assert N == 1
with tvm.tag_scope("winograd_nnpack_conv2d_weight_transform"):
transformed_kernel = tvm.contrib.nnpack.convolution_inference_weight_transform(
- kernel, algorithm=tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8)
+ kernel, algorithm=cfg['winograd_nnpack_algorithm'].val)
if autotvm.GLOBAL_SCOPE.in_tuning:
transformed_kernel = tvm.compute(transformed_kernel.shape, lambda *args: 0.0)
bias=bias,
padding=[HPAD, HPAD, WPAD, WPAD],
stride=[HSTR, WSTR],
- algorithm=tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8)
+ algorithm=cfg['winograd_nnpack_algorithm'].val)
# we have to manually assign effective GFLOP for winograd
cfg.add_flop(2 * N * CI * H * W * KH * KW * CO)