#include "opencv2/ml/ml.hpp"
+#include "opencv2/core/core_c.h"
#include <stdio.h>
+#include <map>
void help()
{
"CvRTrees rtrees;\n"
"CvERTrees ertrees;\n"
"CvGBTrees gbtrees;\n"
- "Date is hard coded to come from filename = \"../../../opencv/samples/c/waveform.data\";\n"
- "Or can come from filename = \"../../../opencv/samples/c/waveform.data\";\n"
- "Call:\n"
- "./tree_engine\n\n");
+ "Call:\n\t./tree_engine [-r <response_column>] [-c] <csv filename>\n"
+ "where -r <response_column> specified the 0-based index of the response (0 by default)\n"
+ "-c specifies that the response is categorical (it's ordered by default) and\n"
+ "<csv filename> is the name of training data file in comma-separated value format\n\n");
}
-void print_result(float train_err, float test_err, const CvMat* var_imp)
+
+
+int count_classes(CvMLData& data)
+{
+ cv::Mat r(data.get_responses());
+ std::map<int, int> rmap;
+ int i, n = (int)r.total();
+ for( i = 0; i < n; i++ )
+ {
+ float val = r.at<float>(i);
+ int ival = cvRound(val);
+ if( ival != val )
+ return -1;
+ rmap[ival] = 1;
+ }
+ return rmap.size();
+}
+
+void print_result(float train_err, float test_err, const CvMat* _var_imp)
{
printf( "train error %f\n", train_err );
printf( "test error %f\n\n", test_err );
- if (var_imp)
+ if (_var_imp)
{
- bool is_flt = false;
- if ( CV_MAT_TYPE( var_imp->type ) == CV_32FC1)
- is_flt = true;
- printf( "variable impotance\n" );
- for( int i = 0; i < var_imp->cols; i++)
+ cv::Mat var_imp(_var_imp), sorted_idx;
+ cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING);
+
+ printf( "variable importance:\n" );
+ int i, n = (int)var_imp.total();
+ int type = var_imp.type();
+ CV_Assert(type == CV_32F || type == CV_64F);
+
+ for( i = 0; i < n; i++)
{
- printf( "%d %f\n", i, is_flt ? var_imp->data.fl[i] : var_imp->data.db[i] );
+ int k = sorted_idx.at<int>(i);
+ printf( "%d\t%f\n", k, type == CV_32F ? var_imp.at<float>(k) : var_imp.at<double>(k));
}
}
printf("\n");
}
-int main()
+int main(int argc, char** argv)
{
- const int train_sample_count = 300;
-
-#define LEPIOTA //Turn on discrete data set
-#ifdef LEPIOTA //Of course, you might have to set the path here to what's on your machine ...
- const char* filename = "../../opencv/samples/c/agaricus-lepiota.data";
-#else
- const char* filename = "../../opencv/samples/c/waveform.data";
-#endif
- printf("\n Reading in %s. If it is not found, you may have to change this hard-coded path in tree_engine.cpp\n\n",filename);
+ if(argc < 2)
+ {
+ help();
+ return 0;
+ }
+ const char* filename = 0;
+ int response_idx = 0;
+ bool categorical_response = false;
+
+ for(int i = 1; i < argc; i++)
+ {
+ if(strcmp(argv[i], "-r") == 0)
+ sscanf(argv[++i], "%d", &response_idx);
+ else if(strcmp(argv[i], "-c") == 0)
+ categorical_response = true;
+ else if(argv[i][0] != '-' )
+ filename = argv[i];
+ else
+ {
+ printf("Error. Invalid option %s\n", argv[i]);
+ help();
+ return -1;
+ }
+ }
+
+ printf("\nReading in %s...\n\n",filename);
CvDTree dtree;
CvBoost boost;
CvRTrees rtrees;
CvMLData data;
- CvTrainTestSplit spl( train_sample_count );
+
+ CvTrainTestSplit spl( 0.5f );
if ( data.read_csv( filename ) == 0)
{
-
-#ifdef LEPIOTA
- data.set_response_idx( 0 );
-#else
- data.set_response_idx( 21 );
- data.change_var_type( 21, CV_VAR_CATEGORICAL );
-#endif
-
+ data.set_response_idx( response_idx );
+ if(categorical_response)
+ data.change_var_type( response_idx, CV_VAR_CATEGORICAL );
data.set_train_test_split( &spl );
printf("======DTREE=====\n");
dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 ));
print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );
-#ifdef LEPIOTA
+ if( categorical_response && count_classes(data) == 2 )
+ {
printf("======BOOST=====\n");
boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
-#endif
+ }
printf("======RTREES=====\n");
rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));