RecursionLimit);
}
+/// Given operands for an FAdd, see if we can fold the result. If not, this
+/// returns null.
+static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const Query &Q, unsigned MaxRecurse) {
+ if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
+ if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
+ Constant *Ops[] = { CLHS, CRHS };
+ return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
+ Ops, Q.TD, Q.TLI);
+ }
+
+ // Canonicalize the constant to the RHS.
+ std::swap(Op0, Op1);
+ }
+
+ // fadd X, -0 ==> X
+ if (match(Op1, m_NegZero()))
+ return Op0;
+
+ // fadd X, 0 ==> X, when we know X is not -0
+ if (match(Op1, m_Zero()) &&
+ (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
+ return Op0;
+
+ // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
+ // where nnan and ninf have to occur at least once somewhere in this
+ // expression
+ Value *SubOp = 0;
+ if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
+ SubOp = Op1;
+ else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
+ SubOp = Op0;
+ if (SubOp) {
+ Instruction *FSub = cast<Instruction>(SubOp);
+ if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
+ (FMF.noInfs() || FSub->hasNoInfs()))
+ return Constant::getNullValue(Op0->getType());
+ }
+
+ return 0;
+}
+
+/// Given operands for an FSub, see if we can fold the result. If not, this
+/// returns null.
+static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const Query &Q, unsigned MaxRecurse) {
+ if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
+ if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
+ Constant *Ops[] = { CLHS, CRHS };
+ return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
+ Ops, Q.TD, Q.TLI);
+ }
+ }
+
+ // fsub X, 0 ==> X
+ if (match(Op1, m_Zero()))
+ return Op0;
+
+ // fsub X, -0 ==> X, when we know X is not -0
+ if (match(Op1, m_NegZero()) &&
+ (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
+ return Op0;
+
+ // fsub 0, (fsub -0.0, X) ==> X
+ Value *X;
+ if (match(Op0, m_AnyZero())) {
+ if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
+ return X;
+ if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
+ return X;
+ }
+
+ // fsub nnan ninf x, x ==> 0.0
+ if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ return 0;
+}
+
/// Given the operands for an FMul, see if we can fold the result
static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
FastMathFlags FMF,
return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
Ops, Q.TD, Q.TLI);
}
- }
- // Check for some fast-math optimizations
- if (FMF.noNaNs()) {
- if (FMF.noSignedZeros()) {
- // fmul N S 0, x ==> 0
- if (match(Op0, m_Zero()))
- return Op0;
- if (match(Op1, m_Zero()))
- return Op1;
- }
+ // Canonicalize the constant to the RHS.
+ std::swap(Op0, Op1);
}
+ // fmul X, 1.0 ==> X
+ if (match(Op1, m_FPOne()))
+ return Op0;
+
+ // fmul nnan nsz X, 0 ==> 0
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
+ return Op1;
+
return 0;
}
return 0;
}
+Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DominatorTree *DT) {
+ return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+}
+
+Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DominatorTree *DT) {
+ return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+}
+
Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
FastMathFlags FMF,
const DataLayout *TD,
default:
Result = ConstantFoldInstruction(I, TD, TLI);
break;
+ case Instruction::FAdd:
+ Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), TD, TLI, DT);
+ break;
case Instruction::Add:
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
TD, TLI, DT);
break;
+ case Instruction::FSub:
+ Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), TD, TLI, DT);
+ break;
case Instruction::Sub:
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
; CHECK: ret float %b
ret float %b
}
+
+; fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
+; where nnan and ninf have to occur at least once somewhere in this
+; expression
+; CHECK: fadd_fsub_0
+define float @fadd_fsub_0(float %a) {
+; X + -X ==> 0
+ %t1 = fsub nnan ninf float 0.0, %a
+ %zero1 = fadd nnan ninf float %t1, %a
+
+ %t2 = fsub nnan float 0.0, %a
+ %zero2 = fadd ninf float %t2, %a
+
+ %t3 = fsub nnan ninf float 0.0, %a
+ %zero3 = fadd float %t3, %a
+
+ %t4 = fsub float 0.0, %a
+ %zero4 = fadd nnan ninf float %t4, %a
+
+; Dont fold this
+; CHECK: %nofold = fsub float 0.0
+ %nofold = fsub float 0.0, %a
+; CHECK: %no_zero = fadd nnan float %nofold, %a
+ %no_zero = fadd nnan float %nofold, %a
+
+; Coalesce the folded zeros
+ %zero5 = fadd float %zero1, %zero2
+ %zero6 = fadd float %zero3, %zero4
+ %zero7 = fadd float %zero5, %zero6
+
+; Should get folded
+ %ret = fadd nsz float %no_zero, %zero7
+
+; CHECK: ret float %no_zero
+ ret float %ret
+}
+
+; fsub nnan ninf x, x ==> 0.0
+; CHECK: @fsub_x_x
+define float @fsub_x_x(float %a) {
+; X - X ==> 0
+ %zero1 = fsub nnan ninf float %a, %a
+
+; Dont fold
+; CHECK: %no_zero1 = fsub
+ %no_zero1 = fsub ninf float %a, %a
+; CHECK: %no_zero2 = fsub
+ %no_zero2 = fsub nnan float %a, %a
+; CHECK: %no_zero = fadd
+ %no_zero = fadd float %no_zero1, %no_zero2
+
+; Should get folded
+ %ret = fadd nsz float %no_zero, %zero1
+
+; CHECK: ret float %no_zero
+ ret float %ret
+}
+
+; fadd nsz X, 0 ==> X
+; CHECK: @nofold_fadd_x_0
+define float @nofold_fadd_x_0(float %a) {
+; Dont fold
+; CHECK: %no_zero1 = fadd
+ %no_zero1 = fadd ninf float %a, 0.0
+; CHECK: %no_zero2 = fadd
+ %no_zero2 = fadd nnan float %a, 0.0
+; CHECK: %no_zero = fadd
+ %no_zero = fadd float %no_zero1, %no_zero2
+
+; CHECK: ret float %no_zero
+ ret float %no_zero
+}