def custom_add_meta(img_desc1, img_desc2, dtype):
return img_desc1
- return cv.gapi_wip_op('custom.add', custom_add_meta, g_in1, g_in2, dtype).getGMat()
+ return cv.gapi.wip.op('custom.add', custom_add_meta, g_in1, g_in2, dtype).getGMat()
# Test multiple output mat
out_desc = img_desc.withType(img_desc.depth, 1)
return out_desc, out_desc, out_desc
- op = cv.gapi_wip_op('custom.split3', custom_split3_meta, g_in)
+ op = cv.gapi.wip.op('custom.split3', custom_split3_meta, g_in)
ch1 = op.getGMat()
ch2 = op.getGMat()
def custom_mean_meta(img_desc):
return cv.empty_scalar_desc()
- op = cv.gapi_wip_op('custom.mean', custom_mean_meta, g_in)
+ op = cv.gapi.wip.op('custom.mean', custom_mean_meta, g_in)
return op.getGScalar()
def custom_addC_meta(img_desc, sc_desc, dtype):
return img_desc
- op = cv.gapi_wip_op('custom.addC', custom_addC_meta, g_in, g_sc, dtype)
+ op = cv.gapi.wip.op('custom.addC', custom_addC_meta, g_in, g_sc, dtype)
return op.getGMat()
def custom_size_meta(img_desc):
return cv.empty_gopaque_desc()
- op = cv.gapi_wip_op('custom.size', custom_size_meta, g_in)
+ op = cv.gapi.wip.op('custom.size', custom_size_meta, g_in)
return op.getGOpaque(cv.gapi.CV_SIZE)
def custom_sizeR_meta(opaque_desc):
return cv.empty_gopaque_desc()
- op = cv.gapi_wip_op('custom.sizeR', custom_sizeR_meta, g_rect)
+ op = cv.gapi.wip.op('custom.sizeR', custom_sizeR_meta, g_rect)
return op.getGOpaque(cv.gapi.CV_SIZE)
def custom_boundingRect_meta(array_desc):
return cv.empty_gopaque_desc()
- op = cv.gapi_wip_op('custom.boundingRect', custom_boundingRect_meta, g_array)
+ op = cv.gapi.wip.op('custom.boundingRect', custom_boundingRect_meta, g_array)
return op.getGOpaque(cv.gapi.CV_RECT)
min_distance, mask, block_sz, use_harris_detector, k):
return cv.empty_array_desc()
- op = cv.gapi_wip_op('custom.goodFeaturesToTrack', custom_goodFeaturesToTrack_meta, g_in,
+ op = cv.gapi.wip.op('custom.goodFeaturesToTrack', custom_goodFeaturesToTrack_meta, g_in,
max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k)
return op.getGArray(cv.gapi.CV_POINT2F)
comp = cv.GComputation(g_in, g_out)
- pkg = cv.gapi_wip_kernels((custom_mean, 'org.opencv.core.math.mean'))
+ pkg = cv.gapi.wip.kernels((custom_mean, 'org.opencv.core.math.mean'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
- pkg = cv.gapi_wip_kernels((custom_add, 'org.opencv.core.math.add'))
+ pkg = cv.gapi.wip.kernels((custom_add, 'org.opencv.core.math.add'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
g_sz = cv.gapi.streaming.size(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
- pkg = cv.gapi_wip_kernels((custom_size, 'org.opencv.streaming.size'))
+ pkg = cv.gapi.wip.kernels((custom_size, 'org.opencv.streaming.size'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
- pkg = cv.gapi_wip_kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack'))
+ pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
g_out = cv.gapi.addC(g_in, g_sc)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
- pkg = cv.gapi_wip_kernels((custom_addC, 'org.opencv.core.math.addC'))
+ pkg = cv.gapi.wip.kernels((custom_addC, 'org.opencv.core.math.addC'))
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
g_sz = cv.gapi.streaming.size(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
- pkg = cv.gapi_wip_kernels((custom_sizeR, 'org.opencv.streaming.sizeR'))
+ pkg = cv.gapi.wip.kernels((custom_sizeR, 'org.opencv.streaming.sizeR'))
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
g_br = cv.gapi.boundingRect(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
- pkg = cv.gapi_wip_kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S'))
+ pkg = cv.gapi.wip.kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S'))
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_mean))
- pkg = cv.gapi_wip_kernels((custom_add , 'org.opencv.core.math.add'),
+ pkg = cv.gapi.wip.kernels((custom_add , 'org.opencv.core.math.add'),
(custom_mean , 'org.opencv.core.math.mean'),
(custom_split3, 'org.opencv.core.transform.split3'))
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
- pkg = cv.gapi_wip_kernels((custom_add, 'custom.add'))
+ pkg = cv.gapi.wip.kernels((custom_add, 'custom.add'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
- pkg = cv.gapi_wip_kernels((custom_split3, 'custom.split3'))
+ pkg = cv.gapi.wip.kernels((custom_split3, 'custom.split3'))
ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
comp = cv.GComputation(g_in, g_out)
- pkg = cv.gapi_wip_kernels((custom_mean, 'custom.mean'))
+ pkg = cv.gapi.wip.kernels((custom_mean, 'custom.mean'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
g_out = addC(g_in, g_sc, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
- pkg = cv.gapi_wip_kernels((custom_addC, 'custom.addC'))
+ pkg = cv.gapi.wip.kernels((custom_addC, 'custom.addC'))
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
g_sz = size(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
- pkg = cv.gapi_wip_kernels((custom_size, 'custom.size'))
+ pkg = cv.gapi.wip.kernels((custom_size, 'custom.size'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
g_sz = sizeR(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
- pkg = cv.gapi_wip_kernels((custom_sizeR, 'custom.sizeR'))
+ pkg = cv.gapi.wip.kernels((custom_sizeR, 'custom.sizeR'))
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
g_br = boundingRect(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
- pkg = cv.gapi_wip_kernels((custom_boundingRect, 'custom.boundingRect'))
+ pkg = cv.gapi.wip.kernels((custom_boundingRect, 'custom.boundingRect'))
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
- pkg = cv.gapi_wip_kernels((custom_goodFeaturesToTrack, 'custom.goodFeaturesToTrack'))
+ pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'custom.goodFeaturesToTrack'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.