Error initialize(std::unique_ptr<MemoryBuffer> DataBuffer);
// Read and parse the contents of the `DataBuffer` as a binary format profile.
Error readRawProfile(std::unique_ptr<MemoryBuffer> DataBuffer);
+ // Initialize the segment mapping information for symbolization.
+ Error setupForSymbolization();
// Symbolize and cache all the virtual addresses we encounter in the
// callstacks from the raw profile. Also prune callstack frames which we can't
// symbolize or those that belong to the runtime. For profile entries where
object::SectionedAddress getModuleOffset(uint64_t VirtualAddress);
+ // The profiled binary.
object::OwningBinary<object::Binary> Binary;
+ // A symbolizer to translate virtual addresses to code locations.
std::unique_ptr<llvm::symbolize::SymbolizableModule> Symbolizer;
+ // The preferred load address of the executable segment.
+ uint64_t PreferredTextSegmentAddress = 0;
+ // The base address of the text segment in the process during profiling.
+ uint64_t ProfiledTextSegmentStart = 0;
+ // The limit address of the text segment in the process during profiling.
+ uint64_t ProfiledTextSegmentEnd = 0;
+
+ // The memory mapped segment information for all executable segments in the
+ // profiled binary (filtered from the raw profile using the build id).
+ llvm::SmallVector<SegmentEntry, 2> SegmentInfo;
- // The contents of the raw profile.
- llvm::SmallVector<SegmentEntry, 16> SegmentInfo;
// A map from callstack id (same as key in CallStackMap below) to the heap
// information recorded for that allocation context.
llvm::MapVector<uint64_t, MemInfoBlock> CallstackProfileData;
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
#include "llvm/DebugInfo/Symbolize/SymbolizableObjectFile.h"
#include "llvm/Object/Binary.h"
+#include "llvm/Object/BuildID.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/MemProfData.inc"
#include "llvm/ProfileData/RawMemProfReader.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
+#include "llvm/Support/Error.h"
#include "llvm/Support/Path.h"
#define DEBUG_TYPE "memprof"
auto* Elf64LEObject = llvm::cast<llvm::object::ELF64LEObjectFile>(ElfObject);
const llvm::object::ELF64LEFile& ElfFile = Elf64LEObject->getELFFile();
auto PHdrsOr = ElfFile.program_headers();
- if(!PHdrsOr)
- return report(make_error<StringError>(Twine("Could not read program headers: "),
- inconvertibleErrorCode()),
- FileName);
- auto FirstLoadHeader = PHdrsOr->begin();
- while (FirstLoadHeader->p_type != llvm::ELF::PT_LOAD)
- ++FirstLoadHeader;
- if(FirstLoadHeader->p_vaddr == 0)
- return report(make_error<StringError>(Twine("Unsupported position independent code"),
- inconvertibleErrorCode()),
- FileName);
+ if (!PHdrsOr)
+ return report(
+ make_error<StringError>(Twine("Could not read program headers: "),
+ inconvertibleErrorCode()),
+ FileName);
+
+ int NumExecutableSegments = 0;
+ for (const auto &Phdr : *PHdrsOr) {
+ if (Phdr.p_type == ELF::PT_LOAD) {
+ if (Phdr.p_flags & ELF::PF_X) {
+ // We assume only one text segment in the main binary for simplicity and
+ // reduce the overhead of checking multiple ranges during symbolization.
+ if (++NumExecutableSegments > 1) {
+ return report(
+ make_error<StringError>(
+ "Expect only one executable load segment in the binary",
+ inconvertibleErrorCode()),
+ FileName);
+ }
+ // Segment will always be loaded at a page boundary, expect it to be
+ // aligned already. Assume 4K pagesize for the machine from which the
+ // profile has been collected. This should be fine for now, in case we
+ // want to support other pagesizes it can be recorded in the raw profile
+ // during collection.
+ PreferredTextSegmentAddress = Phdr.p_vaddr;
+ assert(Phdr.p_vaddr == (Phdr.p_vaddr & ~(0x1000 - 1U)) &&
+ "Expect p_vaddr to always be page aligned");
+ assert(Phdr.p_offset == 0 && "Expect p_offset = 0 for symbolization.");
+ }
+ }
+ }
auto Triple = ElfObject->makeTriple();
if (!Triple.isX86())
return report(SOFOr.takeError(), FileName);
Symbolizer = std::move(SOFOr.get());
+ // Process the raw profile.
if (Error E = readRawProfile(std::move(DataBuffer)))
return E;
+ if (Error E = setupForSymbolization())
+ return E;
+
if (Error E = symbolizeAndFilterStackFrames())
return E;
return mapRawProfileToRecords();
}
+Error RawMemProfReader::setupForSymbolization() {
+ auto *Object = cast<object::ObjectFile>(Binary.getBinary());
+ auto BuildIdOr = object::getBuildID(Object);
+ if (!BuildIdOr.has_value())
+ return make_error<StringError>(Twine("No build id found in binary ") +
+ Binary.getBinary()->getFileName(),
+ inconvertibleErrorCode());
+ llvm::ArrayRef<uint8_t> BinaryId = BuildIdOr.value();
+
+ int NumMatched = 0;
+ for (const auto &Entry : SegmentInfo) {
+ llvm::ArrayRef<uint8_t> SegmentId(Entry.BuildId, Entry.BuildIdSize);
+ if (BinaryId == SegmentId) {
+ // We assume only one text segment in the main binary for simplicity and
+ // reduce the overhead of checking multiple ranges during symbolization.
+ if (++NumMatched > 1) {
+ return make_error<StringError>(
+ "We expect only one executable segment in the profiled binary",
+ inconvertibleErrorCode());
+ }
+ ProfiledTextSegmentStart = Entry.Start;
+ ProfiledTextSegmentEnd = Entry.End;
+ }
+ }
+ assert(NumMatched != 0 && "No matching executable segments in segment info.");
+ assert(PreferredTextSegmentAddress == 0 ||
+ (PreferredTextSegmentAddress == ProfiledTextSegmentStart) &&
+ "Expect text segment address to be 0 or equal to profiled text "
+ "segment start.");
+ return Error::success();
+}
+
Error RawMemProfReader::mapRawProfileToRecords() {
// Hold a mapping from function to each callsite location we encounter within
// it that is part of some dynamic allocation context. The location is stored
object::SectionedAddress
RawMemProfReader::getModuleOffset(const uint64_t VirtualAddress) {
- LLVM_DEBUG({
- SegmentEntry *ContainingSegment = nullptr;
- for (auto &SE : SegmentInfo) {
- if (VirtualAddress > SE.Start && VirtualAddress <= SE.End) {
- ContainingSegment = &SE;
- }
+ if (VirtualAddress > ProfiledTextSegmentStart &&
+ VirtualAddress <= ProfiledTextSegmentEnd) {
+ // For PIE binaries, the preferred address is zero and we adjust the virtual
+ // address by start of the profiled segment assuming that the offset of the
+ // segment in the binary is zero. For non-PIE binaries the preferred and
+ // profiled segment addresses should be equal and this is a no-op.
+ const uint64_t AdjustedAddress =
+ VirtualAddress + PreferredTextSegmentAddress - ProfiledTextSegmentStart;
+ return object::SectionedAddress{AdjustedAddress};
}
-
- // Ensure that the virtual address is valid.
- assert(ContainingSegment && "Could not find a segment entry");
- });
-
- // TODO: Compute the file offset based on the maps and program headers. For
- // now this only works for non PIE binaries.
+ // Addresses which do not originate from the profiled text segment in the
+ // binary are not adjusted. These will fail symbolization and be filtered out
+ // during processing.
return object::SectionedAddress{VirtualAddress};
}
recorded.
To update the inputs used below run Inputs/update_memprof_inputs.sh /path/to/updated/clang
-RUN: not llvm-profdata show --memory %p/Inputs/pic.memprofraw --profiled-binary %p/Inputs/pic.memprofexe -o - 2>&1 | FileCheck %s
+RUN: llvm-profdata show --memory %p/Inputs/pic.memprofraw --profiled-binary %p/Inputs/pic.memprofexe -o - 2>&1 | FileCheck %s
-CHECK: Unsupported position independent code
+CHECK: MemprofProfile:
+CHECK-NEXT: Summary:
+CHECK-NEXT: Version: 3
+CHECK-NEXT: NumSegments: {{[0-9]+}}
+CHECK-NEXT: NumMibInfo: 2
+CHECK-NEXT: NumAllocFunctions: 1
+CHECK-NEXT: NumStackOffsets: 2
+CHECK-NEXT: Segments:
+CHECK-NEXT: -
+CHECK-NEXT: BuildId: {{[[:xdigit:]]+}}
+CHECK-NEXT: Start: 0x{{[[:xdigit:]]+}}
+CHECK-NEXT: End: 0x{{[[:xdigit:]]+}}
+CHECK-NEXT: Offset: 0x{{[[:xdigit:]]+}}
+CHECK-NEXT: -
+
+CHECK: Records:
+CHECK-NEXT: -
+CHECK-NEXT: FunctionGUID: {{[0-9]+}}
+CHECK-NEXT: AllocSites:
+CHECK-NEXT: -
+CHECK-NEXT: Callstack:
+CHECK-NEXT: -
+CHECK-NEXT: Function: {{[0-9]+}}
+CHECK-NEXT: SymbolName: main
+CHECK-NEXT: LineOffset: 1
+CHECK-NEXT: Column: 21
+CHECK-NEXT: Inline: 0
+CHECK-NEXT: MemInfoBlock:
+CHECK-NEXT: AllocCount: 1
+CHECK-NEXT: TotalAccessCount: 2
+CHECK-NEXT: MinAccessCount: 2
+CHECK-NEXT: MaxAccessCount: 2
+CHECK-NEXT: TotalSize: 10
+CHECK-NEXT: MinSize: 10
+CHECK-NEXT: MaxSize: 10
+CHECK-NEXT: AllocTimestamp: {{[0-9]+}}
+CHECK-NEXT: DeallocTimestamp: {{[0-9]+}}
+CHECK-NEXT: TotalLifetime: 0
+CHECK-NEXT: MinLifetime: 0
+CHECK-NEXT: MaxLifetime: 0
+CHECK-NEXT: AllocCpuId: {{[0-9]+}}
+CHECK-NEXT: DeallocCpuId: {{[0-9]+}}
+CHECK-NEXT: NumMigratedCpu: 0
+CHECK-NEXT: NumLifetimeOverlaps: 0
+CHECK-NEXT: NumSameAllocCpu: 0
+CHECK-NEXT: NumSameDeallocCpu: 0
+CHECK-NEXT: DataTypeId: {{[0-9]+}}
+CHECK-NEXT: TotalAccessDensity: 20
+CHECK-NEXT: MinAccessDensity: 20
+CHECK-NEXT: MaxAccessDensity: 20
+CHECK-NEXT: TotalLifetimeAccessDensity: 20000
+CHECK-NEXT: MinLifetimeAccessDensity: 20000
+CHECK-NEXT: MaxLifetimeAccessDensity: 20000
+CHECK-NEXT: -
+CHECK-NEXT: Callstack:
+CHECK-NEXT: -
+CHECK-NEXT: Function: {{[0-9]+}}
+CHECK-NEXT: SymbolName: main
+CHECK-NEXT: LineOffset: 4
+CHECK-NEXT: Column: 15
+CHECK-NEXT: Inline: 0
+CHECK-NEXT: MemInfoBlock:
+CHECK-NEXT: AllocCount: 1
+CHECK-NEXT: TotalAccessCount: 2
+CHECK-NEXT: MinAccessCount: 2
+CHECK-NEXT: MaxAccessCount: 2
+CHECK-NEXT: TotalSize: 10
+CHECK-NEXT: MinSize: 10
+CHECK-NEXT: MaxSize: 10
+CHECK-NEXT: AllocTimestamp: {{[0-9]+}}
+CHECK-NEXT: DeallocTimestamp: {{[0-9]+}}
+CHECK-NEXT: TotalLifetime: 0
+CHECK-NEXT: MinLifetime: 0
+CHECK-NEXT: MaxLifetime: 0
+CHECK-NEXT: AllocCpuId: {{[0-9]+}}
+CHECK-NEXT: DeallocCpuId: {{[0-9]+}}
+CHECK-NEXT: NumMigratedCpu: 0
+CHECK-NEXT: NumLifetimeOverlaps: 0
+CHECK-NEXT: NumSameAllocCpu: 0
+CHECK-NEXT: NumSameDeallocCpu: 0
+CHECK-NEXT: DataTypeId: {{[0-9]+}}
+CHECK-NEXT: TotalAccessDensity: 20
+CHECK-NEXT: MinAccessDensity: 20
+CHECK-NEXT: MaxAccessDensity: 20
+CHECK-NEXT: TotalLifetimeAccessDensity: 20000
+CHECK-NEXT: MinLifetimeAccessDensity: 20000
+CHECK-NEXT: MaxLifetimeAccessDensity: 20000