--- /dev/null
+// Copyright (C) 2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+//
+
+#include <vector>
+
+#include "single_layer_tests/region_yolo.hpp"
+#include "common_test_utils/test_constants.hpp"
+
+using namespace LayerTestsDefinitions;
+
+const std::vector<ngraph::Shape> inShapes_caffe = {
+ {1, 125, 13, 13}
+};
+
+const std::vector<ngraph::Shape> inShapes_mxnet = {
+ {1, 75, 52, 52},
+ {1, 75, 32, 32},
+ {1, 75, 26, 26},
+ {1, 75, 16, 16},
+ {1, 75, 13, 13},
+ {1, 75, 8, 8}
+};
+
+const std::vector<ngraph::Shape> inShapes_v3 = {
+ {1, 255, 52, 52},
+ {1, 255, 26, 26},
+ {1, 255, 13, 13}
+};
+
+const std::vector<std::vector<int64_t>> masks = {
+ {0, 1, 2},
+ {3, 4, 5},
+ {6, 7, 8}
+};
+
+const std::vector<bool> do_softmax = {true, false};
+const std::vector<size_t> classes = {80, 20};
+const std::vector<size_t> num_regions = {5, 9};
+const size_t coords = 4;
+const int start_axis = 1;
+const int end_axis = 3;
+
+const auto testCase_yolov3 = ::testing::Combine(
+ ::testing::ValuesIn(inShapes_v3),
+ ::testing::Values(classes[0]),
+ ::testing::Values(coords),
+ ::testing::Values(num_regions[1]),
+ ::testing::Values(do_softmax[1]),
+ ::testing::Values(masks[2]),
+ ::testing::Values(start_axis),
+ ::testing::Values(end_axis),
+ ::testing::Values(InferenceEngine::Precision::FP32),
+ ::testing::Values(CommonTestUtils::DEVICE_CPU)
+);
+
+const auto testCase_yolov3_mxnet = ::testing::Combine(
+ ::testing::ValuesIn(inShapes_mxnet),
+ ::testing::Values(classes[1]),
+ ::testing::Values(coords),
+ ::testing::Values(num_regions[1]),
+ ::testing::Values(do_softmax[1]),
+ ::testing::Values(masks[1]),
+ ::testing::Values(start_axis),
+ ::testing::Values(end_axis),
+ ::testing::Values(InferenceEngine::Precision::FP32),
+ ::testing::Values(CommonTestUtils::DEVICE_CPU)
+);
+
+const auto testCase_yolov2_caffe = ::testing::Combine(
+ ::testing::ValuesIn(inShapes_caffe),
+ ::testing::Values(classes[1]),
+ ::testing::Values(coords),
+ ::testing::Values(num_regions[0]),
+ ::testing::Values(do_softmax[0]),
+ ::testing::Values(masks[0]),
+ ::testing::Values(start_axis),
+ ::testing::Values(end_axis),
+ ::testing::Values(InferenceEngine::Precision::FP32),
+ ::testing::Values(CommonTestUtils::DEVICE_CPU)
+);
+
+INSTANTIATE_TEST_CASE_P(smoke_TestsRegionYolov3, RegionYoloLayerTest, testCase_yolov3, RegionYoloLayerTest::getTestCaseName);
+INSTANTIATE_TEST_CASE_P(smoke_TestsRegionYoloMxnet, RegionYoloLayerTest, testCase_yolov3_mxnet, RegionYoloLayerTest::getTestCaseName);
+INSTANTIATE_TEST_CASE_P(smoke_TestsRegionYoloCaffe, RegionYoloLayerTest, testCase_yolov2_caffe, RegionYoloLayerTest::getTestCaseName);
--- /dev/null
+// Copyright (C) 2019 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+//
+
+#pragma once
+
+#include <tuple>
+#include <string>
+#include <vector>
+
+#include "functional_test_utils/layer_test_utils.hpp"
+#include "ngraph_functions/builders.hpp"
+#include "ngraph_functions/utils/ngraph_helpers.hpp"
+
+namespace LayerTestsDefinitions {
+
+using regionYoloParamsTuple = std::tuple<
+ ngraph::Shape, // Input Shape
+ size_t, // classes
+ size_t, // coordinates
+ size_t, // num regions
+ bool, // do softmax
+ std::vector<int64_t>, // mask
+ int, // start axis
+ int, // end axis
+ InferenceEngine::Precision, // Network precision
+ std::string>; // Device name
+
+class RegionYoloLayerTest : public testing::WithParamInterface<regionYoloParamsTuple>,
+ virtual public LayerTestsUtils::LayerTestsCommon {
+public:
+ static std::string getTestCaseName(const testing::TestParamInfo<regionYoloParamsTuple> &obj);
+
+protected:
+ void SetUp() override;
+};
+
+} // namespace LayerTestsDefinitions
\ No newline at end of file
--- /dev/null
+// Copyright (C) 2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+//
+
+#include "ie_core.hpp"
+
+#include "common_test_utils/common_utils.hpp"
+#include "functional_test_utils/blob_utils.hpp"
+#include "functional_test_utils/precision_utils.hpp"
+#include "functional_test_utils/plugin_cache.hpp"
+#include "functional_test_utils/skip_tests_config.hpp"
+
+#include "single_layer_tests/region_yolo.hpp"
+
+namespace LayerTestsDefinitions {
+
+std::string RegionYoloLayerTest::getTestCaseName(const testing::TestParamInfo<regionYoloParamsTuple> &obj) {
+ ngraph::Shape inputShape;
+ size_t classes;
+ size_t coords;
+ size_t num_regions;
+ bool do_softmax;
+ std::vector<int64_t> mask;
+ int start_axis;
+ int end_axis;
+ InferenceEngine::Precision netPrecision;
+ std::string targetName;
+ std::tie(inputShape, classes, coords, num_regions, do_softmax , mask, start_axis, end_axis, netPrecision, targetName) = obj.param;
+ std::ostringstream result;
+ result << "IS=" << inputShape << "_";
+ result << "classes=" << classes << "_";
+ result << "coords=" << coords << "_";
+ result << "num=" << num_regions << "_";
+ result << "doSoftmax=" << do_softmax << "_";
+ result << "axis=" << start_axis << "_";
+ result << "endAxis=" << end_axis << "_";
+ result << "netPRC=" << netPrecision.name() << "_";
+ result << "targetDevice=" << targetName << "_";
+ return result.str();
+}
+
+void RegionYoloLayerTest::SetUp() {
+ ngraph::Shape inputShape;
+ size_t classes;
+ size_t coords;
+ size_t num_regions;
+ bool do_softmax;
+ std::vector<int64_t> mask;
+ int start_axis;
+ int end_axis;
+ InferenceEngine::Precision netPrecision;
+ std::tie(inputShape, classes, coords, num_regions, do_softmax, mask, start_axis, end_axis, netPrecision, targetDevice) = this->GetParam();
+ auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(netPrecision);
+ auto param = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, inputShape);
+ auto region_yolo = std::make_shared<ngraph::op::v0::RegionYolo>(param, coords, classes, num_regions, do_softmax, mask, start_axis, end_axis);
+ function = std::make_shared<ngraph::Function>(std::make_shared<ngraph::opset1::Result>(region_yolo), ngraph::ParameterVector{param}, "RegionYolo");
+}
+
+TEST_P(RegionYoloLayerTest, CompareWithRefs) {
+ Run();
+};
+
+} // namespace LayerTestsDefinitions
\ No newline at end of file
int m_axis;
int m_end_axis;
};
- }
+ } // namespace v0
using v0::RegionYolo;
- }
-}
+ } // namespace op
+} // namespace ngraph
--- /dev/null
+//*****************************************************************************
+// Copyright 2017-2020 Intel Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//*****************************************************************************
+
+#pragma once
+
+#include <algorithm>
+#include <cmath>
+
+#include "ngraph/shape.hpp"
+
+namespace ngraph
+{
+ namespace runtime
+ {
+ namespace reference
+ {
+ static inline int entry_index(int width,
+ int height,
+ int coords,
+ int classes,
+ int outputs,
+ int batch,
+ int location,
+ int entry)
+ {
+ int n = location / (width * height);
+ int loc = location % (width * height);
+ return batch * outputs + n * width * height * (coords + classes + 1) +
+ entry * width * height + loc;
+ }
+
+ template <typename T>
+ static inline T sigmoid(float x)
+ {
+ return static_cast<T>(1.f / (1.f + std::exp(-x)));
+ }
+ template <typename T>
+ static inline void softmax_generic(
+ const T* src_data, T* dst_data, int batches, int channels, int height, int width)
+ {
+ const int area = height * width;
+ for (unsigned int batch_idx = 0; batch_idx < batches; batch_idx++)
+ {
+ const int offset = batch_idx * channels * area;
+ for (unsigned int i = 0; i < height * width; i++)
+ {
+ T max = src_data[batch_idx * channels * area + i];
+ for (unsigned int channel_idx = 0; channel_idx < channels; channel_idx++)
+ {
+ T val = src_data[offset + channel_idx * area + i];
+ max = std::max(max, val);
+ }
+
+ T sum = 0;
+ for (unsigned int channel_idx = 0; channel_idx < channels; channel_idx++)
+ {
+ dst_data[offset + channel_idx * area + i] =
+ std::exp(src_data[offset + channel_idx * area + i] - max);
+ sum += dst_data[offset + channel_idx * area + i];
+ }
+
+ for (unsigned int channel_idx = 0; channel_idx < channels; channel_idx++)
+ {
+ dst_data[offset + channel_idx * area + i] /= sum;
+ }
+ }
+ }
+ }
+
+ template <typename T>
+ void region_yolo(const T* input,
+ T* output,
+ const Shape& input_shape,
+ const int coords,
+ const int classes,
+ const int regions,
+ const bool do_softmax,
+ const std::vector<int64_t>& mask)
+ {
+ NGRAPH_CHECK(input_shape.size() == 4);
+
+ const int batches = input_shape[0];
+ const int channels = input_shape[1];
+ const int height = input_shape[2];
+ const int width = input_shape[3];
+
+ const auto mask_size = mask.size();
+
+ std::copy(input, input + shape_size(input_shape), output);
+
+ int num_regions = 0;
+ int end_index = 0;
+
+ if (do_softmax)
+ {
+ // Region layer (Yolo v2)
+ num_regions = regions;
+ end_index = width * height;
+ }
+ else
+ {
+ // Yolo layer (Yolo v3)
+ num_regions = mask_size;
+ end_index = width * height * (classes + 1);
+ }
+
+ const int inputs_size = width * height * num_regions * (classes + coords + 1);
+
+ for (unsigned int batch_idx = 0; batch_idx < batches; batch_idx++)
+ {
+ for (unsigned int n = 0; n < num_regions; n++)
+ {
+ int index = entry_index(width,
+ height,
+ coords,
+ classes,
+ inputs_size,
+ batch_idx,
+ n * width * height,
+ 0);
+ std::transform(output + index,
+ output + index + 2 * width * height,
+ output + index,
+ [](T elem) { return sigmoid<T>(elem); });
+
+ index = entry_index(width,
+ height,
+ coords,
+ classes,
+ inputs_size,
+ batch_idx,
+ n * width * height,
+ coords);
+ std::transform(output + index,
+ output + index + end_index,
+ output + index,
+ [](T elem) { return sigmoid<T>(elem); });
+ }
+ }
+
+ if (do_softmax)
+ {
+ int index =
+ entry_index(width, height, coords, classes, inputs_size, 0, 0, coords + 1);
+ int batch_offset = inputs_size / regions;
+ for (unsigned int batch_idx = 0; batch_idx < batches * regions; batch_idx++)
+ {
+ softmax_generic<T>(input + index + batch_idx * batch_offset,
+ output + index + batch_idx * batch_offset,
+ 1,
+ classes,
+ height,
+ width);
+ }
+ }
+ }
+
+ } // namespace reference
+
+ } // namespace runtime
+
+} // namespace ngraph
\ No newline at end of file
void op::RegionYolo::validate_and_infer_types()
{
auto input_et = get_input_element_type(0);
+
+ NODE_VALIDATION_CHECK(this,
+ input_et.is_real(),
+ "Type of input is expected to be a floating point type. Got: ",
+ input_et);
+
if (get_input_partial_shape(0).is_static())
{
Shape input_shape = get_input_partial_shape(0).to_shape();
backend/reduce_min.in.cpp
backend/reduce_prod.in.cpp
backend/reduce_sum.in.cpp
+ backend/region_yolo.in.cpp
backend/relu.in.cpp
backend/reorg_yolo.in.cpp
backend/replace_slice.in.cpp
TEST(attributes, region_yolo_op)
{
FactoryRegistry<Node>::get().register_factory<opset1::RegionYolo>();
- auto data = make_shared<op::Parameter>(element::i64, Shape{1, 255, 26, 26});
+ auto data = make_shared<op::Parameter>(element::f32, Shape{1, 255, 26, 26});
size_t num_coords = 4;
size_t num_classes = 1;
--- /dev/null
+//*****************************************************************************
+// Copyright 2017-2020 Intel Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//*****************************************************************************
+
+#include <fstream>
+
+#include "gtest/gtest.h"
+#include "ngraph/ngraph.hpp"
+#include "util/engine/test_engines.hpp"
+#include "util/test_case.hpp"
+#include "util/test_control.hpp"
+
+NGRAPH_SUPPRESS_DEPRECATED_START
+
+using namespace std;
+using namespace ngraph;
+
+static string s_manifest = "${MANIFEST}";
+using TestEngine = test::ENGINE_CLASS_NAME(${BACKEND_NAME});
+
+NGRAPH_TEST(${BACKEND_NAME}, region_yolo_v2_caffe)
+{
+ const size_t num = 5;
+ const size_t coords = 4;
+ const size_t classes = 20;
+ const size_t batch = 1;
+ const size_t channels = 125;
+ const size_t width = 13;
+ const size_t height = 13;
+ const size_t count = width * height * channels;
+ const std::vector<int64_t> mask{0, 1, 2};
+
+ Shape input_shape{batch, channels, height, width};
+ Shape output_shape{batch, channels * height * width};
+
+ auto A = make_shared<op::Parameter>(element::f32, input_shape);
+ auto R = make_shared<op::v0::RegionYolo>(A, coords, classes, num, true, mask, 1, 3);
+ auto f = make_shared<Function>(R, ParameterVector{A});
+
+ auto test_case = test::TestCase<TestEngine>(f);
+
+ test_case.add_input_from_file<float>(input_shape, TEST_FILES, "region_in_yolov2_caffe.data");
+ test_case.add_expected_output_from_file<float>(
+ output_shape, TEST_FILES, "region_out_yolov2_caffe.data");
+ test_case.run_with_tolerance_as_fp(1.0e-4f);
+}
+
+NGRAPH_TEST(${BACKEND_NAME}, region_yolo_v3_mxnet)
+{
+ const size_t num = 9;
+ const size_t coords = 4;
+ const size_t classes = 20;
+ const size_t batch = 1;
+ const size_t channels = 75;
+ const size_t width = 32;
+ const size_t height = 32;
+ const std::vector<int64_t> mask{0, 1, 2};
+
+ Shape shape{batch, channels, height, width};
+ const auto count = shape_size(shape);
+
+ const auto A = make_shared<op::Parameter>(element::f32, shape);
+ const auto R = make_shared<op::v0::RegionYolo>(A, coords, classes, num, false, mask, 1, 3);
+ const auto f = make_shared<Function>(R, ParameterVector{A});
+
+ EXPECT_EQ(R->get_output_shape(0), shape);
+
+ auto test_case = test::TestCase<TestEngine>(f);
+
+ test_case.add_input_from_file<float>(shape, TEST_FILES, "region_in_yolov3_mxnet.data");
+ test_case.add_expected_output_from_file<float>(
+ shape, TEST_FILES, "region_out_yolov3_mxnet.data");
+ test_case.run_with_tolerance_as_fp(1.0e-4f);
+}
IE_GPU.matmul_2x3_3x3
IE_GPU.matmul_3x2_3x3_transpose
IE_GPU.matmul_3x2_2x3_transpose
+IE_GPU.region_yolo_v2_caffe
+IE_GPU.region_yolo_v3_mxnet
# Unsupported collapse op with dynamic shape
IE_GPU.builder_opset1_collapse_dyn_shape
#include "ngraph/runtime/reference/prior_box.hpp"
#include "ngraph/runtime/reference/product.hpp"
#include "ngraph/runtime/reference/quantize.hpp"
+#include "ngraph/runtime/reference/region_yolo.hpp"
#include "ngraph/runtime/reference/relu.hpp"
#include "ngraph/runtime/reference/reorg_yolo.hpp"
#include "ngraph/runtime/reference/replace_slice.hpp"
break;
}
+ case OP_TYPEID::RegionYolo_v0:
+ {
+ const op::RegionYolo* region_yolo = static_cast<const op::RegionYolo*>(&node);
+ reference::region_yolo<T>(args[0]->get_data_ptr<const T>(),
+ out[0]->get_data_ptr<T>(),
+ args[0]->get_shape(),
+ region_yolo->get_num_coords(),
+ region_yolo->get_num_classes(),
+ region_yolo->get_num_regions(),
+ region_yolo->get_do_softmax(),
+ region_yolo->get_mask());
+ break;
+ }
case OP_TYPEID::Relu:
{
size_t element_count = shape_size(node.get_output_shape(0));
#define ID_SUFFIX(NAME) NAME##_v0
NGRAPH_OP(CTCGreedyDecoder, ngraph::op::v0)
NGRAPH_OP(DetectionOutput, op::v0)
+NGRAPH_OP(RegionYolo, op::v0)
NGRAPH_OP(ReorgYolo, op::v0)
NGRAPH_OP(RNNCell, op::v0)
#undef ID_SUFFIX