void Assembler::vmov(const DwVfpRegister dst,
double imm,
+ const Register scratch,
const Condition cond) {
// Dd = immediate
// Instruction details available in ARM DDI 0406B, A8-640.
// using vldr from a constant pool.
uint32_t lo, hi;
DoubleAsTwoUInt32(imm, &lo, &hi);
+ mov(ip, Operand(lo));
- if (lo == hi) {
- // If the lo and hi parts of the double are equal, the literal is easier
- // to create. This is the case with 0.0.
- mov(ip, Operand(lo));
- vmov(dst, ip, ip);
- } else {
+ if (scratch.is(no_reg)) {
// Move the low part of the double into the lower of the corresponsing S
// registers of D register dst.
- mov(ip, Operand(lo));
vmov(dst.low(), ip, cond);
// Move the high part of the double into the higher of the corresponsing S
// registers of D register dst.
mov(ip, Operand(hi));
vmov(dst.high(), ip, cond);
+ } else {
+ // Move the low and high parts of the double to a D register in one
+ // instruction.
+ mov(scratch, Operand(hi));
+ vmov(dst, ip, scratch, cond);
}
}
}
void vmov(const DwVfpRegister dst,
double imm,
+ const Register scratch = no_reg,
const Condition cond = al);
void vmov(const SwVfpRegister dst,
const SwVfpRegister src,
Label not_plus_half;
// Test for 0.5.
- __ vmov(double_scratch, 0.5);
+ __ vmov(double_scratch, 0.5, scratch);
__ VFPCompareAndSetFlags(double_exponent, double_scratch);
__ b(ne, ¬_plus_half);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
- __ vmov(double_scratch, -V8_INFINITY);
+ __ vmov(double_scratch, -V8_INFINITY, scratch);
__ VFPCompareAndSetFlags(double_base, double_scratch);
__ vneg(double_result, double_scratch, eq);
__ b(eq, &done);
__ jmp(&done);
__ bind(¬_plus_half);
- __ vmov(double_scratch, -0.5);
+ __ vmov(double_scratch, -0.5, scratch);
__ VFPCompareAndSetFlags(double_exponent, double_scratch);
__ b(ne, &call_runtime);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
- __ vmov(double_scratch, -V8_INFINITY);
+ __ vmov(double_scratch, -V8_INFINITY, scratch);
__ VFPCompareAndSetFlags(double_base, double_scratch);
__ vmov(double_result, kDoubleRegZero, eq);
__ b(eq, &done);
// Add +0 to convert -0 to +0.
__ vadd(double_scratch, double_base, kDoubleRegZero);
- __ vmov(double_result, 1.0);
+ __ vmov(double_result, 1.0, scratch);
__ vsqrt(double_scratch, double_scratch);
__ vdiv(double_result, double_result, double_scratch);
__ jmp(&done);
__ mov(exponent, scratch);
}
__ vmov(double_scratch, double_base); // Back up base.
- __ vmov(double_result, 1.0);
+ __ vmov(double_result, 1.0, scratch2);
// Get absolute value of exponent.
__ cmp(scratch, Operand(0));
__ cmp(exponent, Operand(0));
__ b(ge, &done);
- __ vmov(double_scratch, 1.0);
+ __ vmov(double_scratch, 1.0, scratch);
__ vdiv(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
ASSERT(instr->result()->IsDoubleRegister());
DwVfpRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
- __ Vmov(result, v);
+ __ Vmov(result, v, scratch0());
}
__ cmp(scratch, Operand(HeapNumber::kExponentBias + 32));
DeoptimizeIf(ge, instr->environment());
+ __ Vmov(double_scratch0(), 0.5, scratch);
+ __ vadd(double_scratch0(), input, double_scratch0());
+
// Save the original sign for later comparison.
__ and_(scratch, result, Operand(HeapNumber::kSignMask));
- __ Vmov(double_scratch0(), 0.5);
- __ vadd(double_scratch0(), input, double_scratch0());
-
// Check sign of the result: if the sign changed, the input
// value was in ]0.5, 0[ and the result should be -0.
__ vmov(result, double_scratch0().high());
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label done;
- __ vmov(temp, -V8_INFINITY);
+ __ vmov(temp, -V8_INFINITY, scratch0());
__ VFPCompareAndSetFlags(input, temp);
__ vneg(result, temp, eq);
__ b(&done, eq);
// Only load canonical NaN if the comparison above set the overflow.
__ Vmov(value,
FixedDoubleArray::canonical_not_the_hole_nan_as_double(),
- vs);
+ no_reg, vs);
}
__ vstr(value, scratch, instr->additional_index() << element_size_shift);
void MacroAssembler::Vmov(const DwVfpRegister dst,
const double imm,
+ const Register scratch,
const Condition cond) {
ASSERT(CpuFeatures::IsEnabled(VFP2));
static const DoubleRepresentation minus_zero(-0.0);
} else if (value.bits == minus_zero.bits) {
vneg(dst, kDoubleRegZero, cond);
} else {
- vmov(dst, imm, cond);
+ vmov(dst, imm, scratch, cond);
}
}
// Double value is >= 255, return 255.
bind(&above_zero);
- Vmov(temp_double_reg, 255.0);
+ Vmov(temp_double_reg, 255.0, result_reg);
VFPCompareAndSetFlags(input_reg, temp_double_reg);
b(le, &in_bounds);
mov(result_reg, Operand(255));
void Vmov(const DwVfpRegister dst,
const double imm,
+ const Register scratch = no_reg,
const Condition cond = al);
// Enter exit frame.