allow_nan=False, allow_infinity=False),
decay=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
- data_strategy=st.data(),
**hu.gcs)
- def test_sparse_adadelta_empty(self, inputs, lr, epsilon, decay,
- data_strategy, gc, dc):
+ def test_sparse_adadelta_empty(self, inputs, lr, epsilon, decay, gc, dc):
param, moment, moment_delta = inputs
moment = np.abs(moment)
lr = np.array([lr], dtype=np.float32)
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
- data_strategy=st.data(),
**hu.gcs
)
- def test_sparse_adagrad_empty(self, inputs, lr, epsilon, data_strategy, gc, dc):
+ def test_sparse_adagrad_empty(self, inputs, lr, epsilon, gc, dc):
param, momentum = inputs
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
- data_strategy=st.data(),
**hu.gcs
)
- def test_row_wise_sparse_adagrad(self, inputs, lr, epsilon, data_strategy, gc, dc):
+ def test_row_wise_sparse_adagrad(self, inputs, lr, epsilon, gc, dc):
adagrad_sparse_test_helper(
self,
inputs,
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
- data_strategy=st.data(),
**hu.gcs
)
def test_row_wise_sparse_adagrad_empty(
- self, inputs, lr, epsilon, data_strategy, gc, dc
+ self, inputs, lr, epsilon, gc, dc
):
param, momentum = inputs
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
allow_nan=False, allow_infinity=False),
epsilon=st.floats(min_value=0.01, max_value=0.99,
allow_nan=False, allow_infinity=False),
- data_strategy=st.data(),
**hu.gcs_cpu_only)
- def test_sparse_wngrad_empty(self, inputs, seq_b, lr, epsilon,
- data_strategy, gc, dc):
+ def test_sparse_wngrad_empty(self, inputs, seq_b, lr, epsilon, gc, dc):
param = inputs[0]
seq_b = np.array([seq_b, ], dtype=np.float32)
lr = np.array([lr], dtype=np.float32)