaticaly if 0}"
+;
+
+namespace {
+std::string weights_path(const std::string& model_path) {
+    const auto EXT_LEN = 4u;
+    const auto sz = model_path.size();
+    CV_Assert(sz > EXT_LEN);
+
+    const auto ext = model_path.substr(sz - EXT_LEN);
+    CV_Assert(cv::toLowerCase(ext) == ".xml");
+    return model_path.substr(0u, sz - EXT_LEN) + ".bin";
+}
+//////////////////////////////////////////////////////////////////////
+} // anonymous namespace
+
+namespace custom {
+namespace {
+
+// Define custom structures and operations
+#define NUM_REGRESSIONS 4
+#define NUM_PTS 5
+
+struct BBox {
+    int x1;
+    int y1;
+    int x2;
+    int y2;
+
+    cv::Rect getRect() const { return cv::Rect(x1,
+                                               y1,
+                                               x2 - x1,
+                                               y2 - y1); }
+
+    BBox getSquare() const {
+        BBox bbox;
+        float bboxWidth = static_cast<float>(x2 - x1);
+        float bboxHeight = static_cast<float>(y2 - y1);
+        float side = std::max(bboxWidth, bboxHeight);
+        bbox.x1 = static_cast<int>(static_cast<float>(x1) + (bboxWidth - side) * 0.5f);
+        bbox.y1 = static_cast<int>(static_cast<float>(y1) + (bboxHeight - side) * 0.5f);
+        bbox.x2 = static_cast<int>(static_cast<float>(bbox.x1) + side);
+        bbox.y2 = static_cast<int>(static_cast<float>(bbox.y1) + side);
+        return bbox;
+    }
+};
+
+struct Face {
+    BBox bbox;
+    float score;
+    std::array<float, NUM_REGRESSIONS> regression;
+    std::array<float, 2 * NUM_PTS> ptsCoords;
+
+    static void applyRegression(std::vector<Face>& faces, bool addOne = false) {
+        for (auto& face : faces) {
+            float bboxWidth =
+                face.bbox.x2 - face.bbox.x1 + static_cast<float>(addOne);
+            float bboxHeight =
+                face.bbox.y2 - face.bbox.y1 + static_cast<float>(addOne);
+            face.bbox.x1 = static_cast<int>(static_cast<float>(face.bbox.x1) + (face.regression[1] * bboxWidth));
+            face.bbox.y1 = static_cast<int>(static_cast<float>(face.bbox.y1) + (face.regression[0] * bboxHeight));
+            face.bbox.x2 = static_cast<int>(static_cast<float>(face.bbox.x2) + (face.regression[3] * bboxWidth));
+            face.bbox.y2 = static_cast<int>(static_cast<float>(face.bbox.y2) + (face.regression[2] * bboxHeight));
+        }
+    }
+
+    static void bboxes2Squares(std::vector<Face>& faces) {
+        for (auto& face : faces) {
+            face.bbox = face.bbox.getSquare();
+        }
+    }
+
+    static std::vector<Face> runNMS(std::vector<Face>& faces, const float threshold,
+                                    const bool useMin = false) {
+        std::vector<Face> facesNMS;
+        if (faces.empty()) {
+            return facesNMS;
+        }
+
+        std::sort(faces.begin(), faces.end(), [](const Face& f1, const Face& f2) {
+            return f1.score > f2.score;
+        });
+
+        std::vector<int> indices(faces.size());
+        std::iota(indices.begin(), indices.end(), 0);
+
+        while (indices.size() > 0) {
+            const int idx = indices[0];
+            facesNMS.push_back(faces[idx]);
+            std::vector<int> tmpIndices = indices;
+            indices.clear();
+            const float area1 = static_cast<float>(faces[idx].bbox.x2 - faces[idx].bbox.x1 + 1) *
+                static_cast<float>(faces[idx].bbox.y2 - faces[idx].bbox.y1 + 1);
+            for (size_t i = 1; i < tmpIndices.size(); ++i) {
+                int tmpIdx = tmpIndices[i];
+                const float interX1 = static_cast<float>(std::max(faces[idx].bbox.x1, faces[tmpIdx].bbox.x1));
+                const float interY1 = static_cast<float>(std::max(faces[idx].bbox.y1, faces[tmpIdx].bbox.y1));
+                const float interX2 = static_cast<float>(std::min(faces[idx].bbox.x2, faces[tmpIdx].bbox.x2));
+                const float interY2 = static_cast<float>(std::min(faces[idx].bbox.y2, faces[tmpIdx].bbox.y2));
+
+                const float bboxWidth = std::max(0.0f, (interX2 - interX1 + 1));
+                const float bboxHeight = std::max(0.0f, (interY2 - interY1 + 1));
+
+                const float interArea = bboxWidth * bboxHeight;
+                const float area2 = static_cast<float>(faces[tmpIdx].bbox.x2 - faces[tmpIdx].bbox.x1 + 1) *
+                    static_cast<float>(faces[tmpIdx].bbox.y2 - faces[tmpIdx].bbox.y1 + 1);
+                float overlap = 0.0;
+                if (useMin) {
+                    overlap = interArea / std::min(area1, area2);
+                } else {
+                    overlap = interArea / (area1 + area2 - interArea);
+                }
+                if (overlap <= threshold) {
+                    indices.push_back(tmpIdx);
+                }
+            }
+        }
+        return facesNMS;
+    }
+};
+
+const float P_NET_WINDOW_SIZE = 12.0f;
+
+std::vector<Face> buildFaces(const cv::Mat& scores,
+                             const cv::Mat& regressions,
+                             const float scaleFactor,
+                             const float threshold) {
+
+    auto w = scores.size[3];
+    auto h = scores.size[2];
+    auto size = w * h;
+
+    const float* scores_data = scores.ptr<float>();
+    scores_data += size;
+
+    const float* reg_data = regressions.ptr<float>();
+
+    auto out_side = std::max(h, w);
+    auto in_side = 2 * out_side + 11;
+    float stride = 0.0f;
+    if (out_side != 1)
+    {
+        stride = static_cast<float>(in_side - P_NET_WINDOW_SIZE) / static_cast<float>(out_side - 1);
+    }
+
+    std::vector<Face> boxes;
+
+    for (int i = 0; i < size; i++) {
+        if (scores_data[i] >= (threshold)) {
+            float y = static_cast<float>(i / w);
+            float x = static_cast<float>(i - w * y);
+
+            Face faceInfo;
+            BBox& faceBox = faceInfo.bbox;
+
+            faceBox.x1 = std::max(0, static_cast<int>((x * stride) / scaleFactor));
+            faceBox.y1 = std::max(0, static_cast<int>((y * stride) / scaleFactor));
+            faceBox.x2 = static_cast<int>((x * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor);
+            faceBox.y2 = static_cast<int>((y * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor);
+            faceInfo.regression[0] = reg_data[i];
+            faceInfo.regression[1] = reg_data[i + size];
+            faceInfo.regression[2] = reg_data[i + 2 * size];
+            faceInfo.regression[3] = reg_data[i + 3 * size];
+            faceInfo.score = scores_data[i];
+            boxes.push_back(faceInfo);
+        }
+    }
+
+    return boxes;
+}
+
+// Define networks for this sample
+using GMat2 = std::tuple<cv::GMat, cv::GMat>;
+using GMat3 = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
+using GMats = cv::GArray<cv::GMat>;
+using GRects = cv::GArray<cv::Rect>;
+using GSize = cv::GOpaque<cv::Size>;
+
+G_API_NET(MTCNNRefinement,
+          <GMat2(cv::GMat)>,
+          "sample.custom.mtcnn_refinement");
+
+G_API_NET(MTCNNOutput,
+          <GMat3(cv::GMat)>,
+          "sample.custom.mtcnn_output");
+
+using GFaces = cv::GArray<Face>;
+G_API_OP(BuildFaces,
+         <GFaces(cv::GMat, cv::GMat, float, float)>,
+         "sample.custom.mtcnn.build_faces") {
+         static cv::GArrayDesc outMeta(const cv::GMatDesc&,
+                                       const cv::GMatDesc&,
+                                       const float,
+                                       const float) {
+              return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(RunNMS,
+         <GFaces(GFaces, float, bool)>,
+         "sample.custom.mtcnn.run_nms") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
+                                       const float, const bool) {
+             return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(AccumulatePyramidOutputs,
+         <GFaces(GFaces, GFaces)>,
+         "sample.custom.mtcnn.accumulate_pyramid_outputs") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
+                                       const cv::GArrayDesc&) {
+             return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(ApplyRegression,
+         <GFaces(GFaces, bool)>,
+         "sample.custom.mtcnn.apply_regression") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const bool) {
+             return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(BBoxesToSquares,
+         <GFaces(GFaces)>,
+         "sample.custom.mtcnn.bboxes_to_squares") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&) {
+              return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(R_O_NetPreProcGetROIs,
+         <GRects(GFaces, GSize)>,
+         "sample.custom.mtcnn.bboxes_r_o_net_preproc_get_rois") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const cv::GOpaqueDesc&) {
+              return cv::empty_array_desc();
+    }
+};
+
+
+G_API_OP(RNetPostProc,
+         <GFaces(GFaces, GMats, GMats, float)>,
+         "sample.custom.mtcnn.rnet_postproc") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
+                                       const cv::GArrayDesc&,
+                                       const cv::GArrayDesc&,
+                                       const float) {
+             return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(ONetPostProc,
+         <GFaces(GFaces, GMats, GMats, GMats, float)>,
+         "sample.custom.mtcnn.onet_postproc") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&,
+                                       const cv::GArrayDesc&,
+                                       const cv::GArrayDesc&,
+                                       const cv::GArrayDesc&,
+                                       const float) {
+             return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(SwapFaces,
+         <GFaces(GFaces)>,
+         "sample.custom.mtcnn.swap_faces") {
+         static cv::GArrayDesc outMeta(const cv::GArrayDesc&) {
+              return cv::empty_array_desc();
+    }
+};
+
+G_API_OP(Transpose,
+         <cv::GMat(cv::GMat)>,
+         "sample.custom.mtcnn.transpose") {
+          static cv::GMatDesc outMeta(const cv::GMatDesc in) {
+               return in.withSize(cv::Size(in.size.height, in.size.width));
+    }
+};
+
+//Custom kernels implementation
+GAPI_OCV_KERNEL(OCVBuildFaces, BuildFaces) {
+    static void run(const cv::Mat & in_scores,
+                    const cv::Mat & in_regresssions,
+                    const float scaleFactor,
+                    const float threshold,
+                    std::vector<Face> &out_faces) {
+        out_faces = buildFaces(in_scores, in_regresssions, scaleFactor, threshold);
+    }
+};// GAPI_OCV_KERNEL(BuildFaces)
+
+GAPI_OCV_KERNEL(OCVRunNMS, RunNMS) {
+    static void run(const std::vector<Face> &in_faces,
+                    const float threshold,
+                    const bool useMin,
+                    std::vector<Face> &out_faces) {
+                    std::vector<Face> in_faces_copy = in_faces;
+        out_faces = Face::runNMS(in_faces_copy, threshold, useMin);
+    }
+};// GAPI_OCV_KERNEL(RunNMS)
+
+GAPI_OCV_KERNEL(OCVAccumulatePyramidOutputs, AccumulatePyramidOutputs) {
+    static void run(const std::vector<Face> &total_faces,
+                    const std::vector<Face> &in_faces,
+                    std::vector<Face> &out_faces) {
+                    out_faces = total_faces;
+        out_faces.insert(out_faces.end(), in_faces.begin(), in_faces.end());
+    }
+};// GAPI_OCV_KERNEL(AccumulatePyramidOutputs)
+
+GAPI_OCV_KERNEL(OCVApplyRegression, ApplyRegression) {
+    static void run(const std::vector<Face> &in_faces,
+                    const bool addOne,
+                    std::vector<Face> &out_faces) {
+        std::vector<Face> in_faces_copy = in_faces;
+        Face::applyRegression(in_faces_copy, addOne);
+        out_faces.clear();
+        out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end());
+    }
+};// GAPI_OCV_KERNEL(ApplyRegression)
+
+GAPI_OCV_KERNEL(OCVBBoxesToSquares, BBoxesToSquares) {
+    static void run(const std::vector<Face> &in_faces,
+                    std::vector<Face> &out_faces) {
+        std::vector<Face> in_faces_copy = in_faces;
+        Face::bboxes2Squares(in_faces_copy);
+        out_faces.clear();
+        out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end());
+    }
+};// GAPI_OCV_KERNEL(BBoxesToSquares)
+
+GAPI_OCV_KERNEL(OCVR_O_NetPreProcGetROIs, R_O_NetPreProcGetROIs) {
+    static void run(const std::vector<Face> &in_faces,
+                    const cv::Size & in_image_size,
+                    std::vector<cv::Rect> &outs) {
+        outs.clear();
+        for (const auto& face : in_faces) {
+            cv::Rect tmp_rect = face.bbox.getRect();
+            //Compare to transposed sizes width<->height
+            tmp_rect &= cv::Rect(tmp_rect.x, tmp_rect.y, in_image_size.height - tmp_rect.x - 4, in_image_size.width - tmp_rect.y - 4);
+            outs.push_back(tmp_rect);
+        }
+    }
+};// GAPI_OCV_KERNEL(R_O_NetPreProcGetROIs)
+
+
+GAPI_OCV_KERNEL(OCVRNetPostProc, RNetPostProc) {
+    static void run(const std::vector<Face> &in_faces,
+                    const std::vector<cv::Mat> &in_scores,
+                    const std::vector<cv::Mat> &in_regresssions,
+                    const float threshold,
+                    std::vector<Face> &out_faces) {
+        out_faces.clear();
+        for (unsigned int k = 0; k < in_faces.size(); ++k) {
+            const float* scores_data = in_scores[k].ptr<float>();
+            const float* reg_data = in_regresssions[k].ptr<float>();
+            if (scores_data[1] >= threshold) {
+                Face info = in_faces[k];
+                info.score = scores_data[1];
+                std::copy_n(reg_data, NUM_REGRESSIONS, info.regression.begin());
+                out_faces.push_back(info);
+            }
+        }
+    }
+};// GAPI_OCV_KERNEL(RNetPostProc)
+
+GAPI_OCV_KERNEL(OCVONetPostProc, ONetPostProc) {
+    static void run(const std::vector<Face> &in_faces,
+                    const std::vector<cv::Mat> &in_scores,
+                    const std::vector<cv::Mat> &in_regresssions,
+                    const std::vector<cv::Mat> &in_landmarks,
+                    const float threshold,
+                    std::vector<Face> &out_faces) {
+        out_faces.clear();
+        for (unsigned int k = 0; k < in_faces.size(); ++k) {
+            const float* scores_data = in_scores[k].ptr<float>();
+            const float* reg_data = in_regresssions[k].ptr<float>();
+            const float* landmark_data = in_landmarks[k].ptr<float>();
+            if (scores_data[1] >= threshold) {
+                Face info = in_faces[k];
+                info.score = scores_data[1];
+                for (size_t i = 0; i < 4; ++i) {
+                    info.regression[i] = reg_data[i];
+                }
+                float w = info.bbox.x2 - info.bbox.x1 + 1.0f;
+                float h = info.bbox.y2 - info.bbox.y1 + 1.0f;
+
+                for (size_t p = 0; p < NUM_PTS; ++p) {
+                    info.ptsCoords[2 * p] =
+                        info.bbox.x1 + static_cast<float>(landmark_data[NUM_PTS + p]) * w - 1;
+                    info.ptsCoords[2 * p + 1] = info.bbox.y1 + static_cast<float>(landmark_data[p]) * h - 1;
+                }
+
+                out_faces.push_back(info);
+            }
+        }
+    }
+};// GAPI_OCV_KERNEL(ONetPostProc)
+
+GAPI_OCV_KERNEL(OCVSwapFaces, SwapFaces) {
+    static void run(const std::vector<Face> &in_faces,
+                    std::vector<Face> &out_faces) {
+        std::vector<Face> in_faces_copy = in_faces;
+        out_faces.clear();
+        if (!in_faces_copy.empty()) {
+            for (size_t i = 0; i < in_faces_copy.size(); ++i) {
+                std::swap(in_faces_copy[i].bbox.x1, in_faces_copy[i].bbox.y1);
+                std::swap(in_faces_copy[i].bbox.x2, in_faces_copy[i].bbox.y2);
+                for (size_t p = 0; p < NUM_PTS; ++p) {
+                    std::swap(in_faces_copy[i].ptsCoords[2 * p], in_faces_copy[i].ptsCoords[2 * p + 1]);
+                }
+            }
+            out_faces = in_faces_copy;
+        }
+    }
+};// GAPI_OCV_KERNEL(SwapFaces)
+
+GAPI_OCV_KERNEL(OCVTranspose, Transpose) {
+    static void run(const cv::Mat &in_mat,
+                    cv::Mat &out_mat) {
+        cv::transpose(in_mat, out_mat);
+    }
+};// GAPI_OCV_KERNEL(Transpose)
+} // anonymous namespace
+} // namespace custom
+
+namespace vis {
+namespace {
+void bbox(const cv::Mat& m, const cv::Rect& rc) {
+    cv::rectangle(m, rc, cv::Scalar{ 0,255,0 }, 2, cv::LINE_8, 0);
+};
+
+using rectPoints = std::pair<cv::Rect, std::vector<cv::Point>>;
+
+static cv::Mat drawRectsAndPoints(const cv::Mat& img,
+    const std::vector<rectPoints> data) {
+    cv::Mat outImg;
+    img.copyTo(outImg);
+
+    for (const auto& el : data) {
+        vis::bbox(outImg, el.first);
+        auto pts = el.second;
+        for (size_t i = 0; i < pts.size(); ++i) {
+            cv::circle(outImg, pts[i], 3, cv::Scalar(0, 255, 255), 1);
+        }
+    }
+    return outImg;
+}
+} // anonymous namespace
+} // namespace vis
+
+
+//Infer helper function
+namespace {
+static inline std::tuple<cv::GMat, cv::GMat> run_mtcnn_p(cv::GMat &in, const std::string &id) {
+    cv::GInferInputs inputs;
+    inputs["data"] = in;
+    auto outputs = cv::gapi::infer<cv::gapi::Generic>(id, inputs);
+    auto regressions = outputs.at("conv4-2");
+    auto scores = outputs.at("prob1");
+    return std::make_tuple(regressions, scores);
+}
+
+//Operator fot PNet network package creation in the loop
+inline cv::gapi::GNetPackage& operator += (cv::gapi::GNetPackage& lhs, const cv::gapi::GNetPackage& rhs) {
+    lhs.networks.reserve(lhs.networks.size() + rhs.networks.size());
+    lhs.networks.insert(lhs.networks.end(), rhs.networks.begin(), rhs.networks.end());
+    return lhs;
+}
+
+static inline std::string get_pnet_level_name(const cv::Size &in_size) {
+    return "MTCNNProposal_" + std::to_string(in_size.width) + "x" + std::to_string(in_size.height);
+}
+
+int calculate_scales(const cv::Size &input_size, std::vector<double> &out_scales, std::vector<cv::Size> &out_sizes ) {
+    //calculate multi - scale and limit the maxinum side to 1000
+    //pr_scale: limit the maxinum side to 1000, < 1.0
+    double pr_scale = 1.0;
+    double h = static_cast<double>(input_size.height);
+    double w = static_cast<double>(input_size.width);
+    if (std::min(w, h) > 1000)
+    {
+        pr_scale = 1000.0 / std::min(h, w);
+        w = w * pr_scale;
+        h = h * pr_scale;
+    }
+    else if (std::max(w, h) < 1000)
+    {
+        w = w * pr_scale;
+        h = h * pr_scale;
+    }
+    //multi - scale
+    out_scales.clear();
+    out_sizes.clear();
+    const double factor = 0.709;
+    int factor_count = 0;
+    double minl = std::min(h, w);
+    while (minl >= 12)
+    {
+        const double current_scale = pr_scale * std::pow(factor, factor_count);
+        cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale),
+                              static_cast<int>(static_cast<double>(input_size.height) * current_scale));
+        out_scales.push_back(current_scale);
+        out_sizes.push_back(current_size);
+        minl *= factor;
+        factor_count += 1;
+    }
+    return factor_count;
+}
+
+int calculate_half_scales(const cv::Size &input_size, std::vector<double>& out_scales, std::vector<cv::Size>& out_sizes) {
+    double pr_scale = 0.5;
+    const double h = static_cast<double>(input_size.height);
+    const double w = static_cast<double>(input_size.width);
+    //multi - scale
+    out_scales.clear();
+    out_sizes.clear();
+    const double factor = 0.5;
+    int factor_count = 0;
+    double minl = std::min(h, w);
+    while (minl >= 12.0*2.0)
+    {
+        const double current_scale = pr_scale;
+        cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale),
+                              static_cast<int>(static_cast<double>(input_size.height) * current_scale));
+        out_scales.push_back(current_scale);
+        out_sizes.push_back(current_size);
+        minl *= factor;
+        factor_count += 1;
+        pr_scale *= 0.5;
+    }
+    return factor_count;
+}
+
+const int MAX_PYRAMID_LEVELS = 13;
+//////////////////////////////////////////////////////////////////////
+} // anonymous namespace
+
+int main(int argc, char* argv[]) {
+    cv::CommandLineParser cmd(argc, argv, keys);
+    cmd.about(about);
+    if (cmd.has("help")) {
+        cmd.printMessage();
+        return 0;
+    }
+    const auto input_file_name = cmd.get<std::string>("input");
+    const auto model_path_p = cmd.get<std::string>("mtcnnpm");
+    const auto target_dev_p = cmd.get<std::string>("mtcnnpd");
+    const auto conf_thresh_p = cmd.get<float>("thrp");
+    const auto model_path_r = cmd.get<std::string>("mtcnnrm");
+    const auto target_dev_r = cmd.get<std::string>("mtcnnrd");
+    const auto conf_thresh_r = cmd.get<float>("thrr");
+    const auto model_path_o = cmd.get<std::string>("mtcnnom");
+    const auto target_dev_o = cmd.get<std::string>("mtcnnod");
+    const auto conf_thresh_o = cmd.get<float>("thro");
+    const auto use_half_scale = cmd.get<bool>("half_scale");
+    const auto streaming_queue_capacity = cmd.get<unsigned int>("queue_capacity");
+
+    std::vector<cv::Size> level_size;
+    std::vector<double> scales;
+    //MTCNN input size
+    cv::VideoCapture cap;
+    cap.open(input_file_name);
+    if (!cap.isOpened())
+        CV_Assert(false);
+    auto in_rsz = cv::Size{ static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)),
+                            static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)) };
+    //Calculate scales, number of pyramid levels and sizes for PNet pyramid
+    auto pyramid_levels = use_half_scale ? calculate_half_scales(in_rsz, scales, level_size) :
+                                           calculate_scales(in_rsz, scales, level_size);
+    CV_Assert(pyramid_levels <= MAX_PYRAMID_LEVELS);
+
+    //Proposal part of MTCNN graph
+    //Preprocessing BGR2RGB + transpose (NCWH is expected instead of NCHW)
+    cv::GMat in_original;
+    cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original);
+    cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original);
+    cv::GMat in_resized[MAX_PYRAMID_LEVELS];
+    cv::GMat in_transposed[MAX_PYRAMID_LEVELS];
+    cv::GMat regressions[MAX_PYRAMID_LEVELS];
+    cv::GMat scores[MAX_PYRAMID_LEVELS];
+    cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS];
+    cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS];
+    cv::GArray<custom::Face> faces_init(std::vector<custom::Face>{});
+
+    //The very first PNet pyramid layer to init total_faces[0]
+    in_resized[0] = cv::gapi::resize(in_originalRGB, level_size[0]);
+    in_transposed[0] = custom::Transpose::on(in_resized[0]);
+    std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposed[0], get_pnet_level_name(level_size[0]));
+    cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p);
+    cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true);
+    cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares);
+    nms_p_faces[0] = custom::RunNMS::on(final_faces_pnet0, 0.5f, false);
+    total_faces[0] = custom::AccumulatePyramidOutputs::on(faces_init, nms_p_faces[0]);
+    //The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]]
+    for (int i = 1; i < pyramid_levels; ++i)
+    {
+        in_resized[i] = cv::gapi::resize(in_originalRGB, level_size[i]);
+        in_transposed[i] = custom::Transpose::on(in_resized[i]);
+        std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposed[i], get_pnet_level_name(level_size[i]));
+        cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p);
+        cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true);
+        cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i);
+        nms_p_faces[i] = custom::RunNMS::on(final_faces_pnet_i, 0.5f, false);
+        total_faces[i] = custom::AccumulatePyramidOutputs::on(total_faces[i - 1], nms_p_faces[i]);
+    }
+
+    //Proposal post-processing
+    cv::GArray<custom::Face> final_faces_pnet = custom::RunNMS::on(total_faces[pyramid_levels - 1], 0.7f, true);
+
+    //Refinement part of MTCNN graph
+    cv::GArray<cv::Rect> faces_roi_pnet = custom::R_O_NetPreProcGetROIs::on(final_faces_pnet, in_sz);
+    cv::GArray<cv::GMat> regressionsRNet, scoresRNet;
+    cv::GMat in_originalRGB_transposed = custom::Transpose::on(in_originalRGB);
+    std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_originalRGB_transposed);
+
+    //Refinement post-processing
+    cv::GArray<custom::Face> rnet_post_proc_faces = custom::RNetPostProc::on(final_faces_pnet, scoresRNet, regressionsRNet, conf_thresh_r);
+    cv::GArray<custom::Face> nms07_r_faces_total = custom::RunNMS::on(rnet_post_proc_faces, 0.7f, false);
+    cv::GArray<custom::Face> final_r_faces_for_bb2squares = custom::ApplyRegression::on(nms07_r_faces_total, true);
+    cv::GArray<custom::Face> final_faces_rnet = custom::BBoxesToSquares::on(final_r_faces_for_bb2squares);
+
+    //Output part of MTCNN graph
+    cv::GArray<cv::Rect> faces_roi_rnet = custom::R_O_NetPreProcGetROIs::on(final_faces_rnet, in_sz);
+    cv::GArray<cv::GMat> regressionsONet, scoresONet, landmarksONet;
+    std::tie(regressionsONet, landmarksONet, scoresONet) = cv::gapi::infer<custom::MTCNNOutput>(faces_roi_rnet, in_originalRGB_transposed);
+
+    //Output post-processing
+    cv::GArray<custom::Face> onet_post_proc_faces = custom::ONetPostProc::on(final_faces_rnet, scoresONet, regressionsONet, landmarksONet, conf_thresh_o);
+    cv::GArray<custom::Face> final_o_faces_for_nms07 = custom::ApplyRegression::on(onet_post_proc_faces, true);
+    cv::GArray<custom::Face> nms07_o_faces_total = custom::RunNMS::on(final_o_faces_for_nms07, 0.7f, true);
+    cv::GArray<custom::Face> final_faces_onet = custom::SwapFaces::on(nms07_o_faces_total);
+
+    cv::GComputation graph_mtcnn(cv::GIn(in_original), cv::GOut(cv::gapi::copy(in_original), final_faces_onet));
+
+    // MTCNN Refinement detection network
+    auto mtcnnr_net = cv::gapi::ie::Params<custom::MTCNNRefinement>{
+        model_path_r,                // path to topology IR
+        weights_path(model_path_r),  // path to weights
+        target_dev_r,                // device specifier
+    }.cfgOutputLayers({ "conv5-2", "prob1" }).cfgInputLayers({ "data" });
+
+    // MTCNN Output detection network
+    auto mtcnno_net = cv::gapi::ie::Params<custom::MTCNNOutput>{
+        model_path_o,                // path to topology IR
+        weights_path(model_path_o),  // path to weights
+        target_dev_o,                // device specifier
+    }.cfgOutputLayers({ "conv6-2", "conv6-3", "prob1" }).cfgInputLayers({ "data" });
+
+    auto networks_mtcnn = cv::gapi::networks(mtcnnr_net, mtcnno_net);
+
+    // MTCNN Proposal detection network
+    for (int i = 0; i < pyramid_levels; ++i)
+    {
+        std::string net_id = get_pnet_level_name(level_size[i]);
+        std::vector<size_t> reshape_dims = { 1, 3, (size_t)level_size[i].width, (size_t)level_size[i].height };
+        cv::gapi::ie::Params<cv::gapi::Generic> mtcnnp_net{
+                    net_id,                      // tag
+                    model_path_p,                // path to topology IR
+                    weights_path(model_path_p),  // path to weights
+                    target_dev_p,                // device specifier
+        };
+        mtcnnp_net.cfgInputReshape({ {"data", reshape_dims} });
+        networks_mtcnn += cv::gapi::networks(mtcnnp_net);
+    }
+
+    auto kernels_mtcnn = cv::gapi::kernels< custom::OCVBuildFaces
+                                          , custom::OCVRunNMS
+                                          , custom::OCVAccumulatePyramidOutputs
+                                          , custom::OCVApplyRegression
+                                          , custom::OCVBBoxesToSquares
+                                          , custom::OCVR_O_NetPreProcGetROIs
+                                          , custom::OCVRNetPostProc
+                                          , custom::OCVONetPostProc
+                                          , custom::OCVSwapFaces
+                                          , custom::OCVTranspose
+    >();
+    auto mtcnn_args = cv::compile_args(networks_mtcnn, kernels_mtcnn);
+    if (streaming_queue_capacity != 0)
+        mtcnn_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
+    auto pipeline_mtcnn = graph_mtcnn.compileStreaming(std::move(mtcnn_args));
+
+    std::cout << "Reading " << input_file_name << std::endl;
+    // Input stream
+    auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);
+
+    // Set the pipeline source & start the pipeline
+    pipeline_mtcnn.setSource(cv::gin(in_src));
+    pipeline_mtcnn.start();
+
+    // Declare the output data & run the processing loop
+    cv::TickMeter tm;
+    cv::Mat image;
+    std::vector<custom::Face> out_faces;
+
+    tm.start();
+    int frames = 0;
+    while (pipeline_mtcnn.pull(cv::gout(image, out_faces))) {
+        frames++;
+        std::cout << "Final Faces Size " << out_faces.size() << std::endl;
+        std::vector<vis::rectPoints> data;
+        // show the image with faces in it
+        for (const auto& out_face : out_faces) {
+            std::vector<cv::Point> pts;
+            for (size_t p = 0; p < NUM_PTS; ++p) {
+                pts.push_back(
+                    cv::Point(static_cast<int>(out_face.ptsCoords[2 * p]), static_cast<int>(out_face.ptsCoords[2 * p + 1])));
+            }
+            auto rect = out_face.bbox.getRect();
+            auto d = std::make_pair(rect, pts);
+            data.push_back(d);
+        }
+        // Visualize results on the frame
+        auto resultImg = vis::drawRectsAndPoints(image, data);
+        tm.stop();
+        const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS";
+        cv::putText(resultImg, fps_str, { 0,32 }, cv::FONT_HERSHEY_SIMPLEX, 1.0, { 0,255,0 }, 2);
+        cv::imshow("Out", resultImg);
+        cv::waitKey(1);
+        out_faces.clear();
+        tm.start();
+    }
+    tm.stop();
+    std::cout << "Processed " << frames << " frames"
+        << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
+    return 0;
+}