#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
class ConstantOffsetExtractor {
- public:
+public:
/// Extracts a constant offset from the given GEP index. It returns the
/// new index representing the remainder (equal to the original index minus
/// the constant offset), or nullptr if we cannot extract a constant offset.
/// \p GEP The given GEP
/// \p UserChainTail Outputs the tail of UserChain so that we can
/// garbage-collect unused instructions in UserChain.
- static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
- User *&UserChainTail);
+ static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
+ User *&UserChainTail, const DominatorTree *DT);
/// Looks for a constant offset from the given GEP index without extracting
/// it. It returns the numeric value of the extracted constant offset (0 if
/// failed). The meaning of the arguments are the same as Extract.
- static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
+ static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
+ const DominatorTree *DT);
- private:
- ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
+private:
+ ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
+ : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
+ }
/// Searches the expression that computes V for a non-zero constant C s.t.
/// V can be reassociated into the form V' + C. If the searching is
/// successful, returns C and update UserChain as a def-use chain from C to V;
/// returns "sext i32 (zext i16 V to i32) to i64".
Value *applyExts(Value *V);
- /// Returns true if LHS and RHS have no bits in common, i.e., for every n
- /// the n-th bit of either LHS, or RHS is 0.
- bool NoCommonBits(Value *LHS, Value *RHS) const;
- /// Computes which bits are known to be one or zero.
- /// \p KnownOne Mask of all bits that are known to be one.
- /// \p KnownZero Mask of all bits that are known to be zero.
- void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
/// A helper function that returns whether we can trace into the operands
/// of binary operator BO for a constant offset.
///
/// sext/zext instructions along UserChain.
SmallVector<CastInst *, 16> ExtInsts;
Instruction *IP; /// Insertion position of cloned instructions.
+ const DataLayout &DL;
+ const DominatorTree *DT;
};
/// \brief A pass that tries to split every GEP in the function into a variadic
/// base and a constant offset. It is a FunctionPass because searching for the
/// constant offset may inspect other basic blocks.
class SeparateConstOffsetFromGEP : public FunctionPass {
- public:
+public:
static char ID;
SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
bool LowerGEP = false)
- : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
+ : FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) {
initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
}
+ bool doInitialization(Module &M) override {
+ DL = &M.getDataLayout();
+ return false;
+ }
bool runOnFunction(Function &F) override;
- private:
+private:
/// Tries to split the given GEP into a variadic base and a constant offset,
/// and returns true if the splitting succeeds.
bool splitGEP(GetElementPtrInst *GEP);
/// Verify F is free of dead code.
void verifyNoDeadCode(Function &F);
+ const DataLayout *DL;
+ const DominatorTree *DT;
const TargetMachine *TM;
/// Whether to lower a GEP with multiple indices into arithmetic operations or
/// multiple GEPs with a single index.
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
"Split GEPs to a variadic base and a constant offset for better CSE", false,
false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
// Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
// don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
- if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
+ if (BO->getOpcode() == Instruction::Or &&
+ !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
return false;
// In addition, tracing into BO requires that its surrounding s/zext (if
ConstantOffset = CI->getValue();
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
// Trace into subexpressions for more hoisting opportunities.
- if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
+ if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
- }
} else if (isa<SExtInst>(V)) {
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
ZeroExtended, NonNegative).sext(BitWidth);
}
Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
- User *&UserChainTail) {
- ConstantOffsetExtractor Extractor(GEP);
+ User *&UserChainTail,
+ const DominatorTree *DT) {
+ ConstantOffsetExtractor Extractor(GEP, DT);
// Find a non-zero constant offset first.
APInt ConstantOffset =
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
return IdxWithoutConstOffset;
}
-int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
+int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
+ const DominatorTree *DT) {
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
- return ConstantOffsetExtractor(GEP)
+ return ConstantOffsetExtractor(GEP, DT)
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
GEP->isInBounds())
.getSExtValue();
}
-void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
- APInt &KnownZero) const {
- IntegerType *IT = cast<IntegerType>(V->getType());
- KnownOne = APInt(IT->getBitWidth(), 0);
- KnownZero = APInt(IT->getBitWidth(), 0);
- const DataLayout &DL = IP->getModule()->getDataLayout();
- llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
-}
-
-bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
- assert(LHS->getType() == RHS->getType() &&
- "LHS and RHS should have the same type");
- APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
- ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
- ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
- return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
-}
-
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
GetElementPtrInst *GEP) {
bool Changed = false;
- const DataLayout &DL = GEP->getModule()->getDataLayout();
- Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
+ Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
gep_type_iterator GTI = gep_type_begin(*GEP);
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
I != E; ++I, ++GTI) {
NeedsExtraction = false;
int64_t AccumulativeByteOffset = 0;
gep_type_iterator GTI = gep_type_begin(*GEP);
- const DataLayout &DL = GEP->getModule()->getDataLayout();
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
// Tries to extract a constant offset from this GEP index.
int64_t ConstantOffset =
- ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
+ ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
if (ConstantOffset != 0) {
NeedsExtraction = true;
// A GEP may have multiple indices. We accumulate the extracted
// constant offset to a byte offset, and later offset the remainder of
// the original GEP with this byte offset.
AccumulativeByteOffset +=
- ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
+ ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
}
} else if (LowerGEP) {
StructType *StTy = cast<StructType>(*GTI);
if (Field != 0) {
NeedsExtraction = true;
AccumulativeByteOffset +=
- DL.getStructLayout(StTy)->getElementOffset(Field);
+ DL->getStructLayout(StTy)->getElementOffset(Field);
}
}
}
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
- const DataLayout &DL = Variadic->getModule()->getDataLayout();
- Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
+ Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Type *I8PtrTy =
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
continue;
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
- DL.getTypeAllocSize(GTI.getIndexedType()));
+ DL->getTypeAllocSize(GTI.getIndexedType()));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
int64_t AccumulativeByteOffset) {
IRBuilder<> Builder(Variadic);
- const DataLayout &DL = Variadic->getModule()->getDataLayout();
- Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
+ Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
gep_type_iterator GTI = gep_type_begin(*Variadic);
continue;
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
- DL.getTypeAllocSize(GTI.getIndexedType()));
+ DL->getTypeAllocSize(GTI.getIndexedType()));
// Scale the index by element size.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
Value *OldIdx = GEP->getOperand(I);
User *UserChainTail;
Value *NewIdx =
- ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail);
+ ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
if (NewIdx != nullptr) {
// Switches to the index with the constant offset removed.
GEP->setOperand(I, NewIdx);
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
// used with unsigned integers later.
- const DataLayout &DL = GEP->getModule()->getDataLayout();
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
- DL.getTypeAllocSize(GEP->getType()->getElementType()));
- Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
+ DL->getTypeAllocSize(GEP->getType()->getElementType()));
+ Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
// Very likely. As long as %gep is natually aligned, the byte offset we
// extracted should be a multiple of sizeof(*%gep).
if (DisableSeparateConstOffsetFromGEP)
return false;
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
bool Changed = false;
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {