//#define SK_SUPPORT_DEPRECATED_SCALARROUND
-typedef float SkScalar;
+// TODO: move this sort of check into SkPostConfig.h
+#define SK_SCALAR_IS_DOUBLE 0
+#undef SK_SCALAR_IS_FLOAT
+#define SK_SCALAR_IS_FLOAT 1
-/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
-*/
-#define SK_Scalar1 (1.0f)
-/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
-*/
-#define SK_ScalarHalf (0.5f)
-/** SK_ScalarInfinity is defined to be infinity as an SkScalar
-*/
-#define SK_ScalarInfinity SK_FloatInfinity
-/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
-*/
-#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
-/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
-*/
-#define SK_ScalarMax (3.402823466e+38f)
-/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
-*/
-#define SK_ScalarMin (-SK_ScalarMax)
-/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
-*/
-#define SK_ScalarNaN SK_FloatNaN
-/** SkScalarIsNaN(n) returns true if argument is not a number
-*/
-static inline bool SkScalarIsNaN(float x) { return x != x; }
-
-/** Returns true if x is not NaN and not infinite */
-static inline bool SkScalarIsFinite(float x) {
- // We rely on the following behavior of infinities and nans
- // 0 * finite --> 0
- // 0 * infinity --> NaN
- // 0 * NaN --> NaN
- float prod = x * 0;
- // At this point, prod will either be NaN or 0
- // Therefore we can return (prod == prod) or (0 == prod).
- return prod == prod;
-}
-/** SkIntToScalar(n) returns its integer argument as an SkScalar
-*/
-#define SkIntToScalar(n) ((float)(n))
-/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
-*/
-#define SkFixedToScalar(x) SkFixedToFloat(x)
-/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
-*/
-#define SkScalarToFixed(x) SkFloatToFixed(x)
+#if SK_SCALAR_IS_FLOAT
-#define SkScalarToFloat(n) (n)
-#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
-#define SkFloatToScalar(n) (n)
-#endif
+typedef float SkScalar;
-#define SkScalarToDouble(n) (double)(n)
-#define SkDoubleToScalar(n) (float)(n)
+#define SK_Scalar1 1.0f
+#define SK_ScalarHalf 0.5f
+#define SK_ScalarSqrt2 1.41421356f
+#define SK_ScalarPI 3.14159265f
+#define SK_ScalarTanPIOver8 0.414213562f
+#define SK_ScalarRoot2Over2 0.707106781f
+#define SK_ScalarMax 3.402823466e+38f
+#define SK_ScalarInfinity SK_FloatInfinity
+#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
+#define SK_ScalarNaN SK_FloatNaN
-/** SkScalarFraction(x) returns the signed fractional part of the argument
-*/
-#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
+#define SkFixedToScalar(x) SkFixedToFloat(x)
+#define SkScalarToFixed(x) SkFloatToFixed(x)
#define SkScalarFloorToScalar(x) sk_float_floor(x)
#define SkScalarCeilToScalar(x) sk_float_ceil(x)
#define SkScalarFloorToInt(x) sk_float_floor2int(x)
#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
#define SkScalarRoundToInt(x) sk_float_round2int(x)
-#define SkScalarTruncToInt(x) static_cast<int>(x)
+
+#define SkScalarAbs(x) sk_float_abs(x)
+#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
+#define SkScalarMod(x, y) sk_float_mod(x,y)
+#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
+#define SkScalarSqrt(x) sk_float_sqrt(x)
+#define SkScalarPow(b, e) sk_float_pow(b, e)
+
+#define SkScalarSin(radians) (float)sk_float_sin(radians)
+#define SkScalarCos(radians) (float)sk_float_cos(radians)
+#define SkScalarTan(radians) (float)sk_float_tan(radians)
+#define SkScalarASin(val) (float)sk_float_asin(val)
+#define SkScalarACos(val) (float)sk_float_acos(val)
+#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
+#define SkScalarExp(x) (float)sk_float_exp(x)
+#define SkScalarLog(x) (float)sk_float_log(x)
+
+#else // SK_SCALAR_IS_DOUBLE
+
+typedef double SkScalar;
+
+#define SK_Scalar1 1.0
+#define SK_ScalarHalf 0.5
+#define SK_ScalarSqrt2 1.414213562373095
+#define SK_ScalarPI 3.141592653589793
+#define SK_ScalarTanPIOver8 0.4142135623731
+#define SK_ScalarRoot2Over2 0.70710678118655
+#define SK_ScalarMax 1.7976931348623157+308
+#define SK_ScalarInfinity SK_DoubleInfinity
+#define SK_ScalarNegativeInfinity SK_DoubleNegativeInfinity
+#define SK_ScalarNaN SK_DoubleNaN
+
+#define SkFixedToScalar(x) SkFixedToDouble(x)
+#define SkScalarToFixed(x) SkDoubleToFixed(x)
+
+#define SkScalarFloorToScalar(x) floor(x)
+#define SkScalarCeilToScalar(x) ceil(x)
+#define SkScalarRoundToScalar(x) floor((x) + 0.5)
+
+#define SkScalarFloorToInt(x) (int)floor(x)
+#define SkScalarCeilToInt(x) (int)ceil(x)
+#define SkScalarRoundToInt(x) (int)floor((x) + 0.5)
+
+#define SkScalarAbs(x) abs(x)
+#define SkScalarCopySign(x, y) copysign(x, y)
+#define SkScalarMod(x, y) fmod(x,y)
+#define SkScalarFraction(x) fmod(x, 1.0)
+#define SkScalarSqrt(x) sqrt(x)
+#define SkScalarPow(b, e) pow(b, e)
+
+#define SkScalarSin(radians) sin(radians)
+#define SkScalarCos(radians) cos(radians)
+#define SkScalarTan(radians) tan(radians)
+#define SkScalarASin(val) asin(val)
+#define SkScalarACos(val) acos(val)
+#define SkScalarATan2(y, x) atan2(y,x)
+#define SkScalarExp(x) exp(x)
+#define SkScalarLog(x) log(x)
+
+#endif
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+#define SkIntToScalar(x) static_cast<SkScalar>(x)
+#define SkScalarTruncToInt(x) static_cast<int>(x)
+
+#define SkScalarToFloat(x) static_cast<float>(x)
+#define SkFloatToScalar(x) static_cast<SkScalar>(x)
+#define SkScalarToDouble(x) static_cast<double>(x)
+#define SkDoubleToScalar(x) static_cast<SkScalar>(x)
+
+#define SK_ScalarMin (-SK_ScalarMax)
+
+static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
+
+/** Returns true if x is not NaN and not infinite
+ */
+static inline bool SkScalarIsFinite(SkScalar x) {
+ // We rely on the following behavior of infinities and nans
+ // 0 * finite --> 0
+ // 0 * infinity --> NaN
+ // 0 * NaN --> NaN
+ SkScalar prod = x * 0;
+ // At this point, prod will either be NaN or 0
+ // Therefore we can return (prod == prod) or (0 == prod).
+ return prod == prod;
+}
/**
* Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
return (int)floor(xx);
}
-/** Returns the absolute value of the specified SkScalar
-*/
-#define SkScalarAbs(x) sk_float_abs(x)
-/** Return x with the sign of y
- */
-#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
-/** Returns the value pinned between 0 and max inclusive
-*/
-inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
+static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
return x < 0 ? 0 : x > max ? max : x;
}
-/** Returns the value pinned between min and max inclusive
-*/
-inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
+
+static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
return x < min ? min : x > max ? max : x;
}
-/** Returns the specified SkScalar squared (x*x)
-*/
-inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
-/** Returns the product of two SkScalars
-*/
-#define SkScalarMul(a, b) ((float)(a) * (b))
-/** Returns the product of two SkScalars plus a third SkScalar
-*/
-#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
-/** Returns the quotient of two SkScalars (a/b)
-*/
-#define SkScalarDiv(a, b) ((float)(a) / (b))
-/** Returns the mod of two SkScalars (a mod b)
-*/
-#define SkScalarMod(x,y) sk_float_mod(x,y)
-/** Returns the product of the first two arguments, divided by the third argument
-*/
-#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
-/** Returns the multiplicative inverse of the SkScalar (1/x)
-*/
+
+SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
+
+static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
+
+#define SkScalarMul(a, b) ((SkScalar)(a) * (b))
+#define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c))
+#define SkScalarDiv(a, b) ((SkScalar)(a) / (b))
+#define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c))
#define SkScalarInvert(x) (SK_Scalar1 / (x))
#define SkScalarFastInvert(x) (SK_Scalar1 / (x))
-/** Returns the square root of the SkScalar
-*/
-#define SkScalarSqrt(x) sk_float_sqrt(x)
-/** Returns b to the e
-*/
-#define SkScalarPow(b, e) sk_float_pow(b, e)
-/** Returns the average of two SkScalars (a+b)/2
-*/
-#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
-/** Returns one half of the specified SkScalar
-*/
-#define SkScalarHalf(a) ((a) * 0.5f)
-
-#define SK_ScalarSqrt2 1.41421356f
-#define SK_ScalarPI 3.14159265f
-#define SK_ScalarTanPIOver8 0.414213562f
-#define SK_ScalarRoot2Over2 0.707106781f
+#define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf)
+#define SkScalarHalf(a) ((a) * SK_ScalarHalf)
#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
-float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
-#define SkScalarSin(radians) (float)sk_float_sin(radians)
-#define SkScalarCos(radians) (float)sk_float_cos(radians)
-#define SkScalarTan(radians) (float)sk_float_tan(radians)
-#define SkScalarASin(val) (float)sk_float_asin(val)
-#define SkScalarACos(val) (float)sk_float_acos(val)
-#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
-#define SkScalarExp(x) (float)sk_float_exp(x)
-#define SkScalarLog(x) (float)sk_float_log(x)
-
-inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
-inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
+
+static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
+static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
static inline bool SkScalarIsInt(SkScalar x) {
- return x == (float)(int)x;
+ return x == (SkScalar)(int)x;
}
// DEPRECATED : use ToInt or ToScalar variant