static int btrfs_setsize(struct inode *inode, struct iattr *attr);
static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
+
static noinline int cow_file_range(struct btrfs_inode *inode,
struct page *locked_page,
u64 start, u64 end, int *page_started,
- unsigned long *nr_written, int unlock,
- u64 *done_offset);
+ unsigned long *nr_written, u64 *done_offset,
+ bool keep_locked);
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
u64 len, u64 orig_start, u64 block_start,
u64 block_len, u64 orig_block_len,
* can directly submit them without interruption.
*/
ret = cow_file_range(inode, locked_page, start, end, &page_started,
- &nr_written, 0, NULL);
+ &nr_written, NULL, true);
/* Inline extent inserted, page gets unlocked and everything is done */
if (page_started)
return 0;
* locked_page is the page that writepage had locked already. We use
* it to make sure we don't do extra locks or unlocks.
*
- * *page_started is set to one if we unlock locked_page and do everything
- * required to start IO on it. It may be clean and already done with
- * IO when we return.
- *
- * When unlock == 1, we unlock the pages in successfully allocated regions.
- * When unlock == 0, we leave them locked for writing them out.
+ * When this function fails, it unlocks all pages except @locked_page.
*
- * However, we unlock all the pages except @locked_page in case of failure.
+ * When this function successfully creates an inline extent, it sets page_started
+ * to 1 and unlocks all pages including locked_page and starts I/O on them.
+ * (In reality inline extents are limited to a single page, so locked_page is
+ * the only page handled anyway).
*
- * In summary, page locking state will be as follow:
+ * When this function succeed and creates a normal extent, the page locking
+ * status depends on the passed in flags:
*
- * - page_started == 1 (return value)
- * - All the pages are unlocked. IO is started.
- * - Note that this can happen only on success
- * - unlock == 1
- * - All the pages except @locked_page are unlocked in any case
- * - unlock == 0
- * - On success, all the pages are locked for writing out them
- * - On failure, all the pages except @locked_page are unlocked
+ * - If @keep_locked is set, all pages are kept locked.
+ * - Else all pages except for @locked_page are unlocked.
*
* When a failure happens in the second or later iteration of the
* while-loop, the ordered extents created in previous iterations are kept
static noinline int cow_file_range(struct btrfs_inode *inode,
struct page *locked_page,
u64 start, u64 end, int *page_started,
- unsigned long *nr_written, int unlock,
- u64 *done_offset)
+ unsigned long *nr_written, u64 *done_offset,
+ bool keep_locked)
{
struct btrfs_root *root = inode->root;
struct btrfs_fs_info *fs_info = root->fs_info;
* Do set the Ordered (Private2) bit so we know this page was
* properly setup for writepage.
*/
- page_ops = unlock ? PAGE_UNLOCK : 0;
+ page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
page_ops |= PAGE_SET_ORDERED;
extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
* EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
* function.
*
- * However, in case of unlock == 0, we still need to unlock the pages
+ * However, in case of @keep_locked, we still need to unlock the pages
* (except @locked_page) to ensure all the pages are unlocked.
*/
- if (!unlock && orig_start < start) {
+ if (keep_locked && orig_start < start) {
if (!locked_page)
mapping_set_error(inode->vfs_inode.i_mapping, ret);
extent_clear_unlock_delalloc(inode, orig_start, start - 1,
while (start <= end) {
ret = cow_file_range(inode, locked_page, start, end, page_started,
- nr_written, 0, &done_offset);
+ nr_written, &done_offset, true);
if (ret && ret != -EAGAIN)
return ret;
}
return cow_file_range(inode, locked_page, start, end, page_started,
- nr_written, 1, NULL);
+ nr_written, NULL, false);
}
struct can_nocow_file_extent_args {
page_started, nr_written, wbc);
else
ret = cow_file_range(inode, locked_page, start, end,
- page_started, nr_written, 1, NULL);
+ page_started, nr_written, NULL, false);
out:
ASSERT(ret <= 0);