-*> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm).
+*> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm, calling Level 2 BLAS).
*
* =========== DOCUMENTATION ===========
*
KP = K
A( K, K ) = DBLE( A( K, K ) )
ELSE
+*
+* ============================================================
+*
+* Test for interchange
+*
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
* no interchange, use 1-by-1 pivot block
ELSE
*
* JMAX is the column-index of the largest off-diagonal
-* element in row IMAX, and ROWMAX is its absolute value
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine only ROWMAX.
*
JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
ROWMAX = CABS1( A( IMAX, JMAX ) )
* no interchange, use 1-by-1 pivot block
*
KP = K
+*
ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
$ THEN
*
KP = IMAX
KSTEP = 2
END IF
+*
END IF
+*
+* ============================================================
*
KK = K - KSTEP + 1
IF( KP.NE.KK ) THEN
KP = K
A( K, K ) = DBLE( A( K, K ) )
ELSE
+*
+* ============================================================
+*
+* Test for interchange
+*
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
* no interchange, use 1-by-1 pivot block
ELSE
*
* JMAX is the column-index of the largest off-diagonal
-* element in row IMAX, and ROWMAX is its absolute value
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine only ROWMAX.
*
JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
ROWMAX = CABS1( A( IMAX, JMAX ) )
* no interchange, use 1-by-1 pivot block
*
KP = K
+*
ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
$ THEN
*
KP = IMAX
KSTEP = 2
END IF
+*
END IF
+*
+* ============================================================
*
KK = K + KSTEP - 1
IF( KP.NE.KK ) THEN