ASSERT_NEAR(phaseShift.x, (double)xShift, 1.);
}
+////////////////////// DivSpectrums ////////////////////////
+class CV_DivSpectrumsTest : public cvtest::ArrayTest
+{
+public:
+ CV_DivSpectrumsTest();
+protected:
+ void run_func();
+ void get_test_array_types_and_sizes( int, vector<vector<Size> >& sizes, vector<vector<int> >& types );
+ void prepare_to_validation( int test_case_idx );
+ int flags;
+};
+
+
+CV_DivSpectrumsTest::CV_DivSpectrumsTest() : flags(0)
+{
+ // Allocate test matrices.
+ test_array[INPUT].push_back(NULL); // first input DFT as a CCS-packed array or complex matrix.
+ test_array[INPUT].push_back(NULL); // second input DFT as a CCS-packed array or complex matrix.
+ test_array[OUTPUT].push_back(NULL); // output DFT as a complex matrix.
+ test_array[REF_OUTPUT].push_back(NULL); // reference output DFT as a complex matrix.
+ test_array[TEMP].push_back(NULL); // first input DFT converted to a complex matrix.
+ test_array[TEMP].push_back(NULL); // second input DFT converted to a complex matrix.
+ test_array[TEMP].push_back(NULL); // output DFT as a CCV-packed array.
+}
+
+void CV_DivSpectrumsTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
+{
+ cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx, sizes, types);
+ RNG& rng = ts->get_rng();
+
+ // Get the flag of the input.
+ const int rand_int_flags = cvtest::randInt(rng);
+ flags = rand_int_flags & (CV_DXT_MUL_CONJ | CV_DXT_ROWS);
+
+ // Get input type.
+ const int rand_int_type = cvtest::randInt(rng);
+ int type;
+
+ if (rand_int_type % 4)
+ {
+ type = CV_32FC1;
+ }
+ else if (rand_int_type % 4 == 1)
+ {
+ type = CV_32FC2;
+ }
+ else if (rand_int_type % 4 == 2)
+ {
+ type = CV_64FC1;
+ }
+ else
+ {
+ type = CV_64FC2;
+ }
+
+ for( size_t i = 0; i < types.size(); i++ )
+ {
+ for( size_t j = 0; j < types[i].size(); j++ )
+ {
+ types[i][j] = type;
+ }
+ }
+
+ // Inputs are CCS-packed arrays. Prepare outputs and temporary inputs as complex matrices.
+ if( type == CV_32FC1 || type == CV_64FC1 )
+ {
+ types[OUTPUT][0] += 8;
+ types[REF_OUTPUT][0] += 8;
+ types[TEMP][0] += 8;
+ types[TEMP][1] += 8;
+ }
+}
+
+/// Helper function to convert a ccs array of depth_t into a complex matrix.
+template<typename depth_t>
+static void convert_from_ccs_helper( const Mat& src0, const Mat& src1, Mat& dst )
+{
+ const int cn = src0.channels();
+ int srcstep = cn;
+ int dststep = 1;
+
+ if( !dst.isContinuous() )
+ dststep = (int)(dst.step/dst.elemSize());
+
+ if( !src0.isContinuous() )
+ srcstep = (int)(src0.step/src0.elemSize1());
+
+ Complex<depth_t> *dst_data = dst.ptr<Complex<depth_t> >();
+ const depth_t* src0_data = src0.ptr<depth_t>();
+ const depth_t* src1_data = src1.ptr<depth_t>();
+ dst_data->re = src0_data[0];
+ dst_data->im = 0;
+ const int n = dst.cols + dst.rows - 1;
+ const int n2 = (n+1) >> 1;
+
+ if( (n & 1) == 0 )
+ {
+ dst_data[n2*dststep].re = src0_data[(cn == 1 ? n-1 : n2)*srcstep];
+ dst_data[n2*dststep].im = 0;
+ }
+
+ int delta0 = srcstep;
+ int delta1 = delta0 + (cn == 1 ? srcstep : 1);
+
+ if( cn == 1 )
+ srcstep *= 2;
+
+ for( int i = 1; i < n2; i++, delta0 += srcstep, delta1 += srcstep )
+ {
+ depth_t t0 = src0_data[delta0];
+ depth_t t1 = src0_data[delta1];
+
+ dst_data[i*dststep].re = t0;
+ dst_data[i*dststep].im = t1;
+
+ t0 = src1_data[delta0];
+ t1 = -src1_data[delta1];
+
+ dst_data[(n-i)*dststep].re = t0;
+ dst_data[(n-i)*dststep].im = t1;
+ }
+}
+
+/// Helper function to convert a ccs array into a complex matrix.
+static void convert_from_ccs( const Mat& src0, const Mat& src1, Mat& dst, const int flags )
+{
+ if( dst.rows > 1 && (dst.cols > 1 || (flags & DFT_ROWS)) )
+ {
+ const int count = dst.rows;
+ const int len = dst.cols;
+ const bool is2d = (flags & DFT_ROWS) == 0;
+ for( int i = 0; i < count; i++ )
+ {
+ const int j = !is2d || i == 0 ? i : count - i;
+ const Mat& src0row = src0.row(i);
+ const Mat& src1row = src1.row(j);
+ Mat dstrow = dst.row(i);
+ convert_from_ccs( src0row, src1row, dstrow, 0 );
+ }
+
+ if( is2d )
+ {
+ const Mat& src0row = src0.col(0);
+ Mat dstrow = dst.col(0);
+ convert_from_ccs( src0row, src0row, dstrow, 0 );
+
+ if( (len & 1) == 0 )
+ {
+ const Mat& src0row_even = src0.col(src0.cols - 1);
+ Mat dstrow_even = dst.col(len/2);
+ convert_from_ccs( src0row_even, src0row_even, dstrow_even, 0 );
+ }
+ }
+ }
+ else
+ {
+ if( dst.depth() == CV_32F )
+ {
+ convert_from_ccs_helper<float>( src0, src1, dst );
+ }
+ else
+ {
+ convert_from_ccs_helper<double>( src0, src1, dst );
+ }
+ }
+}
+
+/// Helper function to compute complex number (nu_re + nu_im * i) / (de_re + de_im * i).
+static std::pair<double, double> divide_complex_numbers( const double nu_re, const double nu_im,
+ const double de_re, const double de_im,
+ const bool conj_de )
+{
+ if ( conj_de )
+ {
+ return divide_complex_numbers( nu_re, nu_im, de_re, -de_im, false /* conj_de */ );
+ }
+
+ const double result_de = de_re * de_re + de_im * de_im + DBL_EPSILON;
+ const double result_re = nu_re * de_re + nu_im * de_im;
+ const double result_im = nu_re * (-de_im) + nu_im * de_re;
+ return std::pair<double, double>(result_re / result_de, result_im / result_de);
+};
+
+/// Helper function to divide a DFT in src1 by a DFT in src2 with depths depth_t. The DFTs are
+/// complex matrices.
+template <typename depth_t>
+static void div_complex_helper( const Mat& src1, const Mat& src2, Mat& dst, int flags )
+{
+ CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
+ dst.create( src1.rows, src1.cols, src1.type() );
+ const int cn = src1.channels();
+ int cols = src1.cols * cn;
+
+ for( int i = 0; i < dst.rows; i++ )
+ {
+ const depth_t *src1_data = src1.ptr<depth_t>(i);
+ const depth_t *src2_data = src2.ptr<depth_t>(i);
+ depth_t *dst_data = dst.ptr<depth_t>(i);
+ for( int j = 0; j < cols; j += 2 )
+ {
+ std::pair<double, double> result =
+ divide_complex_numbers( src1_data[j], src1_data[j + 1],
+ src2_data[j], src2_data[j + 1],
+ (flags & CV_DXT_MUL_CONJ) != 0 );
+ dst_data[j] = (depth_t)result.first;
+ dst_data[j + 1] = (depth_t)result.second;
+ }
+ }
+}
+
+/// Helper function to divide a DFT in src1 by a DFT in src2. The DFTs are complex matrices.
+static void div_complex( const Mat& src1, const Mat& src2, Mat& dst, const int flags )
+{
+ const int type = src1.type();
+ CV_Assert( type == CV_32FC2 || type == CV_64FC2 );
+
+ if ( src1.depth() == CV_32F )
+ {
+ return div_complex_helper<float>( src1, src2, dst, flags );
+ }
+ else
+ {
+ return div_complex_helper<double>( src1, src2, dst, flags );
+ }
+}
+
+void CV_DivSpectrumsTest::prepare_to_validation( int /* test_case_idx */ )
+{
+ Mat &src1 = test_mat[INPUT][0];
+ Mat &src2 = test_mat[INPUT][1];
+ Mat &ref_dst = test_mat[REF_OUTPUT][0];
+ const int cn = src1.channels();
+ // Inputs are CCS-packed arrays. Convert them to complex matrices and get the expected output
+ // as a complex matrix.
+ if( cn == 1 )
+ {
+ Mat &converted_src1 = test_mat[TEMP][0];
+ Mat &converted_src2 = test_mat[TEMP][1];
+ convert_from_ccs( src1, src1, converted_src1, flags );
+ convert_from_ccs( src2, src2, converted_src2, flags );
+ div_complex( converted_src1, converted_src2, ref_dst, flags );
+ }
+ // Inputs are complex matrices. Get the expected output as a complex matrix.
+ else
+ {
+ div_complex( src1, src2, ref_dst, flags );
+ }
+}
+
+void CV_DivSpectrumsTest::run_func()
+{
+ const Mat &src1 = test_mat[INPUT][0];
+ const Mat &src2 = test_mat[INPUT][1];
+ const int cn = src1.channels();
+
+ // Inputs are CCS-packed arrays. Get the output as a CCS-packed array and convert it to a
+ // complex matrix.
+ if ( cn == 1 )
+ {
+ Mat &dst = test_mat[TEMP][2];
+ cv::divSpectrums( src1, src2, dst, flags, (flags & CV_DXT_MUL_CONJ) != 0 );
+ Mat &converted_dst = test_mat[OUTPUT][0];
+ convert_from_ccs( dst, dst, converted_dst, flags );
+ }
+ // Inputs are complex matrices. Get the output as a complex matrix.
+ else
+ {
+ Mat &dst = test_mat[OUTPUT][0];
+ cv::divSpectrums( src1, src2, dst, flags, (flags & CV_DXT_MUL_CONJ) != 0 );
+ }
+}
+
+TEST(Imgproc_DivSpectrums, accuracy) { CV_DivSpectrumsTest test; test.safe_run(); }
+
}} // namespace