}
else
{
- std::vector<size_t> data = {(size_t)ieInpNode->get_shape()[0], (size_t)blobs[0].size[1]};
+ std::vector<int64_t> data = {(int64_t)ieInpNode->get_shape()[0], (int64_t)blobs[0].size[1]};
auto new_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, data.data());
auto inp = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, new_shape, true);
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
+ std::vector<int64_t> order(_order.begin(), _order.end());
auto tr_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
- ngraph::Shape({_order.size()}), _order.data());
+ ngraph::Shape({order.size()}), order.data());
auto transpose = std::make_shared<ngraph::op::Transpose>(ieInpNode, tr_axes);
return Ptr<BackendNode>(new InfEngineNgraphNode(transpose));
}
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
else
FAIL() << "Unknown backendId";
- std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt"));
- Net net = readNet(_tf("layer_convolution" + suffix + ".xml"), _tf("layer_convolution" + suffix + ".bin"));
+ Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
Mat inp = blobFromNPY(_tf("blob.npy"));
std::vector<int> outLayers = net.getUnconnectedOutLayers();
ASSERT_EQ(net.getLayer(outLayers[0])->name, "output");
- ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution");
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
+ ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution");
+ else
+ ASSERT_EQ(net.getLayer(outLayers[0])->type, "Add");
}
TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8)
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
randu(inputs[0], 0, 255);
inputs[0].convertTo(inputs[1], CV_32F);
- std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
-
Mat outs[2];
for (int i = 0; i < 2; ++i)
{
- Net net = readNet(_tf("layer_convolution" + suffix + ".xml"), _tf("layer_convolution" + suffix + ".bin"));
+ Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin"));
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
net.setInput(inputs[i]);
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
else
FAIL() << "Unknown backendId";
- std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
- std::string xmlPath = _tf("layer_convolution" + suffix + ".xml");
- std::string binPath = _tf("layer_convolution" + suffix + ".bin");
+ std::string xmlPath = _tf("layer_convolution.xml");
+ std::string binPath = _tf("layer_convolution.bin");
Net firstNet = readNet(xmlPath, binPath);
Net secondNet = readNet(xmlPath, binPath);
Mat inp = blobFromNPY(_tf("blob.npy"));
int secondInpType = get<1>(GetParam());
Target targetId = get<2>(GetParam());
- std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
- Net net = readNet(_tf("net_two_inputs" + suffix + ".xml"), _tf("net_two_inputs.bin"));
+ Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin"));
std::vector<int> inpSize = get<3>(GetParam());
Mat firstInp(3, inpSize.data(), firstInpType);
Mat secondInp(3, inpSize.data(), secondInpType);
const Backend backendId = get<0>(get<1>(GetParam()));
const Target targetId = get<1>(get<1>(GetParam()));
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
- const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
- const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
- const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
+ const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
+ const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
const Backend backendId = get<0>(get<1>(GetParam()));
const Target targetId = get<1>(get<1>(GetParam()));
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
- const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
- const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
- const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
+ const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
+ const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());
- const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
- const std::string& model = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
- const std::string& proto = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
+ const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
+ const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
- const std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : "";
- const std::string& weightsFile = findDataFile("dnn/layers/layer_convolution" + suffix + ".bin");
- const std::string& modelFile = findDataFile("dnn/layers/layer_convolution" + suffix + ".xml");
+ const std::string& weightsFile = findDataFile("dnn/layers/layer_convolution.bin");
+ const std::string& modelFile = findDataFile("dnn/layers/layer_convolution.xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
const Backend backendId = get<0>(GetParam());
const Target targetId = get<1>(GetParam());
- const std::string& model = findDataFile("dnn/layers/layer_convolution_fp16.bin");
- const std::string& proto = findDataFile("dnn/layers/layer_convolution_fp16.xml");
+ if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD)
+ applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
+
+ const std::string& model = findDataFile("dnn/layers/layer_convolution.bin");
+ const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);