type = layer.op();
}
+ // For the object detection networks, TensorFlow Object Detection API
+ // predicts deltas for bounding boxes in yxYX (ymin, xmin, ymax, xmax)
+ // order. We can manage it at DetectionOutput layer parsing predictions
+ // or shuffle last convolution's weights.
+ bool locPredTransposed = hasLayerAttr(layer, "loc_pred_transposed") &&
+ getLayerAttr(layer, "loc_pred_transposed").b();
+
layerParams.set("bias_term", false);
layerParams.blobs.resize(1);
blobFromTensor(getConstBlob(net.node(weights_layer_index), value_id), layerParams.blobs[1]);
ExcludeLayer(net, weights_layer_index, 0, false);
layers_to_ignore.insert(next_layers[0].first);
+
+ // Shuffle bias from yxYX to xyXY.
+ if (locPredTransposed)
+ {
+ const int numWeights = layerParams.blobs[1].total();
+ float* biasData = reinterpret_cast<float*>(layerParams.blobs[1].data);
+ CV_Assert(numWeights % 4 == 0);
+ for (int i = 0; i < numWeights; i += 2)
+ {
+ std::swap(biasData[i], biasData[i + 1]);
+ }
+ }
}
const tensorflow::TensorProto& kernelTensor = getConstBlob(layer, value_id);
kernelFromTensor(kernelTensor, layerParams.blobs[0]);
releaseTensor(const_cast<tensorflow::TensorProto*>(&kernelTensor));
int* kshape = layerParams.blobs[0].size.p;
+ const int outCh = kshape[0];
+ const int inCh = kshape[1];
+ const int height = kshape[2];
+ const int width = kshape[3];
if (type == "DepthwiseConv2dNative")
{
+ CV_Assert(!locPredTransposed);
const int chMultiplier = kshape[0];
- const int inCh = kshape[1];
- const int height = kshape[2];
- const int width = kshape[3];
Mat copy = layerParams.blobs[0].clone();
float* src = (float*)copy.data;
size_t* kstep = layerParams.blobs[0].step.p;
kstep[0] = kstep[1]; // fix steps too
}
- layerParams.set("kernel_h", kshape[2]);
- layerParams.set("kernel_w", kshape[3]);
- layerParams.set("num_output", kshape[0]);
+ layerParams.set("kernel_h", height);
+ layerParams.set("kernel_w", width);
+ layerParams.set("num_output", outCh);
+
+ // Shuffle output channels from yxYX to xyXY.
+ if (locPredTransposed)
+ {
+ const int slice = height * width * inCh;
+ for (int i = 0; i < outCh; i += 2)
+ {
+ cv::Mat src(1, slice, CV_32F, layerParams.blobs[0].ptr<float>(i));
+ cv::Mat dst(1, slice, CV_32F, layerParams.blobs[0].ptr<float>(i + 1));
+ std::swap_ranges(src.begin<float>(), src.end<float>(), dst.begin<float>());
+ }
+ }
setStrides(layerParams, layer);
setPadding(layerParams, layer);
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 5e-3 : default_l1;
- double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.025 : default_lInf;
+ double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : default_lInf;
normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
}
graph_def.node.extend([flatten])
addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten')
+idx = 0
+for node in graph_def.node:
+ if node.name == ('BoxPredictor_%d/BoxEncodingPredictor/Conv2D' % idx):
+ text_format.Merge('b: true', node.attr["loc_pred_transposed"])
+ idx += 1
+assert(idx == args.num_layers)
+
# Add layers that generate anchors (bounding boxes proposals).
scales = [args.min_scale + (args.max_scale - args.min_scale) * i / (args.num_layers - 1)
for i in range(args.num_layers)] + [1.0]
priorBoxes = []
-addConstNode('reshape_prior_boxes_to_4d', [1, 2, -1, 1])
for i in range(args.num_layers):
priorBox = NodeDef()
priorBox.name = 'PriorBox_%d' % i
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
graph_def.node.extend([priorBox])
+ priorBoxes.append(priorBox.name)
- # Reshape from 1x2xN to 1x2xNx1
- reshape = NodeDef()
- reshape.name = priorBox.name + '/4d'
- reshape.op = 'Reshape'
- reshape.input.append(priorBox.name)
- reshape.input.append('reshape_prior_boxes_to_4d')
- graph_def.node.extend([reshape])
-
- priorBoxes.append(reshape.name)
-
-addConcatNode('PriorBox/concat', priorBoxes, 'PriorBox/concat/axis')
+addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')
# Sigmoid for classes predictions and DetectionOutput layer
sigmoid = NodeDef()
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
text_format.Merge('i: 100', detectionOut.attr['keep_top_k'])
text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold'])
-text_format.Merge('b: true', detectionOut.attr['loc_pred_transposed'])
graph_def.node.extend([detectionOut])