return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
}
+/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
+static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
+ Constant *RHSC) {
+ // When C is not 0.0 and infinities are not allowed:
+ // (C / X) < 0.0 is a sign-bit test of X
+ // (C / X) < 0.0 --> X < 0.0 (if C is positive)
+ // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
+ //
+ // Proof:
+ // Multiply (C / X) < 0.0 by X * X / C.
+ // - X is non zero, if it is the flag 'ninf' is violated.
+ // - C defines the sign of X * X * C. Thus it also defines whether to swap
+ // the predicate. C is also non zero by definition.
+ //
+ // Thus X * X / C is non zero and the transformation is valid. [qed]
+
+ FCmpInst::Predicate Pred = I.getPredicate();
+
+ // Check that predicates are valid.
+ if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
+ (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
+ return nullptr;
+
+ // Check that RHS operand is zero.
+ if (!match(RHSC, m_AnyZeroFP()))
+ return nullptr;
+
+ // Check fastmath flags ('ninf').
+ if (!LHSI->hasNoInfs() || !I.hasNoInfs())
+ return nullptr;
+
+ // Check the properties of the dividend. It must not be zero to avoid a
+ // division by zero (see Proof).
+ const APFloat *C;
+ if (!match(LHSI->getOperand(0), m_APFloat(C)))
+ return nullptr;
+
+ if (C->isZero())
+ return nullptr;
+
+ // Get swapped predicate if necessary.
+ if (C->isNegative())
+ Pred = I.getSwappedPredicate();
+
+ // Finally emit the new fcmp.
+ Value *X = LHSI->getOperand(1);
+ FCmpInst *NewFCI = new FCmpInst(Pred, X, RHSC);
+ NewFCI->setFastMathFlags(I.getFastMathFlags());
+ return NewFCI;
+}
+
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
bool Changed = false;
ConstantExpr::getFNeg(RHSC));
break;
}
+ case Instruction::FDiv:
+ if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
+ return NV;
+ break;
case Instruction::Load:
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
; Can fold 1.0 / X < 0.0 --> X < 0 with ninf
define i1 @test20_recipX_olt_0(float %X) {
; CHECK-LABEL: @test20_recipX_olt_0(
-; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf float 1.000000e+00, [[X:%.*]]
-; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf olt float [[DIV]], 0.000000e+00
+; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf olt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float 1.0, %X
; Can fold -2.0 / X <= 0.0 --> X >= 0 with ninf
define i1 @test21_recipX_ole_0(float %X) {
; CHECK-LABEL: @test21_recipX_ole_0(
-; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf float -2.000000e+00, [[X:%.*]]
-; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ole float [[DIV]], 0.000000e+00
+; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf oge float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float -2.0, %X
; Can fold 2.0 / X > 0.0 --> X > 0 with ninf
define i1 @test22_recipX_ogt_0(float %X) {
; CHECK-LABEL: @test22_recipX_ogt_0(
-; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf float 2.000000e+00, [[X:%.*]]
-; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt float [[DIV]], 0.000000e+00
+; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float 2.0, %X
; Can fold -1.0 / X >= 0.0 --> X <= 0 with ninf
define i1 @test23_recipX_oge_0(float %X) {
; CHECK-LABEL: @test23_recipX_oge_0(
-; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf float -1.000000e+00, [[X:%.*]]
-; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf oge float [[DIV]], 0.000000e+00
+; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ole float [[X:%.*]], 0.000000e+00
; CHECK-NEXT: ret i1 [[CMP]]
;
%div = fdiv ninf float -1.0, %X
; Fold <-1.0, -1.0> / X > <-0.0, -0.0>
define <2 x i1> @test27_recipX_gt_vecsplat(<2 x float> %X) {
; CHECK-LABEL: @test27_recipX_gt_vecsplat(
-; CHECK-NEXT: [[DIV:%.*]] = fdiv ninf <2 x float> <float -1.000000e+00, float -1.000000e+00>, [[X:%.*]]
-; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf ogt <2 x float> [[DIV]], <float -0.000000e+00, float -0.000000e+00>
+; CHECK-NEXT: [[CMP:%.*]] = fcmp ninf olt <2 x float> [[X:%.*]], <float -0.000000e+00, float -0.000000e+00>
; CHECK-NEXT: ret <2 x i1> [[CMP]]
;
%div = fdiv ninf <2 x float> <float -1.0, float -1.0>, %X