--- /dev/null
+// Copyright Yangqing Jia 2013
+//
+// This script converts the MNIST dataset to the leveldb format used
+// by caffe to perform classification.
+// Usage:
+// convert_mnist_data input_image_file input_label_file output_db_file
+// The MNIST dataset could be downloaded at
+// http://yann.lecun.com/exdb/mnist/
+
+#include <google/protobuf/text_format.h>
+#include <glog/logging.h>
+#include <leveldb/db.h>
+
+#include <stdint.h>
+#include <iostream>
+#include <fstream>
+
+#include "caffe/proto/caffe.pb.h"
+
+uint32_t swap_endian( uint32_t val )
+{
+ val = ((val << 8) & 0xFF00FF00 ) | ((val >> 8) & 0xFF00FF );
+ return (val << 16) | (val >> 16);
+}
+
+void convert_dataset(const char* image_filename, const char* label_filename,
+ const char* db_filename) {
+ // Open files
+ std::ifstream image_file(image_filename, std::ios::in | std::ios::binary);
+ std::ifstream label_file(label_filename, std::ios::in | std::ios::binary);
+ CHECK(image_file) << "Unable to open file " << image_filename;
+ CHECK(label_file) << "Unable to open file " << label_file;
+ // Read the magic and the meta data
+ uint32_t magic;
+ uint32_t num_items;
+ uint32_t num_labels;
+ uint32_t rows;
+ uint32_t cols;
+
+ image_file.read((char*)(&magic), 4);
+ magic = swap_endian(magic);
+ CHECK_EQ(magic, 2051) << "Incorrect image file magic.";
+ label_file.read((char*)(&magic), 4);
+ magic = swap_endian(magic);
+ CHECK_EQ(magic, 2049) << "Incorrect label file magic.";
+ image_file.read((char*)(&num_items), 4);
+ num_items = swap_endian(num_items);
+ label_file.read((char*)(&num_labels), 4);
+ num_labels = swap_endian(num_labels);
+ CHECK_EQ(num_items, num_labels);
+ image_file.read((char*)(&rows), 4);
+ rows = swap_endian(rows);
+ image_file.read((char*)(&cols), 4);
+ cols = swap_endian(cols);
+
+ // Open leveldb
+ leveldb::DB* db;
+ leveldb::Options options;
+ options.create_if_missing = true;
+ options.error_if_exists = true;
+ leveldb::Status status = leveldb::DB::Open(
+ options, db_filename, &db);
+ CHECK(status.ok()) << "Failed to open leveldb " << db_filename
+ << ". Is it already existing?";
+
+ char label;
+ char* pixels = new char[rows * cols];
+ char key[10];
+ std::string value;
+
+ caffe::Datum datum;
+ datum.set_channels(1);
+ datum.set_height(rows);
+ datum.set_width(cols);
+ LOG(INFO) << "A total of " << num_items << " items.";
+ LOG(INFO) << "Rows: " << rows << " Cols: " << cols;
+ for (int itemid = 0; itemid < num_items; ++itemid) {
+ image_file.read(pixels, rows * cols);
+ label_file.read(&label, 1);
+ datum.set_data(pixels, rows*cols);
+ datum.set_label(label);
+ datum.SerializeToString(&value);
+ sprintf(key, "%08d", itemid);
+ db->Put(leveldb::WriteOptions(), std::string(key), value);
+ }
+
+ delete db;
+ delete pixels;
+}
+
+int main (int argc, char** argv) {
+ if (argc != 4) {
+ printf("This script converts the MNIST dataset to the leveldb format used\n"
+ "by caffe to perform classification.\n"
+ "Usage:\n"
+ " convert_mnist_data input_image_file input_label_file "
+ "output_db_file\n"
+ "The MNIST dataset could be downloaded at\n"
+ " http://yann.lecun.com/exdb/mnist/\n"
+ "You should gunzip them after downloading.\n");
+ } else {
+ google::InitGoogleLogging(argv[0]);
+ convert_dataset(argv[1], argv[2], argv[3]);
+ }
+ return 0;
+}
// Copyright 2013 Yangqing Jia
+// This example shows how to run a modified version of LeNet using Caffe.
#include <cuda_runtime.h>
#include <fcntl.h>
#include <google/protobuf/text_format.h>
#include <cstring>
+#include <iostream>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
using namespace caffe;
int main(int argc, char** argv) {
- cudaSetDevice(1);
- Caffe::set_mode(Caffe::GPU);
+ if (argc < 3) {
+ std::cout << "Usage:" << std::endl;
+ std::cout << "demo_mnist.bin train_file test_file [CPU/GPU]" << std::endl;
+ return 0;
+ }
+ google::InitGoogleLogging(argv[0]);
+
+ if (argc == 4) {
+ if (strcmp(argv[3], "GPU") == 0) {
+ Caffe::set_mode(Caffe::GPU);
+ } else {
+ Caffe::set_mode(Caffe::CPU);
+ }
+ }
+
+ // Start training
Caffe::set_phase(Caffe::TRAIN);
NetParameter net_param;
- ReadProtoFromTextFile("data/lenet.prototxt",
+ ReadProtoFromTextFile(argv[1],
&net_param);
vector<Blob<float>*> bottom_vec;
Net<float> caffe_net(net_param, bottom_vec);
LOG(ERROR) << "Initial loss: " << caffe_net.Backward();
SolverParameter solver_param;
+ // Solver Parameters are hard-coded in this case, but you can write a
+ // SolverParameter protocol buffer to specify all these values.
solver_param.set_base_lr(0.01);
solver_param.set_display(100);
- solver_param.set_max_iter(6000);
+ solver_param.set_max_iter(5000);
solver_param.set_lr_policy("inv");
solver_param.set_gamma(0.0001);
solver_param.set_power(0.75);
solver.Solve(&caffe_net);
LOG(ERROR) << "Optimization Done.";
- // Run the network after training.
- LOG(ERROR) << "Performing Forward";
- caffe_net.Forward(bottom_vec);
- LOG(ERROR) << "Performing Backward";
- float loss = caffe_net.Backward();
- LOG(ERROR) << "Final loss: " << loss;
-
+ // Write the trained network to a NetParameter protobuf. If you are training
+ // the model and saving it for later, this is what you want to serialize and
+ // store.
NetParameter trained_net_param;
caffe_net.ToProto(&trained_net_param);
- NetParameter traintest_net_param;
- ReadProtoFromTextFile("data/lenet_traintest.prototxt",
- &traintest_net_param);
- Net<float> caffe_traintest_net(traintest_net_param, bottom_vec);
- caffe_traintest_net.CopyTrainedLayersFrom(trained_net_param);
-
+ // Now, let's starting doing testing.
Caffe::set_phase(Caffe::TEST);
- // Test run
- double train_accuracy = 0;
- int batch_size = traintest_net_param.layers(0).layer().batchsize();
- for (int i = 0; i < 60000 / batch_size; ++i) {
- const vector<Blob<float>*>& result =
- caffe_traintest_net.Forward(bottom_vec);
- train_accuracy += result[0]->cpu_data()[0];
- }
- train_accuracy /= 60000 / batch_size;
- LOG(ERROR) << "Train accuracy:" << train_accuracy;
-
+ // Using the testing data to test the accuracy.
NetParameter test_net_param;
- ReadProtoFromTextFile("data/lenet_test.prototxt", &test_net_param);
+ ReadProtoFromTextFile(argv[2], &test_net_param);
Net<float> caffe_test_net(test_net_param, bottom_vec);
caffe_test_net.CopyTrainedLayersFrom(trained_net_param);
- // Test run
double test_accuracy = 0;
- batch_size = test_net_param.layers(0).layer().batchsize();
+ int batch_size = test_net_param.layers(0).layer().batchsize();
for (int i = 0; i < 10000 / batch_size; ++i) {
const vector<Blob<float>*>& result =
caffe_test_net.Forward(bottom_vec);
from caffe.proto import caffe_pb2
import numpy as np
+
def blobproto_to_array(blob, return_diff=False):
"""Convert a blob proto to an array. In default, we will just return the data,
unless return_diff is True, in which case we will return the diff.
return np.array(blob.data).reshape(
blob.num, blob.channels, blob.height, blob.width)
+
def array_to_blobproto(arr, diff=None):
"""Converts a 4-dimensional array to blob proto. If diff is given, also
convert the diff. You need to make sure that arr and diff have the same
blob.diff.extend(diff.astype(float).flat)
return blob
+
def array_to_datum(arr, label=0):
"""Converts a 3-dimensional array to datum. If the array has dtype uint8,
the output data will be encoded as a string. Otherwise, the output data
datum.label = label
return datum
+
def datum_to_array(datum):
"""Converts a datum to an array. Note that the label is not returned,
as one can easily get it by calling datum.label.
datum.channels, datum.height, datum.width)
else:
return np.array(datum.float_data).astype(float).reshape(
- datum.channels, datum.height, datum.width)
\ No newline at end of file
+ datum.channels, datum.height, datum.width)