* SF_* - scale factors for particular quantities according to hwmon spec.
* - voltage - millivolts
* - power - microwatts
+ * - energy - microjoules
*/
#define SF_VOLTAGE 1000
#define SF_POWER 1000000
+#define SF_ENERGY 1000000
struct hwm_reg {
i915_reg_t gt_perf_status;
i915_reg_t pkg_power_sku_unit;
i915_reg_t pkg_power_sku;
i915_reg_t pkg_rapl_limit;
+ i915_reg_t energy_status_all;
+};
+
+struct hwm_energy_info {
+ u32 reg_val_prev;
+ long accum_energy; /* Accumulated energy for energy1_input */
};
struct hwm_drvdata {
struct i915_hwmon *hwmon;
struct intel_uncore *uncore;
struct device *hwmon_dev;
+ struct hwm_energy_info ei; /* Energy info for energy1_input */
char name[12];
};
struct mutex hwmon_lock; /* counter overflow logic and rmw */
struct hwm_reg rg;
int scl_shift_power;
+ int scl_shift_energy;
};
static void
bits_to_clear, bits_to_set);
}
+/*
+ * hwm_energy - Obtain energy value
+ *
+ * The underlying energy hardware register is 32-bits and is subject to
+ * overflow. How long before overflow? For example, with an example
+ * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
+ * a power draw of 1000 watts, the 32-bit counter will overflow in
+ * approximately 4.36 minutes.
+ *
+ * Examples:
+ * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
+ * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
+ *
+ * The function significantly increases overflow duration (from 4.36
+ * minutes) by accumulating the energy register into a 'long' as allowed by
+ * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
+ * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
+ * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
+ * energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
+ */
+static void
+hwm_energy(struct hwm_drvdata *ddat, long *energy)
+{
+ struct intel_uncore *uncore = ddat->uncore;
+ struct i915_hwmon *hwmon = ddat->hwmon;
+ struct hwm_energy_info *ei = &ddat->ei;
+ intel_wakeref_t wakeref;
+ i915_reg_t rgaddr;
+ u32 reg_val;
+
+ rgaddr = hwmon->rg.energy_status_all;
+
+ mutex_lock(&hwmon->hwmon_lock);
+
+ with_intel_runtime_pm(uncore->rpm, wakeref)
+ reg_val = intel_uncore_read(uncore, rgaddr);
+
+ if (reg_val >= ei->reg_val_prev)
+ ei->accum_energy += reg_val - ei->reg_val_prev;
+ else
+ ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
+ ei->reg_val_prev = reg_val;
+
+ *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
+ hwmon->scl_shift_energy);
+ mutex_unlock(&hwmon->hwmon_lock);
+}
+
static const struct hwmon_channel_info *hwm_info[] = {
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX),
+ HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
NULL
};
}
static umode_t
+hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
+{
+ struct i915_hwmon *hwmon = ddat->hwmon;
+ i915_reg_t rgaddr;
+
+ switch (attr) {
+ case hwmon_energy_input:
+ rgaddr = hwmon->rg.energy_status_all;
+ return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
+ default:
+ return 0;
+ }
+}
+
+static int
+hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
+{
+ switch (attr) {
+ case hwmon_energy_input:
+ hwm_energy(ddat, val);
+ return 0;
+ default:
+ return -EOPNOTSUPP;
+ }
+}
+
+static umode_t
hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
return hwm_in_is_visible(ddat, attr);
case hwmon_power:
return hwm_power_is_visible(ddat, attr, channel);
+ case hwmon_energy:
+ return hwm_energy_is_visible(ddat, attr);
default:
return 0;
}
return hwm_in_read(ddat, attr, val);
case hwmon_power:
return hwm_power_read(ddat, attr, channel, val);
+ case hwmon_energy:
+ return hwm_energy_read(ddat, attr, val);
default:
return -EOPNOTSUPP;
}
{
struct i915_hwmon *hwmon = i915->hwmon;
struct intel_uncore *uncore = &i915->uncore;
+ struct hwm_drvdata *ddat = &hwmon->ddat;
intel_wakeref_t wakeref;
u32 val_sku_unit = 0;
+ long energy;
/* Available for all Gen12+/dGfx */
hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
+ hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
} else {
hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
+ hwmon->rg.energy_status_all = INVALID_MMIO_REG;
}
with_intel_runtime_pm(uncore->rpm, wakeref) {
if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
val_sku_unit = intel_uncore_read(uncore,
hwmon->rg.pkg_power_sku_unit);
-
- hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
}
+
+ hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
+ hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
+
+ /*
+ * Initialize 'struct hwm_energy_info', i.e. set fields to the
+ * first value of the energy register read
+ */
+ if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
+ hwm_energy(ddat, &energy);
}
void i915_hwmon_register(struct drm_i915_private *i915)