for (int i = 0; i < inputs.size(); ++i)
CV_Assert(inputs[i].u != outputs[0].u);
- int inpH = inputs[0].size[2];
- int inpW = inputs[0].size[3];
- int out_h = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
- int out_w = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
- if (out_h != outputs[0].size[2] || out_w != outputs[0].size[3])
+ if (padMode == "SAME")
return false;
- int group = inputs[0].size[1] / umat_blobs[0].size[1];
-
if (convolutionOp.empty())
{
OCL4DNNConvConfig config;
config.pad = pad;
config.stride = stride;
config.dilation = dilation;
- config.group = group;
+ config.group = inputs[0].size[1] / umat_blobs[0].size[1];
config.bias_term = (hasBias()) ? true : false;
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
- if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
- backend == DNN_BACKEND_HALIDE)
- throw SkipTestException("");
+ if (backend == DNN_BACKEND_HALIDE) throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",
std::vector<Mat> output;
net.forward(output, outNames);
- normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
+ normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1));
normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
normAssert(target[2].reshape(1, 1), output[2].reshape(1, 1), "", 4e-5, 1e-2);
}
+OCL_TEST(Test_TensorFlow, Inception_v2_SSD)
+{
+ std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
+ std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
+
+ Net net = readNetFromTensorflow(model, proto);
+ Mat img = imread(findDataFile("dnn/street.png", false));
+ Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false);
+
+ net.setPreferableBackend(DNN_BACKEND_DEFAULT);
+ net.setPreferableTarget(DNN_TARGET_OPENCL);
+
+ net.setInput(blob);
+ // Output has shape 1x1xNx7 where N - number of detections.
+ // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
+ Mat out = net.forward();
+ out = out.reshape(1, out.total() / 7);
+
+ Mat detections;
+ for (int i = 0; i < out.rows; ++i)
+ {
+ if (out.at<float>(i, 2) > 0.5)
+ detections.push_back(out.row(i).colRange(1, 7));
+ }
+
+ Mat ref = (Mat_<float>(5, 6) << 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
+ 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
+ 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
+ 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
+ 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
+ normAssert(detections, ref);
+}
+
TEST(Test_TensorFlow, lstm)
{
runTensorFlowNet("lstm", DNN_TARGET_CPU, true);