layer {
name: "data"
type: "window_data"
- source: "/work5/rbg/convnet-selective-search/selective-search-data/window_file_2007_train.txt"
+ source: "/work5/rbg/convnet-selective-search/selective-search-data/window_file_2007_trainval.txt"
meanfile: "/home/rbg/working/caffe-rbg/data/ilsvrc2012_mean.binaryproto"
batchsize: 128
cropsize: 227
train_net: "examples/pascal_finetune.prototxt"
test_net: "examples/pascal_finetune_val.prototxt"
test_iter: 100
-test_interval: 500
+test_interval: 1000
base_lr: 0.0001
lr_policy: "step"
gamma: 0.1
-stepsize: 10000
+stepsize: 20000
display: 20
-max_iter: 400000
+max_iter: 100000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
layer {
name: "data"
type: "window_data"
- source: "/work5/rbg/convnet-selective-search/selective-search-data/window_file_2007_val.txt"
+ source: "/work5/rbg/convnet-selective-search/selective-search-data/window_file_2007_test.txt"
meanfile: "/home/rbg/working/caffe-rbg/data/ilsvrc2012_mean.binaryproto"
batchsize: 128
cropsize: 227
label_hist[window[WindowDataLayer::LABEL]]++;
}
- if (image_index % 1000 == 0) {
+ if (image_index % 1 == 0) {
LOG(INFO) << "num: " << image_index << " "
<< image_path << " "
<< image_size[0] << " "
}
}
+ LOG(INFO) << "Number of images: " << image_index;
+
for (int i = 0; i < 21; ++i) {
LOG(INFO) << "class " << i << " has " << label_hist[i] << " samples";
}