RT tasks are allowed to dip below the min reserve but ALLOC_HARDER is
typically combined with ALLOC_MIN_RESERVE so RT tasks are a little
unusual. While there is some justification for allowing RT tasks access
to memory reserves, there is a strong chance that a RT task that is also
under memory pressure is at risk of missing deadlines anyway. Relax how
much reserves an RT task can access by treating it the same as __GFP_HIGH
allocations.
Note that in a future kernel release that the RT special casing will be
removed. Hard realtime tasks should be locking down resources in advance
and ensuring enough memory is available. Even a soft-realtime task like
audio or video live decoding which cannot jitter should be allocating both
memory and any disk space required up-front before the recording starts
instead of relying on reserves. At best, reserve access will only delay
the problem by a very short interval.
Link: https://lkml.kernel.org/r/20230113111217.14134-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Thierry Reding <thierry.reding@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
*/
alloc_flags &= ~ALLOC_CPUSET;
} else if (unlikely(rt_task(current)) && in_task())
- alloc_flags |= ALLOC_HARDER;
+ alloc_flags |= ALLOC_MIN_RESERVE;
alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);