setOperationAction(ISD::STORE, VT, Custom);
}
- setOperationAction(ISD::STORE, MVT::v128i1, Custom);
-
for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
MVT::v2i32}) {
setCondCodeAction(ISD::SETNE, VT, Expand);
// Custom-lower bitcasts from i8 to v8i1.
setOperationAction(ISD::BITCAST, MVT::i8, Custom);
- setOperationAction(ISD::BITCAST, MVT::i32, Custom);
- setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
+ if (isHvxOperation(N)) {
+ LowerHvxOperationWrapper(N, Results, DAG);
+ if (!Results.empty())
+ return;
+ }
+
// We are only custom-lowering stores to verify the alignment of the
// address if it is a compile-time constant. Since a store can be modified
// during type-legalization (the value being stored may need legalization),
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
+ if (isHvxOperation(N)) {
+ ReplaceHvxNodeResults(N, Results, DAG);
+ if (!Results.empty())
+ return;
+ }
+
const SDLoc &dl(N);
switch (N->getOpcode()) {
case ISD::SRL:
return MVT::Other;
}
+bool HexagonTargetLowering::allowsMemoryAccess(LLVMContext &Context,
+ const DataLayout &DL, EVT VT, unsigned AddrSpace, unsigned Alignment,
+ MachineMemOperand::Flags Flags, bool *Fast) const {
+ MVT SVT = VT.getSimpleVT();
+ if (Subtarget.isHVXVectorType(SVT, true))
+ return allowsHvxMemoryAccess(SVT, Alignment, Flags, Fast);
+ return TargetLoweringBase::allowsMemoryAccess(
+ Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
+}
+
bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
- EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
- bool *Fast) const {
+ EVT VT, unsigned AddrSpace, unsigned Alignment,
+ MachineMemOperand::Flags Flags, bool *Fast) const {
+ MVT SVT = VT.getSimpleVT();
+ if (Subtarget.isHVXVectorType(SVT, true))
+ return allowsHvxMisalignedMemoryAccesses(SVT, Alignment, Flags, Fast);
if (Fast)
*Fast = false;
- return Subtarget.isHVXVectorType(VT.getSimpleVT());
+ return false;
}
std::pair<const TargetRegisterClass*, uint8_t>
EVT getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
+ bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
+ unsigned AddrSpace, unsigned Alignment, MachineMemOperand::Flags Flags,
+ bool *Fast) const override;
+
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
- unsigned Align, MachineMemOperand::Flags Flags, bool *Fast)
+ unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast)
const override;
/// Returns relocation base for the given PIC jumptable.
VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;
+ bool allowsHvxMemoryAccess(MVT VecTy, unsigned Alignment,
+ MachineMemOperand::Flags Flags, bool *Fast) const;
+ bool allowsHvxMisalignedMemoryAccesses(MVT VecTy, unsigned Align,
+ MachineMemOperand::Flags Flags, bool *Fast) const;
+
bool isHvxSingleTy(MVT Ty) const;
bool isHvxPairTy(MVT Ty) const;
bool isHvxBoolTy(MVT Ty) const;
const SDLoc &dl, SelectionDAG &DAG) const;
SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy,
bool ZeroExt, SelectionDAG &DAG) const;
+ SDValue compressHvxPred(SDValue VecQ, const SDLoc &dl, MVT ResTy,
+ SelectionDAG &DAG) const;
SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const;
const override;
bool isHvxOperation(SDValue Op) const;
+ bool isHvxOperation(SDNode *N) const;
SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const;
-
+ void LowerHvxOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const;
+ void ReplaceHvxNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const;
SDValue PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
};
AddPromotedToType(Opc, FromTy, ToTy);
};
+ // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
+ // Note: v16i1 -> i16 is handled in type legalization instead of op
+ // legalization.
+ setOperationAction(ISD::BITCAST, MVT::i16, Custom);
+ setOperationAction(ISD::BITCAST, MVT::i32, Custom);
+ setOperationAction(ISD::BITCAST, MVT::i64, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v128i1, Custom);
+ setOperationAction(ISD::BITCAST, MVT::i128, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Ty.getVectorElementType() == MVT::i1;
}
+bool
+HexagonTargetLowering::allowsHvxMemoryAccess(MVT VecTy, unsigned Alignment,
+ MachineMemOperand::Flags Flags, bool *Fast) const {
+ // Bool vectors are excluded by default, but make it explicit to
+ // emphasize that bool vectors cannot be loaded or stored.
+ if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
+ return false;
+ if (Fast)
+ *Fast = true;
+ return true;
+}
+
+bool
+HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(MVT VecTy,
+ unsigned Align, MachineMemOperand::Flags Flags, bool *Fast) const {
+ if (!Subtarget.isHVXVectorType(VecTy))
+ return false;
+ // XXX Should this be false? vmemu are a bit slower than vmem.
+ if (Fast)
+ *Fast = true;
+ return true;
+}
+
SDValue
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
SelectionDAG &DAG) const {
}
SDValue
+HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
+ MVT ResTy, SelectionDAG &DAG) const {
+ // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
+ // (i.e. the entire predicate register) to bits [0..HwLen-1] of a
+ // vector register. The remaining bits of the vector register are
+ // unspecified.
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned HwLen = Subtarget.getVectorLength();
+ MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
+ MVT PredTy = ty(VecQ);
+ unsigned PredLen = PredTy.getVectorNumElements();
+ assert(HwLen % PredLen == 0);
+ MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
+
+ Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
+ SmallVector<Constant*, 128> Tmp;
+ // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
+ // These are bytes with the LSB rotated left with respect to their index.
+ for (unsigned i = 0; i != HwLen/8; ++i) {
+ for (unsigned j = 0; j != 8; ++j)
+ Tmp.push_back(ConstantInt::get(Int8Ty, 1u << j));
+ }
+ Constant *CV = ConstantVector::get(Tmp);
+ unsigned Align = HwLen;
+ SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Align), DAG);
+ SDValue Bytes = DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(MF), Align);
+
+ // Select the bytes that correspond to true bits in the vector predicate.
+ SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
+ getZero(dl, VecTy, DAG));
+ // Calculate the OR of all bytes in each group of 8. That will compress
+ // all the individual bits into a single byte.
+ // First, OR groups of 4, via vrmpy with 0x01010101.
+ SDValue All1 =
+ DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
+ SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
+ // Then rotate the accumulated vector by 4 bytes, and do the final OR.
+ SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
+ {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
+ SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
+
+ // Pick every 8th byte and coalesce them at the beginning of the output.
+ // For symmetry, coalesce every 1+8th byte after that, then every 2+8th
+ // byte and so on.
+ SmallVector<int,128> Mask;
+ for (unsigned i = 0; i != HwLen; ++i)
+ Mask.push_back((8*i) % HwLen + i/(HwLen/8));
+ SDValue Collect =
+ DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
+ return DAG.getBitcast(ResTy, Collect);
+}
+
+SDValue
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
return T7;
}
-// This function does the computation needed to bitcast a vector of predicate
-// register to a vector of integers.
SDValue
-HexagonTargetLowering::HvxVecPredBitcastComputation(SDValue Op,
- SelectionDAG &DAG) const {
+HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
+ SDValue ValQ = Op.getOperand(0);
+ MVT ResTy = ty(Op);
+ MVT VecTy = ty(ValQ);
const SDLoc &dl(Op);
- MVT VecTy;
- int Length;
- if (Subtarget.useHVX64BOps()) {
- VecTy = MVT::getVectorVT(MVT::i32, 16);
- Length = 2;
- }
- if (Subtarget.useHVX128BOps()) {
- VecTy = MVT::getVectorVT(MVT::i32, 32);
- Length = 4;
- }
- // r0 = ##0x08040201 // Pre-rotated bits per 4 consecutive bytes.
- SDValue C8421 = DAG.getTargetConstant(0x08040201, dl, MVT::i32);
- SDValue InstrC8421 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C8421, DAG);
- // v0 = vand(q0,r0)
- SDValue Vand =
- getInstr(Hexagon::V6_vandqrt, dl, VecTy, {Op, InstrC8421}, DAG);
-
- // Or the bytes in each word into a single byte: that will form packs
- // of 4 bits of the output.
- // v1 = valign(v0,v0,#2)
- SDValue C2 = DAG.getTargetConstant(2, dl, MVT::i32);
- SDValue Valign =
- getInstr(Hexagon::V6_valignbi, dl, VecTy, {Vand, Vand, C2}, DAG);
- // v0 = vor(v0,v1)
- SDValue Vor = getInstr(Hexagon::V6_vor, dl, VecTy, {Vand, Valign}, DAG);
- // v1 = valign(v0,v0,#1)
- SDValue C1 = DAG.getTargetConstant(1, dl, MVT::i32);
- SDValue Valign1 =
- getInstr(Hexagon::V6_valignbi, dl, VecTy, {Vor, Vor, C1}, DAG);
- // v0 = vor(v0,v1)
- SDValue Vor1 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vor, Valign1}, DAG);
-
- // Clear all the bytes per word except the lowest one.
- // r0 = #0xff
- SDValue Cff = DAG.getTargetConstant(0xff, dl, MVT::i32);
- SDValue InstrCff = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, Cff, DAG);
- // v1 = vsplat(r0)
- SDValue Vsplat = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, InstrCff, DAG);
- // v0 = vand(v0,v1)
- SDValue Vand1 = getInstr(Hexagon::V6_vand, dl, VecTy, {Vor1, Vsplat}, DAG);
-
- // Shift each word left by its index to position the 4-bit packs for oring.
- // The words 0..8 and 16..31 need to be ored to form the 64-bit output.
- // r0 = ##.Lshifts
- // .Lshifts:
- // .word 0
- // .word 4
- // .word 8
- // .word 12
- // .word 16
- // .word 20
- // .word 24
- // .word 28
- // .word 0
- // .word 4
- // .word 8
- // .word 12
- // .word 16
- // .word 20
- // .word 24
- // .word 28
- // v1 = vmem(r0+#0)
- SmallVector<SDValue, 32> Elems;
- for (int i = 0; i < Length; ++i) {
- Elems.push_back(DAG.getConstant(0, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(4, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(8, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(12, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(16, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(20, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(24, dl, MVT::i32));
- Elems.push_back(DAG.getConstant(28, dl, MVT::i32));
- }
- SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
- // v0.w = vasl(v0.w,v1.w)
- SDValue Vasl = getInstr(Hexagon::V6_vaslwv, dl, VecTy, {Vand1, BV}, DAG);
-
- // 3 rounds of oring.
- // r0 = #16 // HwLen/4
- SDValue C16 = DAG.getTargetConstant(16, dl, MVT::i32);
- SDValue InstrC16 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C16, DAG);
- // v1 = vror(v0,r0)
- SDValue Vror = getInstr(Hexagon::V6_vror, dl, VecTy, {Vasl, InstrC16}, DAG);
- // v0 = vor(v0,v1)
- SDValue Vor2 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vasl, Vror}, DAG);
- // r0 = #8 // HwLen/8
- SDValue C8 = DAG.getTargetConstant(8, dl, MVT::i32);
- SDValue InstrC8 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C8, DAG);
- // v1 = vror(v0,r0)
- SDValue Vror1 = getInstr(Hexagon::V6_vror, dl, VecTy, {Vor2, InstrC8}, DAG);
- // v0 = vor(v0,v1)
- SDValue Vor3 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vor2, Vror1}, DAG);
- // r0 = #4 // HwLen/16
- SDValue C4 = DAG.getTargetConstant(4, dl, MVT::i32);
- SDValue InstrC4 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C4, DAG);
- // v1 = vror(v0,r0)
- SDValue Vror2 = getInstr(Hexagon::V6_vror, dl, VecTy, {Vor3, InstrC4}, DAG);
- // v0 = vor(v0,v1)
- SDValue Vor4 = getInstr(Hexagon::V6_vor, dl, VecTy, {Vor3, Vror2}, DAG);
- return Vor4;
-}
+ if (isHvxBoolTy(VecTy) && ResTy.isScalarInteger()) {
+ unsigned HwLen = Subtarget.getVectorLength();
+ MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
+ SDValue VQ = compressHvxPred(ValQ, dl, WordTy, DAG);
+ unsigned BitWidth = ResTy.getSizeInBits();
+
+ if (BitWidth < 64) {
+ SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
+ dl, MVT::i32, DAG);
+ if (BitWidth == 32)
+ return W0;
+ assert(BitWidth < 32u);
+ return DAG.getZExtOrTrunc(W0, dl, ResTy);
+ }
-SDValue HexagonTargetLowering::LowerHvxBitcast(SDValue Op,
- SelectionDAG &DAG) const {
- auto *N = Op.getNode();
- EVT VT = N->getValueType(0);
- const SDLoc &dl(Op);
- SDValue Q0 = N->getOperand(0);
- EVT VTOp = Q0.getNode()->getValueType(0);
- if (!(VT == MVT::i64 || VT == MVT::i32) ||
- !(VTOp == MVT::v64i1 || VTOp == MVT::v32i1))
- return Op;
+ // The result is >= 64 bits. The only options are 64 or 128.
+ assert(BitWidth == 64 || BitWidth == 128);
+ SmallVector<SDValue,4> Words;
+ for (unsigned i = 0; i != BitWidth/32; ++i) {
+ SDValue W = extractHvxElementReg(
+ VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
+ Words.push_back(W);
+ }
+ SmallVector<SDValue,2> Combines;
+ assert(Words.size() % 2 == 0);
+ for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
+ SDValue C = DAG.getNode(
+ HexagonISD::COMBINE, dl, MVT::i64, {Words[i], Words[i+1]});
+ Combines.push_back(C);
+ }
- SDValue Vor4 = HvxVecPredBitcastComputation(Q0, DAG);
-
- // The output is v.w[8]:v.w[0]
- // r3 = #0
- SDValue C0 = DAG.getTargetConstant(0, dl, MVT::i32);
- SDValue InstrC0 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C0, DAG);
- // r0 = vextract(v0,r3)
- SDValue Res =
- getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC0}, DAG);
- if (VT == MVT::i64) {
- // r3 = #32
- SDValue C32 = DAG.getTargetConstant(32, dl, MVT::i32);
- SDValue InstrC32 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C32, DAG);
- // r1 = vextract(v0,r3)
- SDValue Vextract =
- getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC32}, DAG);
- Res = getInstr(Hexagon::A2_combinew, dl, MVT::i64, {Vextract, Res}, DAG);
+ if (BitWidth == 64)
+ return Combines[0];
+
+ // It must be i128. I128 is not a legal type, so this part will be
+ // executed during type legalization. We need to generate code that
+ // the default expansion can break up into smaller pieces.
+ SDValue C0 = DAG.getZExtOrTrunc(Combines[0], dl, ResTy);
+ SDValue C1 = DAG.getNode(ISD::SHL, dl, ResTy,
+ DAG.getZExtOrTrunc(Combines[1], dl, ResTy),
+ DAG.getConstant(64, dl, MVT::i32));
+ return DAG.getNode(ISD::OR, dl, ResTy, C0, C1);
}
- return Res;
-}
-SDValue HexagonTargetLowering::LowerHvxStore(SDValue Op,
- SelectionDAG &DAG) const {
- auto *N = Op.getNode();
- const SDLoc &dl(Op);
- SDValue Q0 = N->getOperand(1);
- EVT VTOp = Q0.getNode()->getValueType(0);
- if (Op.getOpcode() != ISD::STORE || VTOp != MVT::v128i1)
- return Op;
- SDValue Vor4 = HvxVecPredBitcastComputation(Q0, DAG);
- // The output is v.w[8]:v.w[0]
- // r3 = #0
- SDValue C0 = DAG.getTargetConstant(0, dl, MVT::i32);
- SDValue InstrC0 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C0, DAG);
- // r0 = vextract(v0,r3)
- SDValue Vextract0 =
- getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC0}, DAG);
- // r3 = #32
- SDValue C32 = DAG.getTargetConstant(32, dl, MVT::i32);
- SDValue InstrC32 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C32, DAG);
- // r1 = vextract(v0,r3)
- SDValue Vextract1 =
- getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC32}, DAG);
- SDValue Combine0 =
- getInstr(Hexagon::A2_combinew, dl, MVT::i64, {Vextract1, Vextract0}, DAG);
- // r3 = #64
- SDValue C64 = DAG.getTargetConstant(64, dl, MVT::i32);
- SDValue InstrC64 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C64, DAG);
- // r0 = vextract(v0,r3)
- SDValue Vextract2 =
- getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC64}, DAG);
- // r3 = #96
- SDValue C96 = DAG.getTargetConstant(96, dl, MVT::i32);
- SDValue InstrC96 = getInstr(Hexagon::A2_tfrsi, dl, MVT::i32, C96, DAG);
- // r1 = vextract(v0,r3)
- SDValue Vextract3 =
- getInstr(Hexagon::V6_extractw, dl, MVT::i32, {Vor4, InstrC96}, DAG);
- SDValue Combine1 =
- getInstr(Hexagon::A2_combinew, dl, MVT::i64, {Vextract3, Vextract2}, DAG);
- StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
- SDValue C8 = DAG.getTargetConstant(8, dl, MVT::i32);
- const SDValue Ops1[] = {ST->getBasePtr(), C8, Combine1, ST->getChain()};
- SDValue Store1 = getInstr(Hexagon::S2_storerd_io, dl, MVT::Other, Ops1, DAG);
- const SDValue Ops0[] = {ST->getBasePtr(), C0, Combine0, Store1};
- SDValue Store0 = getInstr(Hexagon::S2_storerd_io, dl, MVT::Other, Ops0, DAG);
- return Store0;
+ return Op;
}
SDValue
case ISD::SETCC:
case ISD::INTRINSIC_VOID: return Op;
case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG);
- case ISD::STORE: return LowerHvxStore(Op, DAG);
// Unaligned loads will be handled by the default lowering.
case ISD::LOAD: return SDValue();
}
llvm_unreachable("Unhandled HVX operation");
}
+void
+HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
+}
+
+void
+HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
+ unsigned Opc = N->getOpcode();
+ switch (Opc) {
+ case ISD::BITCAST:
+ if (isHvxBoolTy(ty(N->getOperand(0)))) {
+ SDValue Op(N, 0);
+ SDValue C = LowerHvxBitcast(Op, DAG);
+ Results.push_back(C);
+ }
+ break;
+ default:
+ break;
+ }
+}
+
SDValue
HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
return Subtarget.isHVXVectorType(ty(V), true);
});
}
+
+bool
+HexagonTargetLowering::isHvxOperation(SDNode *N) const {
+ // If the type of any result, or any operand type are HVX vector types,
+ // this is an HVX operation.
+ auto IsHvxTy = [this] (EVT Ty) {
+ return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
+ };
+ auto IsHvxOp = [this] (SDValue Op) {
+ return Subtarget.isHVXVectorType(ty(Op), true);
+ };
+ return llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp);
+}
; RUN: llc -march=hexagon < %s | FileCheck %s
; CHECK-LABEL: danny:
-; CHECK: vand
+; CHECK: vrmpy
define i64 @danny(<64 x i8> %a0, <64 x i8> %a1) #0 {
%v0 = icmp eq <64 x i8> %a0, %a1
%v1 = bitcast <64 x i1> %v0 to i64
}
; CHECK-LABEL: sammy:
-; CHECK: vand
+; CHECK: vrmpy
define i32 @sammy(<32 x i16> %a0, <32 x i16> %a1) #0 {
%v0 = icmp eq <32 x i16> %a0, %a1
%v1 = bitcast <32 x i1> %v0 to i32
ret i32 %v1
}
-; This one still doesn't work.
-; define i16 @kirby(<16 x i32> %a0, <16 x i32> %a1) #0 {
-; %v0 = icmp eq <16 x i32> %a0, %a1
-; %v1 = bitcast <16 x i1> %v0 to i16
-; ret i16 %v1
-; }
+; CHECK-LABEL: kirby:
+; CHECK: vrmpy
+define i16 @kirby(<16 x i32> %a0, <16 x i32> %a1) #0 {
+ %v0 = icmp eq <16 x i32> %a0, %a1
+ %v1 = bitcast <16 x i1> %v0 to i16
+ ret i16 %v1
+}
attributes #0 = { nounwind "target-cpu"="hexagonv66" "target-features"="+v66,+hvx,+hvxv66,+hvx-length64b" }
--- /dev/null
+; RUN: llc -march=hexagon < %s | FileCheck %s
+
+; Primarily check if this compiles without failing.
+
+; CHECK-LABEL: fred:
+; CHECK: memd
+define void @fred(<128 x i8> %a0, <128 x i8> %a1, i128* %a2) #0 {
+ %v0 = icmp eq <128 x i8> %a0, %a1
+ %v1 = bitcast <128 x i1> %v0 to i128
+ store i128 %v1, i128* %a2, align 16
+ ret void
+}
+
+attributes #0 = { nounwind "target-cpu"="hexagonv66" "target-features"="+v66,+hvx,+hvxv66,+hvx-length128b" }
+
; RUN: llc -march=hexagon < %s | FileCheck %s
-; Test that LLVM does not assert and bitcast v64i1 to i64 is lowered.
-
-; CHECK: v[[REG1:[0-9]+]] = valign(v{{[0-9]+}},v{{[0-9]+}},#2)
-; CHECK: v[[REG2:[0-9]+]] = vor(v{{[0-9]+}},v[[REG1]])
-; CHECK: v[[REG3:[0-9]+]] = valign(v[[REG2]],v[[REG2]],#1)
-; CHECK: v[[REG4:[0-9]+]] = vor(v{{[0-9]+}},v[[REG3]])
-; CHECK: v[[REG5:[0-9]+]] = vand(v[[REG4]],v{{[0-9]+}})
-; CHECK: v{{[0-9]+}}.w = vasl(v[[REG5]].w,v{{[0-9]+}}.w)
+; Test that LLVM does not assert and bitcast v64i1 to i64 is lowered
+; without crashing.
+; CHECK: valign
target triple = "hexagon"
-define dso_local void @fun() local_unnamed_addr #0 {
-entry:
- br i1 undef, label %cleanup, label %if.end
-
-if.end:
- %0 = load i8, i8* undef, align 1
- %conv13.i = zext i8 %0 to i32
- %trip.count.minus.1216 = add nsw i32 %conv13.i, -1
- %broadcast.splatinsert221 = insertelement <64 x i32> undef, i32 %trip.count.minus.1216, i32 0
- %broadcast.splat222 = shufflevector <64 x i32> %broadcast.splatinsert221, <64 x i32> undef, <64 x i32> zeroinitializer
- %1 = icmp ule <64 x i32> undef, %broadcast.splat222
- %wide.masked.load223 = call <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>* nonnull undef, i32 1, <64 x i1> %1, <64 x i8> undef)
- %2 = lshr <64 x i8> %wide.masked.load223, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
- %3 = and <64 x i8> %2, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
- %4 = zext <64 x i8> %3 to <64 x i32>
- %5 = add nsw <64 x i32> undef, %4
- %6 = select <64 x i1> %1, <64 x i32> %5, <64 x i32> undef
- %bin.rdx225 = add <64 x i32> %6, undef
- %bin.rdx227 = add <64 x i32> %bin.rdx225, undef
- %bin.rdx229 = add <64 x i32> %bin.rdx227, undef
- %bin.rdx231 = add <64 x i32> %bin.rdx229, undef
- %bin.rdx233 = add <64 x i32> %bin.rdx231, undef
- %bin.rdx235 = add <64 x i32> %bin.rdx233, undef
- %bin.rdx237 = add <64 x i32> %bin.rdx235, undef
- %7 = extractelement <64 x i32> %bin.rdx237, i32 0
- %nChans = getelementptr inbounds i8, i8* null, i32 2160
- %8 = bitcast i8* %nChans to i32*
- store i32 %7, i32* %8, align 4
- br label %cleanup
-
-cleanup:
+define dso_local void @f0() local_unnamed_addr #0 {
+b0:
+ br i1 undef, label %b2, label %b1
+
+b1: ; preds = %b0
+ %v0 = load i8, i8* undef, align 1
+ %v1 = zext i8 %v0 to i32
+ %v2 = add nsw i32 %v1, -1
+ %v3 = insertelement <64 x i32> undef, i32 %v2, i32 0
+ %v4 = shufflevector <64 x i32> %v3, <64 x i32> undef, <64 x i32> zeroinitializer
+ %v5 = icmp ule <64 x i32> undef, %v4
+ %v6 = call <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>* nonnull undef, i32 1, <64 x i1> %v5, <64 x i8> undef)
+ %v7 = lshr <64 x i8> %v6, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
+ %v8 = and <64 x i8> %v7, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
+ %v9 = zext <64 x i8> %v8 to <64 x i32>
+ %v10 = add nsw <64 x i32> undef, %v9
+ %v11 = select <64 x i1> %v5, <64 x i32> %v10, <64 x i32> undef
+ %v12 = add <64 x i32> %v11, undef
+ %v13 = add <64 x i32> %v12, undef
+ %v14 = add <64 x i32> %v13, undef
+ %v15 = add <64 x i32> %v14, undef
+ %v16 = add <64 x i32> %v15, undef
+ %v17 = add <64 x i32> %v16, undef
+ %v18 = add <64 x i32> %v17, undef
+ %v19 = extractelement <64 x i32> %v18, i32 0
+ %v20 = getelementptr inbounds i8, i8* null, i32 2160
+ %v21 = bitcast i8* %v20 to i32*
+ store i32 %v19, i32* %v21, align 4
+ br label %b2
+
+b2: ; preds = %b1, %b0
ret void
}
; Function Attrs: argmemonly nounwind readonly willreturn
-declare <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>*, i32, <64 x i1>, <64 x i8>)
+declare <64 x i8> @llvm.masked.load.v64i8.p0v64i8(<64 x i8>*, i32 immarg, <64 x i1>, <64 x i8>) #1
attributes #0 = { "target-features"="+hvx-length64b,+hvxv67,+v67,-long-calls" }
+attributes #1 = { argmemonly nounwind readonly willreturn }
-; RUN: llc < %s | FileCheck %s
+; RUN: llc -march=hexagon < %s | FileCheck %s
; This test checks that store a vector predicate of type v128i1 is lowered
-; and two double stores are generated.
-
-; CHECK-DAG: memd(r{{[0-9]+}}+#0) = r{{[0-9]+}}:{{[0-9]+}}
-; CHECK-DAG: memd(r{{[0-9]+}}+#8) = r{{[0-9]+}}:{{[0-9]+}}
+; without crashing.
+; CHECK: valign
target triple = "hexagon"
-define dso_local void @raac_UnpackADIFHeader() local_unnamed_addr #0 {
-entry:
- br i1 undef, label %cleanup, label %if.end
-
-if.end:
- %0 = load i8, i8* undef, align 1
- %conv13.i = zext i8 %0 to i32
- %trip.count.minus.1216 = add nsw i32 %conv13.i, -1
- %broadcast.splatinsert221 = insertelement <128 x i32> undef, i32 %trip.count.minus.1216, i32 0
- %broadcast.splat222 = shufflevector <128 x i32> %broadcast.splatinsert221, <128 x i32> undef, <128 x i32> zeroinitializer
- %1 = icmp ule <128 x i32> undef, %broadcast.splat222
- %wide.masked.load223 = call <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>* nonnull undef, i32 1, <128 x i1> %1, <128 x i8> undef)
- %2 = lshr <128 x i8> %wide.masked.load223, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
- %3 = and <128 x i8> %2, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
- %4 = zext <128 x i8> %3 to <128 x i32>
- %5 = add nsw <128 x i32> undef, %4
- %6 = select <128 x i1> %1, <128 x i32> %5, <128 x i32> undef
- %bin.rdx225 = add <128 x i32> %6, undef
- %bin.rdx227 = add <128 x i32> %bin.rdx225, undef
- %bin.rdx229 = add <128 x i32> %bin.rdx227, undef
- %bin.rdx231 = add <128 x i32> %bin.rdx229, undef
- %bin.rdx233 = add <128 x i32> %bin.rdx231, undef
- %bin.rdx235 = add <128 x i32> %bin.rdx233, undef
- %bin.rdx237 = add <128 x i32> %bin.rdx235, undef
- %7 = extractelement <128 x i32> %bin.rdx237, i32 0
- %nChans = getelementptr inbounds i8, i8* null, i32 2160
- %8 = bitcast i8* %nChans to i32*
- store i32 %7, i32* %8, align 4
- br label %cleanup
-
-cleanup:
+define dso_local void @f0() local_unnamed_addr #0 {
+b0:
+ br i1 undef, label %b2, label %b1
+
+b1: ; preds = %b0
+ %v0 = load i8, i8* undef, align 1
+ %v1 = zext i8 %v0 to i32
+ %v2 = add nsw i32 %v1, -1
+ %v3 = insertelement <128 x i32> undef, i32 %v2, i32 0
+ %v4 = shufflevector <128 x i32> %v3, <128 x i32> undef, <128 x i32> zeroinitializer
+ %v5 = icmp ule <128 x i32> undef, %v4
+ %v6 = call <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>* nonnull undef, i32 1, <128 x i1> %v5, <128 x i8> undef)
+ %v7 = lshr <128 x i8> %v6, <i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4, i8 4>
+ %v8 = and <128 x i8> %v7, <i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1, i8 1>
+ %v9 = zext <128 x i8> %v8 to <128 x i32>
+ %v10 = add nsw <128 x i32> undef, %v9
+ %v11 = select <128 x i1> %v5, <128 x i32> %v10, <128 x i32> undef
+ %v12 = add <128 x i32> %v11, undef
+ %v13 = add <128 x i32> %v12, undef
+ %v14 = add <128 x i32> %v13, undef
+ %v15 = add <128 x i32> %v14, undef
+ %v16 = add <128 x i32> %v15, undef
+ %v17 = add <128 x i32> %v16, undef
+ %v18 = add <128 x i32> %v17, undef
+ %v19 = extractelement <128 x i32> %v18, i32 0
+ %v20 = getelementptr inbounds i8, i8* null, i32 2160
+ %v21 = bitcast i8* %v20 to i32*
+ store i32 %v19, i32* %v21, align 4
+ br label %b2
+
+b2: ; preds = %b1, %b0
ret void
- }
+}
-declare <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>*, i32 immarg, <128 x i1>, <128 x i8>)
+; Function Attrs: argmemonly nounwind readonly willreturn
+declare <128 x i8> @llvm.masked.load.v128i8.p0v128i8(<128 x i8>*, i32 immarg, <128 x i1>, <128 x i8>) #1
attributes #0 = { "target-features"="+hvx-length128b,+hvxv67,+v67,-long-calls" }
+attributes #1 = { argmemonly nounwind readonly willreturn }