+++ /dev/null
-//===------ llvm/DataLayout.h - Data size & alignment info ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines target properties related to datatype size/offset/alignment
-// information. It uses lazy annotations to cache information about how
-// structure types are laid out and used.
-//
-// This structure should be created once, filled in if the defaults are not
-// correct and then passed around by const&. None of the members functions
-// require modification to the object.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_DATALAYOUT_H
-#define LLVM_DATALAYOUT_H
-
-#include "llvm/Pass.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/DataTypes.h"
-
-namespace llvm {
-
-class Value;
-class Type;
-class IntegerType;
-class StructType;
-class StructLayout;
-class GlobalVariable;
-class LLVMContext;
-template<typename T>
-class ArrayRef;
-
-/// Enum used to categorize the alignment types stored by TargetAlignElem
-enum AlignTypeEnum {
- INTEGER_ALIGN = 'i', ///< Integer type alignment
- VECTOR_ALIGN = 'v', ///< Vector type alignment
- FLOAT_ALIGN = 'f', ///< Floating point type alignment
- AGGREGATE_ALIGN = 'a', ///< Aggregate alignment
- STACK_ALIGN = 's' ///< Stack objects alignment
-};
-
-/// Target alignment element.
-///
-/// Stores the alignment data associated with a given alignment type (pointer,
-/// integer, vector, float) and type bit width.
-///
-/// @note The unusual order of elements in the structure attempts to reduce
-/// padding and make the structure slightly more cache friendly.
-struct TargetAlignElem {
- unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
- unsigned TypeBitWidth : 24; ///< Type bit width
- unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
- unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
-
- /// Initializer
- static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width);
- /// Equality predicate
- bool operator==(const TargetAlignElem &rhs) const;
-};
-
-/// DataLayout - This class holds a parsed version of the target data layout
-/// string in a module and provides methods for querying it. The target data
-/// layout string is specified *by the target* - a frontend generating LLVM IR
-/// is required to generate the right target data for the target being codegen'd
-/// to. If some measure of portability is desired, an empty string may be
-/// specified in the module.
-class DataLayout : public ImmutablePass {
-private:
- bool LittleEndian; ///< Defaults to false
- unsigned PointerMemSize; ///< Pointer size in bytes
- unsigned PointerABIAlign; ///< Pointer ABI alignment
- unsigned PointerPrefAlign; ///< Pointer preferred alignment
- unsigned StackNaturalAlign; ///< Stack natural alignment
-
- SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
-
- /// Alignments- Where the primitive type alignment data is stored.
- ///
- /// @sa init().
- /// @note Could support multiple size pointer alignments, e.g., 32-bit
- /// pointers vs. 64-bit pointers by extending TargetAlignment, but for now,
- /// we don't.
- SmallVector<TargetAlignElem, 16> Alignments;
-
- /// InvalidAlignmentElem - This member is a signal that a requested alignment
- /// type and bit width were not found in the SmallVector.
- static const TargetAlignElem InvalidAlignmentElem;
-
- // The StructType -> StructLayout map.
- mutable void *LayoutMap;
-
- //! Set/initialize target alignments
- void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width);
- unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
- bool ABIAlign, Type *Ty) const;
- //! Internal helper method that returns requested alignment for type.
- unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
-
- /// Valid alignment predicate.
- ///
- /// Predicate that tests a TargetAlignElem reference returned by get() against
- /// InvalidAlignmentElem.
- bool validAlignment(const TargetAlignElem &align) const {
- return &align != &InvalidAlignmentElem;
- }
-
- /// Initialise a DataLayout object with default values, ensure that the
- /// target data pass is registered.
- void init();
-
-public:
- /// Default ctor.
- ///
- /// @note This has to exist, because this is a pass, but it should never be
- /// used.
- DataLayout();
-
- /// Constructs a DataLayout from a specification string. See init().
- explicit DataLayout(StringRef TargetDescription)
- : ImmutablePass(ID) {
- std::string errMsg = parseSpecifier(TargetDescription, this);
- assert(errMsg == "" && "Invalid target data layout string.");
- (void)errMsg;
- }
-
- /// Parses a target data specification string. Returns an error message
- /// if the string is malformed, or the empty string on success. Optionally
- /// initialises a DataLayout object if passed a non-null pointer.
- static std::string parseSpecifier(StringRef TargetDescription, DataLayout* td = 0);
-
- /// Initialize target data from properties stored in the module.
- explicit DataLayout(const Module *M);
-
- DataLayout(const DataLayout &TD) :
- ImmutablePass(ID),
- LittleEndian(TD.isLittleEndian()),
- PointerMemSize(TD.PointerMemSize),
- PointerABIAlign(TD.PointerABIAlign),
- PointerPrefAlign(TD.PointerPrefAlign),
- LegalIntWidths(TD.LegalIntWidths),
- Alignments(TD.Alignments),
- LayoutMap(0)
- { }
-
- ~DataLayout(); // Not virtual, do not subclass this class
-
- /// Target endianness...
- bool isLittleEndian() const { return LittleEndian; }
- bool isBigEndian() const { return !LittleEndian; }
-
- /// getStringRepresentation - Return the string representation of the
- /// DataLayout. This representation is in the same format accepted by the
- /// string constructor above.
- std::string getStringRepresentation() const;
-
- /// isLegalInteger - This function returns true if the specified type is
- /// known to be a native integer type supported by the CPU. For example,
- /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
- /// one. This returns false if the integer width is not legal.
- ///
- /// The width is specified in bits.
- ///
- bool isLegalInteger(unsigned Width) const {
- for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
- if (LegalIntWidths[i] == Width)
- return true;
- return false;
- }
-
- bool isIllegalInteger(unsigned Width) const {
- return !isLegalInteger(Width);
- }
-
- /// Returns true if the given alignment exceeds the natural stack alignment.
- bool exceedsNaturalStackAlignment(unsigned Align) const {
- return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
- }
-
- /// fitsInLegalInteger - This function returns true if the specified type fits
- /// in a native integer type supported by the CPU. For example, if the CPU
- /// only supports i32 as a native integer type, then i27 fits in a legal
- // integer type but i45 does not.
- bool fitsInLegalInteger(unsigned Width) const {
- for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
- if (Width <= LegalIntWidths[i])
- return true;
- return false;
- }
-
- /// Target pointer alignment
- unsigned getPointerABIAlignment() const { return PointerABIAlign; }
- /// Return target's alignment for stack-based pointers
- unsigned getPointerPrefAlignment() const { return PointerPrefAlign; }
- /// Target pointer size
- unsigned getPointerSize() const { return PointerMemSize; }
- /// Target pointer size, in bits
- unsigned getPointerSizeInBits() const { return 8*PointerMemSize; }
-
- /// Size examples:
- ///
- /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
- /// ---- ---------- --------------- ---------------
- /// i1 1 8 8
- /// i8 8 8 8
- /// i19 19 24 32
- /// i32 32 32 32
- /// i100 100 104 128
- /// i128 128 128 128
- /// Float 32 32 32
- /// Double 64 64 64
- /// X86_FP80 80 80 96
- ///
- /// [*] The alloc size depends on the alignment, and thus on the target.
- /// These values are for x86-32 linux.
-
- /// getTypeSizeInBits - Return the number of bits necessary to hold the
- /// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
- uint64_t getTypeSizeInBits(Type* Ty) const;
-
- /// getTypeStoreSize - Return the maximum number of bytes that may be
- /// overwritten by storing the specified type. For example, returns 5
- /// for i36 and 10 for x86_fp80.
- uint64_t getTypeStoreSize(Type *Ty) const {
- return (getTypeSizeInBits(Ty)+7)/8;
- }
-
- /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
- /// overwritten by storing the specified type; always a multiple of 8. For
- /// example, returns 40 for i36 and 80 for x86_fp80.
- uint64_t getTypeStoreSizeInBits(Type *Ty) const {
- return 8*getTypeStoreSize(Ty);
- }
-
- /// getTypeAllocSize - Return the offset in bytes between successive objects
- /// of the specified type, including alignment padding. This is the amount
- /// that alloca reserves for this type. For example, returns 12 or 16 for
- /// x86_fp80, depending on alignment.
- uint64_t getTypeAllocSize(Type* Ty) const {
- // Round up to the next alignment boundary.
- return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
- }
-
- /// getTypeAllocSizeInBits - Return the offset in bits between successive
- /// objects of the specified type, including alignment padding; always a
- /// multiple of 8. This is the amount that alloca reserves for this type.
- /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
- uint64_t getTypeAllocSizeInBits(Type* Ty) const {
- return 8*getTypeAllocSize(Ty);
- }
-
- /// getABITypeAlignment - Return the minimum ABI-required alignment for the
- /// specified type.
- unsigned getABITypeAlignment(Type *Ty) const;
-
- /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
- /// an integer type of the specified bitwidth.
- unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
-
-
- /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
- /// for the specified type when it is part of a call frame.
- unsigned getCallFrameTypeAlignment(Type *Ty) const;
-
-
- /// getPrefTypeAlignment - Return the preferred stack/global alignment for
- /// the specified type. This is always at least as good as the ABI alignment.
- unsigned getPrefTypeAlignment(Type *Ty) const;
-
- /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
- /// specified type, returned as log2 of the value (a shift amount).
- ///
- unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
-
- /// getIntPtrType - Return an unsigned integer type that is the same size or
- /// greater to the host pointer size.
- ///
- IntegerType *getIntPtrType(LLVMContext &C) const;
-
- /// getIndexedOffset - return the offset from the beginning of the type for
- /// the specified indices. This is used to implement getelementptr.
- ///
- uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
-
- /// getStructLayout - Return a StructLayout object, indicating the alignment
- /// of the struct, its size, and the offsets of its fields. Note that this
- /// information is lazily cached.
- const StructLayout *getStructLayout(StructType *Ty) const;
-
- /// getPreferredAlignment - Return the preferred alignment of the specified
- /// global. This includes an explicitly requested alignment (if the global
- /// has one).
- unsigned getPreferredAlignment(const GlobalVariable *GV) const;
-
- /// getPreferredAlignmentLog - Return the preferred alignment of the
- /// specified global, returned in log form. This includes an explicitly
- /// requested alignment (if the global has one).
- unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
-
- /// RoundUpAlignment - Round the specified value up to the next alignment
- /// boundary specified by Alignment. For example, 7 rounded up to an
- /// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
- /// is 8 because it is already aligned.
- template <typename UIntTy>
- static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
- assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
- return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
- }
-
- static char ID; // Pass identification, replacement for typeid
-};
-
-/// StructLayout - used to lazily calculate structure layout information for a
-/// target machine, based on the DataLayout structure.
-///
-class StructLayout {
- uint64_t StructSize;
- unsigned StructAlignment;
- unsigned NumElements;
- uint64_t MemberOffsets[1]; // variable sized array!
-public:
-
- uint64_t getSizeInBytes() const {
- return StructSize;
- }
-
- uint64_t getSizeInBits() const {
- return 8*StructSize;
- }
-
- unsigned getAlignment() const {
- return StructAlignment;
- }
-
- /// getElementContainingOffset - Given a valid byte offset into the structure,
- /// return the structure index that contains it.
- ///
- unsigned getElementContainingOffset(uint64_t Offset) const;
-
- uint64_t getElementOffset(unsigned Idx) const {
- assert(Idx < NumElements && "Invalid element idx!");
- return MemberOffsets[Idx];
- }
-
- uint64_t getElementOffsetInBits(unsigned Idx) const {
- return getElementOffset(Idx)*8;
- }
-
-private:
- friend class DataLayout; // Only DataLayout can create this class
- StructLayout(StructType *ST, const DataLayout &TD);
-};
-
-} // End llvm namespace
-
-#endif
+++ /dev/null
-//===-- DataLayout.cpp - Data size & alignment routines --------------------==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines layout properties related to datatype size/offset/alignment
-// information.
-//
-// This structure should be created once, filled in if the defaults are not
-// correct and then passed around by const&. None of the members functions
-// require modification to the object.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/DataLayout.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/Mutex.h"
-#include "llvm/ADT/DenseMap.h"
-#include <algorithm>
-#include <cstdlib>
-using namespace llvm;
-
-// Handle the Pass registration stuff necessary to use DataLayout's.
-
-// Register the default SparcV9 implementation...
-INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true)
-char DataLayout::ID = 0;
-
-//===----------------------------------------------------------------------===//
-// Support for StructLayout
-//===----------------------------------------------------------------------===//
-
-StructLayout::StructLayout(StructType *ST, const DataLayout &TD) {
- assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
- StructAlignment = 0;
- StructSize = 0;
- NumElements = ST->getNumElements();
-
- // Loop over each of the elements, placing them in memory.
- for (unsigned i = 0, e = NumElements; i != e; ++i) {
- Type *Ty = ST->getElementType(i);
- unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
-
- // Add padding if necessary to align the data element properly.
- if ((StructSize & (TyAlign-1)) != 0)
- StructSize = DataLayout::RoundUpAlignment(StructSize, TyAlign);
-
- // Keep track of maximum alignment constraint.
- StructAlignment = std::max(TyAlign, StructAlignment);
-
- MemberOffsets[i] = StructSize;
- StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
- }
-
- // Empty structures have alignment of 1 byte.
- if (StructAlignment == 0) StructAlignment = 1;
-
- // Add padding to the end of the struct so that it could be put in an array
- // and all array elements would be aligned correctly.
- if ((StructSize & (StructAlignment-1)) != 0)
- StructSize = DataLayout::RoundUpAlignment(StructSize, StructAlignment);
-}
-
-
-/// getElementContainingOffset - Given a valid offset into the structure,
-/// return the structure index that contains it.
-unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
- const uint64_t *SI =
- std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
- assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
- --SI;
- assert(*SI <= Offset && "upper_bound didn't work");
- assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
- (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
- "Upper bound didn't work!");
-
- // Multiple fields can have the same offset if any of them are zero sized.
- // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
- // at the i32 element, because it is the last element at that offset. This is
- // the right one to return, because anything after it will have a higher
- // offset, implying that this element is non-empty.
- return SI-&MemberOffsets[0];
-}
-
-//===----------------------------------------------------------------------===//
-// TargetAlignElem, TargetAlign support
-//===----------------------------------------------------------------------===//
-
-TargetAlignElem
-TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width) {
- assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
- TargetAlignElem retval;
- retval.AlignType = align_type;
- retval.ABIAlign = abi_align;
- retval.PrefAlign = pref_align;
- retval.TypeBitWidth = bit_width;
- return retval;
-}
-
-bool
-TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
- return (AlignType == rhs.AlignType
- && ABIAlign == rhs.ABIAlign
- && PrefAlign == rhs.PrefAlign
- && TypeBitWidth == rhs.TypeBitWidth);
-}
-
-const TargetAlignElem
-DataLayout::InvalidAlignmentElem = { (AlignTypeEnum)0xFF, 0, 0, 0 };
-
-//===----------------------------------------------------------------------===//
-// DataLayout Class Implementation
-//===----------------------------------------------------------------------===//
-
-/// getInt - Get an integer ignoring errors.
-static int getInt(StringRef R) {
- int Result = 0;
- R.getAsInteger(10, Result);
- return Result;
-}
-
-void DataLayout::init() {
- initializeTargetDataPass(*PassRegistry::getPassRegistry());
-
- LayoutMap = 0;
- LittleEndian = false;
- PointerMemSize = 8;
- PointerABIAlign = 8;
- PointerPrefAlign = PointerABIAlign;
- StackNaturalAlign = 0;
-
- // Default alignments
- setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
- setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
- setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
- setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
- setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
- setAlignment(FLOAT_ALIGN, 2, 2, 16); // half
- setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
- setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
- setAlignment(FLOAT_ALIGN, 16, 16, 128); // ppcf128, quad, ...
- setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
- setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
- setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
-}
-
-std::string DataLayout::parseSpecifier(StringRef Desc, DataLayout *td) {
-
- if (td)
- td->init();
-
- while (!Desc.empty()) {
- std::pair<StringRef, StringRef> Split = Desc.split('-');
- StringRef Token = Split.first;
- Desc = Split.second;
-
- if (Token.empty())
- continue;
-
- Split = Token.split(':');
- StringRef Specifier = Split.first;
- Token = Split.second;
-
- assert(!Specifier.empty() && "Can't be empty here");
-
- switch (Specifier[0]) {
- case 'E':
- if (td)
- td->LittleEndian = false;
- break;
- case 'e':
- if (td)
- td->LittleEndian = true;
- break;
- case 'p': {
- // Pointer size.
- Split = Token.split(':');
- int PointerMemSizeBits = getInt(Split.first);
- if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0)
- return "invalid pointer size, must be a positive 8-bit multiple";
- if (td)
- td->PointerMemSize = PointerMemSizeBits / 8;
-
- // Pointer ABI alignment.
- Split = Split.second.split(':');
- int PointerABIAlignBits = getInt(Split.first);
- if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) {
- return "invalid pointer ABI alignment, "
- "must be a positive 8-bit multiple";
- }
- if (td)
- td->PointerABIAlign = PointerABIAlignBits / 8;
-
- // Pointer preferred alignment.
- Split = Split.second.split(':');
- int PointerPrefAlignBits = getInt(Split.first);
- if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) {
- return "invalid pointer preferred alignment, "
- "must be a positive 8-bit multiple";
- }
- if (td) {
- td->PointerPrefAlign = PointerPrefAlignBits / 8;
- if (td->PointerPrefAlign == 0)
- td->PointerPrefAlign = td->PointerABIAlign;
- }
- break;
- }
- case 'i':
- case 'v':
- case 'f':
- case 'a':
- case 's': {
- AlignTypeEnum AlignType;
- char field = Specifier[0];
- switch (field) {
- default:
- case 'i': AlignType = INTEGER_ALIGN; break;
- case 'v': AlignType = VECTOR_ALIGN; break;
- case 'f': AlignType = FLOAT_ALIGN; break;
- case 'a': AlignType = AGGREGATE_ALIGN; break;
- case 's': AlignType = STACK_ALIGN; break;
- }
- int Size = getInt(Specifier.substr(1));
- if (Size < 0) {
- return std::string("invalid ") + field + "-size field, "
- "must be positive";
- }
-
- Split = Token.split(':');
- int ABIAlignBits = getInt(Split.first);
- if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) {
- return std::string("invalid ") + field +"-abi-alignment field, "
- "must be a positive 8-bit multiple";
- }
- unsigned ABIAlign = ABIAlignBits / 8;
-
- Split = Split.second.split(':');
-
- int PrefAlignBits = getInt(Split.first);
- if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) {
- return std::string("invalid ") + field +"-preferred-alignment field, "
- "must be a positive 8-bit multiple";
- }
- unsigned PrefAlign = PrefAlignBits / 8;
- if (PrefAlign == 0)
- PrefAlign = ABIAlign;
-
- if (td)
- td->setAlignment(AlignType, ABIAlign, PrefAlign, Size);
- break;
- }
- case 'n': // Native integer types.
- Specifier = Specifier.substr(1);
- do {
- int Width = getInt(Specifier);
- if (Width <= 0) {
- return std::string("invalid native integer size \'") + Specifier.str() +
- "\', must be a positive integer.";
- }
- if (td && Width != 0)
- td->LegalIntWidths.push_back(Width);
- Split = Token.split(':');
- Specifier = Split.first;
- Token = Split.second;
- } while (!Specifier.empty() || !Token.empty());
- break;
- case 'S': { // Stack natural alignment.
- int StackNaturalAlignBits = getInt(Specifier.substr(1));
- if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) {
- return "invalid natural stack alignment (S-field), "
- "must be a positive 8-bit multiple";
- }
- if (td)
- td->StackNaturalAlign = StackNaturalAlignBits / 8;
- break;
- }
- default:
- break;
- }
- }
-
- return "";
-}
-
-/// Default ctor.
-///
-/// @note This has to exist, because this is a pass, but it should never be
-/// used.
-DataLayout::DataLayout() : ImmutablePass(ID) {
- report_fatal_error("Bad DataLayout ctor used. "
- "Tool did not specify a DataLayout to use?");
-}
-
-DataLayout::DataLayout(const Module *M)
- : ImmutablePass(ID) {
- std::string errMsg = parseSpecifier(M->getDataLayout(), this);
- assert(errMsg == "" && "Module M has malformed target data layout string.");
- (void)errMsg;
-}
-
-void
-DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width) {
- assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
- assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield");
- assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield");
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
- if (Alignments[i].AlignType == align_type &&
- Alignments[i].TypeBitWidth == bit_width) {
- // Update the abi, preferred alignments.
- Alignments[i].ABIAlign = abi_align;
- Alignments[i].PrefAlign = pref_align;
- return;
- }
- }
-
- Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
- pref_align, bit_width));
-}
-
-/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
-/// preferred if ABIInfo = false) the target wants for the specified datatype.
-unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType,
- uint32_t BitWidth, bool ABIInfo,
- Type *Ty) const {
- // Check to see if we have an exact match and remember the best match we see.
- int BestMatchIdx = -1;
- int LargestInt = -1;
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
- if (Alignments[i].AlignType == AlignType &&
- Alignments[i].TypeBitWidth == BitWidth)
- return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
-
- // The best match so far depends on what we're looking for.
- if (AlignType == INTEGER_ALIGN &&
- Alignments[i].AlignType == INTEGER_ALIGN) {
- // The "best match" for integers is the smallest size that is larger than
- // the BitWidth requested.
- if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
- Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
- BestMatchIdx = i;
- // However, if there isn't one that's larger, then we must use the
- // largest one we have (see below)
- if (LargestInt == -1 ||
- Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
- LargestInt = i;
- }
- }
-
- // Okay, we didn't find an exact solution. Fall back here depending on what
- // is being looked for.
- if (BestMatchIdx == -1) {
- // If we didn't find an integer alignment, fall back on most conservative.
- if (AlignType == INTEGER_ALIGN) {
- BestMatchIdx = LargestInt;
- } else {
- assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
-
- // By default, use natural alignment for vector types. This is consistent
- // with what clang and llvm-gcc do.
- unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
- Align *= cast<VectorType>(Ty)->getNumElements();
- // If the alignment is not a power of 2, round up to the next power of 2.
- // This happens for non-power-of-2 length vectors.
- if (Align & (Align-1))
- Align = NextPowerOf2(Align);
- return Align;
- }
- }
-
- // Since we got a "best match" index, just return it.
- return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
- : Alignments[BestMatchIdx].PrefAlign;
-}
-
-namespace {
-
-class StructLayoutMap {
- typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy;
- LayoutInfoTy LayoutInfo;
-
-public:
- virtual ~StructLayoutMap() {
- // Remove any layouts.
- for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end();
- I != E; ++I) {
- StructLayout *Value = I->second;
- Value->~StructLayout();
- free(Value);
- }
- }
-
- StructLayout *&operator[](StructType *STy) {
- return LayoutInfo[STy];
- }
-
- // for debugging...
- virtual void dump() const {}
-};
-
-} // end anonymous namespace
-
-DataLayout::~DataLayout() {
- delete static_cast<StructLayoutMap*>(LayoutMap);
-}
-
-const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
- if (!LayoutMap)
- LayoutMap = new StructLayoutMap();
-
- StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
- StructLayout *&SL = (*STM)[Ty];
- if (SL) return SL;
-
- // Otherwise, create the struct layout. Because it is variable length, we
- // malloc it, then use placement new.
- int NumElts = Ty->getNumElements();
- StructLayout *L =
- (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
-
- // Set SL before calling StructLayout's ctor. The ctor could cause other
- // entries to be added to TheMap, invalidating our reference.
- SL = L;
-
- new (L) StructLayout(Ty, *this);
-
- return L;
-}
-
-std::string DataLayout::getStringRepresentation() const {
- std::string Result;
- raw_string_ostream OS(Result);
-
- OS << (LittleEndian ? "e" : "E")
- << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8
- << ':' << PointerPrefAlign*8
- << "-S" << StackNaturalAlign*8;
-
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
- const TargetAlignElem &AI = Alignments[i];
- OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
- << AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
- }
-
- if (!LegalIntWidths.empty()) {
- OS << "-n" << (unsigned)LegalIntWidths[0];
-
- for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
- OS << ':' << (unsigned)LegalIntWidths[i];
- }
- return OS.str();
-}
-
-
-uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
- assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
- switch (Ty->getTypeID()) {
- case Type::LabelTyID:
- case Type::PointerTyID:
- return getPointerSizeInBits();
- case Type::ArrayTyID: {
- ArrayType *ATy = cast<ArrayType>(Ty);
- return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
- }
- case Type::StructTyID:
- // Get the layout annotation... which is lazily created on demand.
- return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
- case Type::IntegerTyID:
- return cast<IntegerType>(Ty)->getBitWidth();
- case Type::VoidTyID:
- return 8;
- case Type::HalfTyID:
- return 16;
- case Type::FloatTyID:
- return 32;
- case Type::DoubleTyID:
- case Type::X86_MMXTyID:
- return 64;
- case Type::PPC_FP128TyID:
- case Type::FP128TyID:
- return 128;
- // In memory objects this is always aligned to a higher boundary, but
- // only 80 bits contain information.
- case Type::X86_FP80TyID:
- return 80;
- case Type::VectorTyID:
- return cast<VectorType>(Ty)->getBitWidth();
- default:
- llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
- }
-}
-
-/*!
- \param abi_or_pref Flag that determines which alignment is returned. true
- returns the ABI alignment, false returns the preferred alignment.
- \param Ty The underlying type for which alignment is determined.
-
- Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
- == false) for the requested type \a Ty.
- */
-unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
- int AlignType = -1;
-
- assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
- switch (Ty->getTypeID()) {
- // Early escape for the non-numeric types.
- case Type::LabelTyID:
- case Type::PointerTyID:
- return (abi_or_pref
- ? getPointerABIAlignment()
- : getPointerPrefAlignment());
- case Type::ArrayTyID:
- return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
-
- case Type::StructTyID: {
- // Packed structure types always have an ABI alignment of one.
- if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
- return 1;
-
- // Get the layout annotation... which is lazily created on demand.
- const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
- unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
- return std::max(Align, Layout->getAlignment());
- }
- case Type::IntegerTyID:
- case Type::VoidTyID:
- AlignType = INTEGER_ALIGN;
- break;
- case Type::HalfTyID:
- case Type::FloatTyID:
- case Type::DoubleTyID:
- // PPC_FP128TyID and FP128TyID have different data contents, but the
- // same size and alignment, so they look the same here.
- case Type::PPC_FP128TyID:
- case Type::FP128TyID:
- case Type::X86_FP80TyID:
- AlignType = FLOAT_ALIGN;
- break;
- case Type::X86_MMXTyID:
- case Type::VectorTyID:
- AlignType = VECTOR_ALIGN;
- break;
- default:
- llvm_unreachable("Bad type for getAlignment!!!");
- }
-
- return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
- abi_or_pref, Ty);
-}
-
-unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
- return getAlignment(Ty, true);
-}
-
-/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
-/// an integer type of the specified bitwidth.
-unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
- return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
-}
-
-
-unsigned DataLayout::getCallFrameTypeAlignment(Type *Ty) const {
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
- if (Alignments[i].AlignType == STACK_ALIGN)
- return Alignments[i].ABIAlign;
-
- return getABITypeAlignment(Ty);
-}
-
-unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
- return getAlignment(Ty, false);
-}
-
-unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const {
- unsigned Align = getPrefTypeAlignment(Ty);
- assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
- return Log2_32(Align);
-}
-
-/// getIntPtrType - Return an unsigned integer type that is the same size or
-/// greater to the host pointer size.
-IntegerType *DataLayout::getIntPtrType(LLVMContext &C) const {
- return IntegerType::get(C, getPointerSizeInBits());
-}
-
-
-uint64_t DataLayout::getIndexedOffset(Type *ptrTy,
- ArrayRef<Value *> Indices) const {
- Type *Ty = ptrTy;
- assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
- uint64_t Result = 0;
-
- generic_gep_type_iterator<Value* const*>
- TI = gep_type_begin(ptrTy, Indices);
- for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX;
- ++CurIDX, ++TI) {
- if (StructType *STy = dyn_cast<StructType>(*TI)) {
- assert(Indices[CurIDX]->getType() ==
- Type::getInt32Ty(ptrTy->getContext()) &&
- "Illegal struct idx");
- unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
-
- // Get structure layout information...
- const StructLayout *Layout = getStructLayout(STy);
-
- // Add in the offset, as calculated by the structure layout info...
- Result += Layout->getElementOffset(FieldNo);
-
- // Update Ty to refer to current element
- Ty = STy->getElementType(FieldNo);
- } else {
- // Update Ty to refer to current element
- Ty = cast<SequentialType>(Ty)->getElementType();
-
- // Get the array index and the size of each array element.
- if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
- Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
- }
- }
-
- return Result;
-}
-
-/// getPreferredAlignment - Return the preferred alignment of the specified
-/// global. This includes an explicitly requested alignment (if the global
-/// has one).
-unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
- Type *ElemType = GV->getType()->getElementType();
- unsigned Alignment = getPrefTypeAlignment(ElemType);
- unsigned GVAlignment = GV->getAlignment();
- if (GVAlignment >= Alignment) {
- Alignment = GVAlignment;
- } else if (GVAlignment != 0) {
- Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
- }
-
- if (GV->hasInitializer() && GVAlignment == 0) {
- if (Alignment < 16) {
- // If the global is not external, see if it is large. If so, give it a
- // larger alignment.
- if (getTypeSizeInBits(ElemType) > 128)
- Alignment = 16; // 16-byte alignment.
- }
- }
- return Alignment;
-}
-
-/// getPreferredAlignmentLog - Return the preferred alignment of the
-/// specified global, returned in log form. This includes an explicitly
-/// requested alignment (if the global has one).
-unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
- return Log2_32(getPreferredAlignment(GV));
-}