//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
+/** @brief the Nano tracker is a super lightweight dnn-based general object tracking.
+ *
+ * Nano tracker is much faster and extremely lightweight due to special model structure, the whole model size is about 1.1 MB.
+ * Nano tracker needs two models: one for feature extraction (backbone) and the another for localization (neckhead).
+ * Please download these two onnx models at:https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack/models/onnx.
+ * Original repo is here: https://github.com/HonglinChu/NanoTrack
+ * Author:HongLinChu, 1628464345@qq.com
+ */
+class CV_EXPORTS_W TrackerNano : public Tracker
+{
+protected:
+ TrackerNano(); // use ::create()
+public:
+ virtual ~TrackerNano() CV_OVERRIDE;
+
+ struct CV_EXPORTS_W_SIMPLE Params
+ {
+ CV_WRAP Params();
+ CV_PROP_RW std::string backbone;
+ CV_PROP_RW std::string neckhead;
+ CV_PROP_RW int backend;
+ CV_PROP_RW int target;
+ };
+
+ /** @brief Constructor
+ @param parameters NanoTrack parameters TrackerNano::Params
+ */
+ static CV_WRAP
+ Ptr<TrackerNano> create(const TrackerNano::Params& parameters = TrackerNano::Params());
+
+ /** @brief Return tracking score
+ */
+ CV_WRAP virtual float getTrackingScore() = 0;
+
+ //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
+ //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
+};
//! @} video_track
typedef TrackerMIL::Params TrackerMIL_Params;
typedef TrackerGOTURN::Params TrackerGOTURN_Params;
typedef TrackerDaSiamRPN::Params TrackerDaSiamRPN_Params;
+typedef TrackerNano::Params TrackerNano_Params;
#endif
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+
+// This file is modified from the https://github.com/HonglinChu/NanoTrack/blob/master/ncnn_macos_nanotrack/nanotrack.cpp
+// Author, HongLinChu, 1628464345@qq.com
+// Adapt to OpenCV, ZihaoMu: zihaomu@outlook.com
+
+// Link to original inference code: https://github.com/HonglinChu/NanoTrack
+// Link to original training repo: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack
+
+#include "../precomp.hpp"
+#ifdef HAVE_OPENCV_DNN
+#include "opencv2/dnn.hpp"
+#endif
+
+namespace cv {
+
+TrackerNano::TrackerNano()
+{
+ // nothing
+}
+
+TrackerNano::~TrackerNano()
+{
+ // nothing
+}
+
+TrackerNano::Params::Params()
+{
+ backbone = "backbone.onnx";
+ neckhead = "neckhead.onnx";
+#ifdef HAVE_OPENCV_DNN
+ backend = dnn::DNN_BACKEND_DEFAULT;
+ target = dnn::DNN_TARGET_CPU;
+#else
+ backend = -1; // invalid value
+ target = -1; // invalid value
+#endif
+}
+
+#ifdef HAVE_OPENCV_DNN
+static void softmax(const Mat& src, Mat& dst)
+{
+ Mat maxVal;
+ cv::max(src.row(1), src.row(0), maxVal);
+
+ src.row(1) -= maxVal;
+ src.row(0) -= maxVal;
+
+ exp(src, dst);
+
+ Mat sumVal = dst.row(0) + dst.row(1);
+ dst.row(0) = dst.row(0) / sumVal;
+ dst.row(1) = dst.row(1) / sumVal;
+}
+
+static float sizeCal(float w, float h)
+{
+ float pad = (w + h) * 0.5f;
+ float sz2 = (w + pad) * (h + pad);
+ return sqrt(sz2);
+}
+
+static Mat sizeCal(const Mat& w, const Mat& h)
+{
+ Mat pad = (w + h) * 0.5;
+ Mat sz2 = (w + pad).mul((h + pad));
+
+ cv::sqrt(sz2, sz2);
+ return sz2;
+}
+
+// Similar python code: r = np.maximum(r, 1. / r) # r is matrix
+static void elementReciprocalMax(Mat& srcDst)
+{
+ size_t totalV = srcDst.total();
+ float* ptr = srcDst.ptr<float>(0);
+ for (size_t i = 0; i < totalV; i++)
+ {
+ float val = *(ptr + i);
+ *(ptr + i) = std::max(val, 1.0f/val);
+ }
+}
+
+class TrackerNanoImpl : public TrackerNano
+{
+public:
+ TrackerNanoImpl(const TrackerNano::Params& parameters)
+ : params(parameters)
+ {
+ backbone = dnn::readNet(params.backbone);
+ neckhead = dnn::readNet(params.neckhead);
+
+ CV_Assert(!backbone.empty());
+ CV_Assert(!neckhead.empty());
+
+ backbone.setPreferableBackend(params.backend);
+ backbone.setPreferableTarget(params.target);
+ neckhead.setPreferableBackend(params.backend);
+ neckhead.setPreferableTarget(params.target);
+ }
+
+ void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
+ bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
+ float getTrackingScore() CV_OVERRIDE;
+
+ // Save the target bounding box for each frame.
+ std::vector<float> targetSz = {0, 0}; // H and W of bounding box
+ std::vector<float> targetPos = {0, 0}; // center point of bounding box (x, y)
+ float tracking_score;
+
+ TrackerNano::Params params;
+
+ struct trackerConfig
+ {
+ float windowInfluence = 0.455f;
+ float lr = 0.37f;
+ float contextAmount = 0.5;
+ bool swapRB = true;
+ int totalStride = 16;
+ float penaltyK = 0.055f;
+ };
+
+protected:
+ const int exemplarSize = 127;
+ const int instanceSize = 255;
+
+ trackerConfig trackState;
+ int scoreSize;
+ Size imgSize = {0, 0};
+ Mat hanningWindow;
+ Mat grid2searchX, grid2searchY;
+
+ dnn::Net backbone, neckhead;
+ Mat image;
+
+ void getSubwindow(Mat& dstCrop, Mat& srcImg, int originalSz, int resizeSz);
+ void generateGrids();
+};
+
+void TrackerNanoImpl::generateGrids()
+{
+ int sz = scoreSize;
+ const int sz2 = sz / 2;
+
+ std::vector<float> x1Vec(sz, 0);
+
+ for (int i = 0; i < sz; i++)
+ {
+ x1Vec[i] = i - sz2;
+ }
+
+ Mat x1M(1, sz, CV_32FC1, x1Vec.data());
+
+ cv::repeat(x1M, sz, 1, grid2searchX);
+ cv::repeat(x1M.t(), 1, sz, grid2searchY);
+
+ grid2searchX *= trackState.totalStride;
+ grid2searchY *= trackState.totalStride;
+
+ grid2searchX += instanceSize/2;
+ grid2searchY += instanceSize/2;
+}
+
+void TrackerNanoImpl::init(InputArray image_, const Rect &boundingBox_)
+{
+ scoreSize = (instanceSize - exemplarSize) / trackState.totalStride + 8;
+ trackState = trackerConfig();
+ image = image_.getMat().clone();
+
+ // convert Rect2d from left-up to center.
+ targetPos[0] = float(boundingBox_.x) + float(boundingBox_.width) * 0.5f;
+ targetPos[1] = float(boundingBox_.y) + float(boundingBox_.height) * 0.5f;
+
+ targetSz[0] = float(boundingBox_.width);
+ targetSz[1] = float(boundingBox_.height);
+
+ imgSize = image.size();
+
+ // Extent the bounding box.
+ float sumSz = targetSz[0] + targetSz[1];
+ float wExtent = targetSz[0] + trackState.contextAmount * (sumSz);
+ float hExtent = targetSz[1] + trackState.contextAmount * (sumSz);
+ int sz = int(cv::sqrt(wExtent * hExtent));
+
+ Mat crop;
+ getSubwindow(crop, image, sz, exemplarSize);
+ Mat blob = dnn::blobFromImage(crop, 1.0, Size(), Scalar(), trackState.swapRB);
+
+ backbone.setInput(blob);
+ Mat out = backbone.forward(); // Feature extraction.
+ neckhead.setInput(out, "input1");
+
+ createHanningWindow(hanningWindow, Size(scoreSize, scoreSize), CV_32F);
+ generateGrids();
+}
+
+void TrackerNanoImpl::getSubwindow(Mat& dstCrop, Mat& srcImg, int originalSz, int resizeSz)
+{
+ Scalar avgChans = mean(srcImg);
+ Size imgSz = srcImg.size();
+ int c = (originalSz + 1) / 2;
+
+ int context_xmin = targetPos[0] - c;
+ int context_xmax = context_xmin + originalSz - 1;
+ int context_ymin = targetPos[1] - c;
+ int context_ymax = context_ymin + originalSz - 1;
+
+ int left_pad = std::max(0, -context_xmin);
+ int top_pad = std::max(0, -context_ymin);
+ int right_pad = std::max(0, context_xmax - imgSz.width + 1);
+ int bottom_pad = std::max(0, context_ymax - imgSz.height + 1);
+
+ context_xmin += left_pad;
+ context_xmax += left_pad;
+ context_ymin += top_pad;
+ context_ymax += top_pad;
+
+ Mat cropImg;
+ if (left_pad == 0 && top_pad == 0 && right_pad == 0 && bottom_pad == 0)
+ {
+ // Crop image without padding.
+ cropImg = srcImg(cv::Rect(context_xmin, context_ymin,
+ context_xmax - context_xmin + 1, context_ymax - context_ymin + 1));
+ }
+ else // Crop image with padding, and the padding value is avgChans
+ {
+ cv::Mat tmpMat;
+ cv::copyMakeBorder(srcImg, tmpMat, top_pad, bottom_pad, left_pad, right_pad, cv::BORDER_CONSTANT, avgChans);
+ cropImg = tmpMat(cv::Rect(context_xmin, context_ymin, context_xmax - context_xmin + 1, context_ymax - context_ymin + 1));
+ }
+ resize(cropImg, dstCrop, Size(resizeSz, resizeSz));
+}
+
+bool TrackerNanoImpl::update(InputArray image_, Rect &boundingBoxRes)
+{
+ image = image_.getMat().clone();
+ int targetSzSum = targetSz[0] + targetSz[1];
+
+ float wc = targetSz[0] + trackState.contextAmount * targetSzSum;
+ float hc = targetSz[1] + trackState.contextAmount * targetSzSum;
+ float sz = cv::sqrt(wc * hc);
+ float scale_z = exemplarSize / sz;
+ float sx = sz * (instanceSize / exemplarSize);
+ targetSz[0] *= scale_z;
+ targetSz[1] *= scale_z;
+
+ Mat crop;
+ getSubwindow(crop, image, int(sx), instanceSize);
+
+ Mat blob = dnn::blobFromImage(crop, 1.0, Size(), Scalar(), trackState.swapRB);
+ backbone.setInput(blob);
+ Mat xf = backbone.forward();
+ neckhead.setInput(xf, "input2");
+ std::vector<String> outputName = {"output1", "output2"};
+ std::vector<Mat> outs;
+ neckhead.forward(outs, outputName);
+
+ CV_Assert(outs.size() == 2);
+
+ Mat clsScore = outs[0]; // 1x2x16x16
+ Mat bboxPred = outs[1]; // 1x4x16x16
+
+ clsScore = clsScore.reshape(0, {2, scoreSize, scoreSize});
+ bboxPred = bboxPred.reshape(0, {4, scoreSize, scoreSize});
+
+ Mat scoreSoftmax; // 2x16x16
+ softmax(clsScore, scoreSoftmax);
+
+ Mat score = scoreSoftmax.row(1);
+ score = score.reshape(0, {scoreSize, scoreSize});
+
+ Mat predX1 = grid2searchX - bboxPred.row(0).reshape(0, {scoreSize, scoreSize});
+ Mat predY1 = grid2searchY - bboxPred.row(1).reshape(0, {scoreSize, scoreSize});
+ Mat predX2 = grid2searchX + bboxPred.row(2).reshape(0, {scoreSize, scoreSize});
+ Mat predY2 = grid2searchY + bboxPred.row(3).reshape(0, {scoreSize, scoreSize});
+
+ // size penalty
+ // scale penalty
+ Mat sc = sizeCal(predX2 - predX1, predY2 - predY1)/sizeCal(targetPos[0], targetPos[1]);
+ elementReciprocalMax(sc);
+
+ // ratio penalty
+ float ratioVal = targetSz[0] / targetSz[1];
+
+ Mat ratioM(scoreSize, scoreSize, CV_32FC1, Scalar::all(ratioVal));
+ Mat rc = ratioM / ((predX2 - predX1) / (predY2 - predY1));
+ elementReciprocalMax(rc);
+
+ Mat penalty;
+ exp(((rc.mul(sc) - 1) * trackState.penaltyK * (-1)), penalty);
+ Mat pscore = penalty.mul(score);
+
+ // Window penalty
+ pscore = pscore * (1.0 - trackState.windowInfluence) + hanningWindow * trackState.windowInfluence;
+
+ // get Max
+ int bestID[2] = { 0, 0 };
+ minMaxIdx(pscore, 0, 0, 0, bestID);
+
+ tracking_score = pscore.at<float>(bestID);
+
+ float x1Val = predX1.at<float>(bestID);
+ float x2Val = predX2.at<float>(bestID);
+ float y1Val = predY1.at<float>(bestID);
+ float y2Val = predY2.at<float>(bestID);
+
+ float predXs = (x1Val + x2Val)/2;
+ float predYs = (y1Val + y2Val)/2;
+ float predW = (x2Val - x1Val)/scale_z;
+ float predH = (y2Val - y1Val)/scale_z;
+
+ float diffXs = (predXs - instanceSize / 2) / scale_z;
+ float diffYs = (predYs - instanceSize / 2) / scale_z;
+
+ targetSz[0] /= scale_z;
+ targetSz[1] /= scale_z;
+
+ float lr = penalty.at<float>(bestID) * score.at<float>(bestID) * trackState.lr;
+
+ float resX = targetPos[0] + diffXs;
+ float resY = targetPos[1] + diffYs;
+ float resW = predW * lr + (1 - lr) * targetSz[0];
+ float resH = predH * lr + (1 - lr) * targetSz[1];
+
+ resX = std::max(0.f, std::min((float)imgSize.width, resX));
+ resY = std::max(0.f, std::min((float)imgSize.height, resY));
+ resW = std::max(10.f, std::min((float)imgSize.width, resW));
+ resH = std::max(10.f, std::min((float)imgSize.height, resH));
+
+ targetPos[0] = resX;
+ targetPos[1] = resY;
+ targetSz[0] = resW;
+ targetSz[1] = resH;
+
+ // convert center to Rect.
+ boundingBoxRes = { int(resX - resW/2), int(resY - resH/2), int(resW), int(resH)};
+ return true;
+}
+
+float TrackerNanoImpl::getTrackingScore()
+{
+ return tracking_score;
+}
+
+Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters)
+{
+ return makePtr<TrackerNanoImpl>(parameters);
+}
+
+#else // OPENCV_HAVE_DNN
+Ptr<TrackerNano> TrackerNano::create(const TrackerNano::Params& parameters)
+{
+ CV_UNUSED(parameters);
+ CV_Error(cv::Error::StsNotImplemented, "to use NanoTrack, the tracking module needs to be built with opencv_dnn !");
+}
+#endif // OPENCV_HAVE_DNN
+}
INSTANTIATE_TEST_CASE_P(Tracking, DistanceAndOverlap, TESTSET_NAMES);
-TEST(GOTURN, memory_usage)
+static bool checkIOU(const Rect& r0, const Rect& r1, double threshold)
{
- cv::Rect roi(145, 70, 85, 85);
+ int interArea = (r0 & r1).area();
+ double iouVal = (interArea * 1.0 )/ (r0.area() + r1.area() - interArea);;
+ if (iouVal > threshold)
+ return true;
+ else
+ {
+ std::cout <<"Unmatched IOU: expect IOU val ("<<iouVal <<") > the IOU threadhold ("<<threshold<<")! Box 0 is "
+ << r0 <<", and Box 1 is "<<r1<< std::endl;
+ return false;
+ }
+}
+
+static void checkTrackingAccuracy(cv::Ptr<Tracker>& tracker, double iouThreshold = 0.8)
+{
+ // Template image
+ Mat img0 = imread(findDataFile("tracking/bag/00000001.jpg"), 1);
+
+ // Tracking image sequence.
+ std::vector<Mat> imgs;
+ imgs.push_back(imread(findDataFile("tracking/bag/00000002.jpg"), 1));
+ imgs.push_back(imread(findDataFile("tracking/bag/00000003.jpg"), 1));
+ imgs.push_back(imread(findDataFile("tracking/bag/00000004.jpg"), 1));
+ imgs.push_back(imread(findDataFile("tracking/bag/00000005.jpg"), 1));
+ imgs.push_back(imread(findDataFile("tracking/bag/00000006.jpg"), 1));
+
+ cv::Rect roi(325, 164, 100, 100);
+ std::vector<Rect> targetRois;
+ targetRois.push_back(cv::Rect(278, 133, 99, 104));
+ targetRois.push_back(cv::Rect(293, 88, 93, 110));
+ targetRois.push_back(cv::Rect(287, 76, 89, 116));
+ targetRois.push_back(cv::Rect(297, 74, 82, 122));
+ targetRois.push_back(cv::Rect(311, 83, 78, 125));
+
+ tracker->init(img0, roi);
+ CV_Assert(targetRois.size() == imgs.size());
+
+ for (int i = 0; i < (int)imgs.size(); i++)
+ {
+ bool res = tracker->update(imgs[i], roi);
+ ASSERT_TRUE(res);
+ ASSERT_TRUE(checkIOU(roi, targetRois[i], iouThreshold)) << cv::format("Fail at img %d.",i);
+ }
+}
+
+TEST(GOTURN, accuracy)
+{
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
cv::TrackerGOTURN::Params params;
params.modelTxt = model;
params.modelBin = weights;
cv::Ptr<Tracker> tracker = TrackerGOTURN::create(params);
-
- string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
- cv::VideoCapture video(inputVideo);
- ASSERT_TRUE(video.isOpened()) << inputVideo;
-
- cv::Mat frame;
- video >> frame;
- ASSERT_FALSE(frame.empty()) << inputVideo;
- tracker->init(frame, roi);
- string ground_truth_bb;
- for (int nframes = 0; nframes < 15; ++nframes)
- {
- std::cout << "Frame: " << nframes << std::endl;
- video >> frame;
- bool res = tracker->update(frame, roi);
- ASSERT_TRUE(res);
- std::cout << "Predicted ROI: " << roi << std::endl;
- }
+ // TODO! GOTURN have low accuracy. Try to remove this api at 5.x.
+ checkTrackingAccuracy(tracker, 0.08);
}
-TEST(DaSiamRPN, memory_usage)
+TEST(DaSiamRPN, accuracy)
{
- cv::Rect roi(145, 70, 85, 85);
-
std::string model = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_model.onnx", false);
std::string kernel_r1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_r1.onnx", false);
std::string kernel_cls1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_cls1.onnx", false);
params.kernel_r1 = kernel_r1;
params.kernel_cls1 = kernel_cls1;
cv::Ptr<Tracker> tracker = TrackerDaSiamRPN::create(params);
-
- string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
- cv::VideoCapture video(inputVideo);
- ASSERT_TRUE(video.isOpened()) << inputVideo;
-
- cv::Mat frame;
- video >> frame;
- ASSERT_FALSE(frame.empty()) << inputVideo;
- tracker->init(frame, roi);
- string ground_truth_bb;
- for (int nframes = 0; nframes < 15; ++nframes)
- {
- std::cout << "Frame: " << nframes << std::endl;
- video >> frame;
- bool res = tracker->update(frame, roi);
- ASSERT_TRUE(res);
- std::cout << "Predicted ROI: " << roi << std::endl;
- }
+ checkTrackingAccuracy(tracker, 0.7);
}
+TEST(NanoTrack, accuracy)
+{
+ std::string backbonePath = cvtest::findDataFile("dnn/onnx/models/nanotrack_backbone_sim.onnx", false);
+ std::string neckheadPath = cvtest::findDataFile("dnn/onnx/models/nanotrack_head_sim.onnx", false);
+
+ cv::TrackerNano::Params params;
+ params.backbone = backbonePath;
+ params.neckhead = neckheadPath;
+ cv::Ptr<Tracker> tracker = TrackerNano::create(params);
+ checkTrackingAccuracy(tracker);
+}
}} // namespace opencv_test::
--- /dev/null
+// NanoTrack
+// Link to original inference code: https://github.com/HonglinChu/NanoTrack
+// Link to original training repo: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack
+// backBone model: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_backbone_sim.onnx
+// headNeck model: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_head_sim.onnx
+
+#include <iostream>
+#include <cmath>
+
+#include <opencv2/dnn.hpp>
+#include <opencv2/imgproc.hpp>
+#include <opencv2/highgui.hpp>
+#include <opencv2/video.hpp>
+
+using namespace cv;
+using namespace cv::dnn;
+
+const char *keys =
+ "{ help h | | Print help message }"
+ "{ input i | | Full path to input video folder, the specific camera index. (empty for camera 0) }"
+ "{ backbone | backbone.onnx | Path to onnx model of backbone.onnx}"
+ "{ headneck | headneck.onnx | Path to onnx model of headneck.onnx }"
+ "{ backend | 0 | Choose one of computation backends: "
+ "0: automatically (by default), "
+ "1: Halide language (http://halide-lang.org/), "
+ "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
+ "3: OpenCV implementation, "
+ "4: VKCOM, "
+ "5: CUDA },"
+ "{ target | 0 | Choose one of target computation devices: "
+ "0: CPU target (by default), "
+ "1: OpenCL, "
+ "2: OpenCL fp16 (half-float precision), "
+ "3: VPU, "
+ "4: Vulkan, "
+ "6: CUDA, "
+ "7: CUDA fp16 (half-float preprocess) }"
+;
+
+static
+int run(int argc, char** argv)
+{
+ // Parse command line arguments.
+ CommandLineParser parser(argc, argv, keys);
+
+ if (parser.has("help"))
+ {
+ parser.printMessage();
+ return 0;
+ }
+
+ std::string inputName = parser.get<String>("input");
+ std::string backbone = parser.get<String>("backbone");
+ std::string headneck = parser.get<String>("headneck");
+ int backend = parser.get<int>("backend");
+ int target = parser.get<int>("target");
+
+ Ptr<TrackerNano> tracker;
+ try
+ {
+ TrackerNano::Params params;
+ params.backbone = samples::findFile(backbone);
+ params.neckhead = samples::findFile(headneck);
+ params.backend = backend;
+ params.target = target;
+ tracker = TrackerNano::create(params);
+ }
+ catch (const cv::Exception& ee)
+ {
+ std::cerr << "Exception: " << ee.what() << std::endl;
+ std::cout << "Can't load the network by using the following files:" << std::endl;
+ std::cout << "backbone : " << backbone << std::endl;
+ std::cout << "headneck : " << headneck << std::endl;
+ return 2;
+ }
+
+ const std::string winName = "NanoTrack";
+ namedWindow(winName, WINDOW_AUTOSIZE);
+
+ // Open a video file or an image file or a camera stream.
+ VideoCapture cap;
+
+ if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1))
+ {
+ int c = inputName.empty() ? 0 : inputName[0] - '0';
+ std::cout << "Trying to open camera #" << c << " ..." << std::endl;
+ if (!cap.open(c))
+ {
+ std::cout << "Capture from camera #" << c << " didn't work. Specify -i=<video> parameter to read from video file" << std::endl;
+ return 2;
+ }
+ }
+ else if (inputName.size())
+ {
+ inputName = samples::findFileOrKeep(inputName);
+ if (!cap.open(inputName))
+ {
+ std::cout << "Could not open: " << inputName << std::endl;
+ return 2;
+ }
+ }
+
+ // Read the first image.
+ Mat image;
+ cap >> image;
+ if (image.empty())
+ {
+ std::cerr << "Can't capture frame!" << std::endl;
+ return 2;
+ }
+
+ Mat image_select = image.clone();
+ putText(image_select, "Select initial bounding box you want to track.", Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
+ putText(image_select, "And Press the ENTER key.", Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
+
+ Rect selectRect = selectROI(winName, image_select);
+ std::cout << "ROI=" << selectRect << std::endl;
+
+ tracker->init(image, selectRect);
+
+ TickMeter tickMeter;
+
+ for (int count = 0; ; ++count)
+ {
+ cap >> image;
+ if (image.empty())
+ {
+ std::cerr << "Can't capture frame " << count << ". End of video stream?" << std::endl;
+ break;
+ }
+
+ Rect rect;
+
+ tickMeter.start();
+ bool ok = tracker->update(image, rect);
+ tickMeter.stop();
+
+ float score = tracker->getTrackingScore();
+
+ std::cout << "frame " << count <<
+ ": predicted score=" << score <<
+ " rect=" << rect <<
+ " time=" << tickMeter.getTimeMilli() << "ms" <<
+ std::endl;
+
+ Mat render_image = image.clone();
+
+ if (ok)
+ {
+ rectangle(render_image, rect, Scalar(0, 255, 0), 2);
+
+ std::string timeLabel = format("Inference time: %.2f ms", tickMeter.getTimeMilli());
+ std::string scoreLabel = format("Score: %f", score);
+ putText(render_image, timeLabel, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
+ putText(render_image, scoreLabel, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
+ }
+
+ imshow(winName, render_image);
+
+ tickMeter.reset();
+
+ int c = waitKey(1);
+ if (c == 27 /*ESC*/)
+ break;
+ }
+
+ std::cout << "Exit" << std::endl;
+ return 0;
+}
+
+
+int main(int argc, char **argv)
+{
+ try
+ {
+ return run(argc, argv);
+ }
+ catch (const std::exception& e)
+ {
+ std::cerr << "FATAL: C++ exception: " << e.what() << std::endl;
+ return 1;
+ }
+}
network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
+For NanoTrack:
+ nanotrack_backbone: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_backbone_sim.onnx
+ nanotrack_headneck: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/onnx/nanotrack_head_sim.onnx
USAGE:
tracker.py [-h] [--input INPUT] [--tracker_algo TRACKER_ALGO]
[--dasiamrpn_kernel_cls1 DASIAMRPN_KERNEL_CLS1]
[--dasiamrpn_backend DASIAMRPN_BACKEND]
[--dasiamrpn_target DASIAMRPN_TARGET]
+ [--nanotrack_backbone NANOTRACK_BACKEND] [--nanotrack_headneck NANOTRACK_TARGET]
'''
# Python 2/3 compatibility
params.kernel_cls1 = self.args.dasiamrpn_kernel_cls1
params.kernel_r1 = self.args.dasiamrpn_kernel_r1
tracker = cv.TrackerDaSiamRPN_create(params)
+ elif self.trackerAlgorithm == 'nanotrack':
+ params = cv.TrackerNano_Params()
+ params.backbone = args.nanotrack_backbone
+ params.neckhead = args.nanotrack_headneck
+ tracker = cv.TrackerNano_create(params)
else:
- sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn.".format(self.trackerAlgorithm))
+ sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn, nanotrack.".format(self.trackerAlgorithm))
return tracker
def initializeTracker(self, image):
print(__doc__)
parser = argparse.ArgumentParser(description="Run tracker")
parser.add_argument("--input", type=str, default="vtest.avi", help="Path to video source")
- parser.add_argument("--tracker_algo", type=str, default="mil", help="One of available tracking algorithms: mil, goturn, dasiamrpn")
+ parser.add_argument("--tracker_algo", type=str, default="nanotrack", help="One of available tracking algorithms: mil, goturn, dasiamrpn, nanotrack")
parser.add_argument("--goturn", type=str, default="goturn.prototxt", help="Path to GOTURN architecture")
parser.add_argument("--goturn_model", type=str, default="goturn.caffemodel", help="Path to GOTERN model")
parser.add_argument("--dasiamrpn_net", type=str, default="dasiamrpn_model.onnx", help="Path to onnx model of DaSiamRPN net")
parser.add_argument("--dasiamrpn_kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Path to onnx model of DaSiamRPN kernel_r1")
parser.add_argument("--dasiamrpn_kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Path to onnx model of DaSiamRPN kernel_cls1")
+ parser.add_argument("--nanotrack_backbone", type=str, default="nanotrack_backbone_sim.onnx", help="Path to onnx model of NanoTrack backBone")
+ parser.add_argument("--nanotrack_headneck", type=str, default="nanotrack_head_sim.onnx", help="Path to onnx model of NanoTrack headNeck")
args = parser.parse_args()
App(args).run()