/*M///////////////////////////////////////////////////////////////////////////////////////
//
-// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
-// By downloading, copying, installing or using the software you agree to this license.
-// If you do not agree to this license, do not download, install,
-// copy or use the software.
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
//
//
-// License Agreement
-// For Open Source Computer Vision Library
+// License Agreement
+// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
-// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
//
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
//
-// * The name of the copyright holders may not be used to endorse or promote products
-// derived from this software without specific prior written permission.
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
+//
//M*/
#include <precomp.hpp>
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))),
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale)))
{}
+
+ void markDetection(const int x, const int dx, std::vector<cv::Rect>& detections) const
+ {
+
+ }
+};
+
+
+struct CascadeIntrinsics
+{
+ static const float lambda = 1.099f, a = 0.89f;
+
+ static float getFor(int channel, float scaling)
+ {
+ CV_Assert(channel < 10);
+
+ if ((scaling - 1.f) < FLT_EPSILON)
+ return 1.f;
+
+ // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
+ static const float A[2][2] =
+ { //channel <= 6, otherwise
+ { 0.89f, 1.f}, // down
+ { 1.00f, 1.f} // up
+ };
+
+ static const float B[2][2] =
+ { //channel <= 6, otherwise
+ { 1.099f / log(2), 2.f}, // down
+ { 2.f, 2.f} // up
+ };
+
+ float a = A[(int)(scaling >= 1)][(int)(channel >= 6)];
+ float b = B[(int)(scaling >= 1)][(int)(channel >= 6)];
+
+ return a * pow(scaling, b);
+ }
};
// Feature rescale(float relScale)
// return res;
// }
-// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
-// struct CascadeIntrinsics
-// {
-// static const float lambda = 1.099f, a = 0.89f;
-// static const float intrinsics[10][4];
-
-// static float getFor(int channel, float scaling)
-// {
-// CV_Assert(channel < 10);
-
-// if ((scaling - 1.f) < FLT_EPSILON)
-// return 1.f;
-
-// int ud = (int)(scaling < 1.f);
-// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
-// }
-
-// };
-
-// const float CascadeIntrinsics::intrinsics[10][4] =
-// { //da, db, ua, ub
-// // hog-like orientation bins
-// {a, lambda / log(2), 1, 2},
-// {a, lambda / log(2), 1, 2},
-// {a, lambda / log(2), 1, 2},
-// {a, lambda / log(2), 1, 2},
-// {a, lambda / log(2), 1, 2},
-// {a, lambda / log(2), 1, 2},
-// // gradient magnitude
-// {a, lambda / log(2), 1, 2},
-// // luv color channels
-// {1, 2, 1, 2},
-// {1, 2, 1, 2},
-// {1, 2, 1, 2}
-// };
-
void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat>& histInts,
const int bins, int shrinkage)
cv::resize(mag, shrMag, cv::Size(), scale, scale, cv::INTER_AREA);
cv::integral(shrMag, magIntegral, mag.depth());
+ histInts.push_back(magIntegral);
}
struct ChannelStorage
int shrinkage;
- enum {HOG_BINS = 6};
+ enum {HOG_BINS = 6, HOG_LUV_BINS = 10};
ChannelStorage() {}
ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr)
{
- cv::Mat _luv;
+ cv::Mat _luv, shrLuv;
cv::cvtColor(colored, _luv, CV_BGR2Luv);
+ cv::resize(_luv, shrLuv, cv::Size(), 1.f / shr, 1.f / shr, cv::INTER_AREA);
+
+ cv::integral(shrLuv, luv);
- cv::integral(luv, luv);
+ std::vector<cv::Mat> splited;
+ split(luv, splited);
cv::Mat grey;
cv::cvtColor(colored, grey, CV_RGB2GRAY);
calcHistBins(grey, magnitude, hog, HOG_BINS, shrinkage);
+
+ hog.insert(hog.end(), splited.begin(), splited.end());
}
- float get(int chennel, cv::Rect area) const
+ float get(const int x, const int y, const int channel, const cv::Rect& area) const
{
- return 1.f;
+ CV_Assert(channel < HOG_LUV_BINS);
+
+ const cv::Mat m = hog[channel];
+
+ float a = m.ptr(y + area.y)[x + area.x];
+ float b = m.ptr(y + area.y)[x + area.width];
+ float c = m.ptr(y + area.height)[x + area.width];
+ float d = m.ptr(y + area.height)[x + area.x];
+
+ return (a - b + c - d);
}
};
}
typedef std::vector<Octave>::iterator octIt_t;
void detectAt(const Level& level, const int dx, const int dy, const ChannelStorage& storage,
- const std::vector<cv::Rect>& detections) const
+ std::vector<cv::Rect>& detections) const
{
float detectionScore = 0.f;
const Octave& octave = *(level.octave);
int stBegin = octave.index() * octave.stages, stEnd = stBegin + octave.stages;
- for(int st = stBegin; st < stEnd; ++st)
+ int st = stBegin;
+ for(; st < stEnd; ++st)
{
const Stage& stage = stages[st];
- if (detectionScore > stage.threshold)
{
int nId = st * 3;
+
+ // work with root node
const Node& node = nodes[nId];
const Feature& feature = features[node.feature];
- float sum = storage.get(feature.channel, feature.rect);
- int next = (sum >= node.threshold)? 2 : 1;
+ // rescaling
+ float scaling = CascadeIntrinsics::getFor(feature.channel, level.relScale);
+ cv::Rect scaledRect = feature.rect;
+ float farea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
+ // rescale
+ scaledRect.x = cvRound(scaling * scaledRect.x);
+ scaledRect.y = cvRound(scaling * scaledRect.y);
+ scaledRect.width = cvRound(scaling * scaledRect.width);
+ scaledRect.height = cvRound(scaling * scaledRect.height);
+
+ float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
+
+ float approx = 1.f;
+ if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON)
+ {
+ const float expected_new_area = farea*level.relScale*level.relScale;
+ approx = expected_new_area / sarea;
+ }
+
+ float rootThreshold = node.threshold / approx; // ToDo check
+ rootThreshold *= scaling;
+
+ // use rescaled
+ float sum = storage.get(dx, dy, feature.channel, scaledRect);
+ int next = (sum >= rootThreshold)? 2 : 1;
+ // leaces
const Node& leaf = nodes[nId + next];
const Feature& fLeaf = features[node.feature];
- sum = storage.get(feature.channel, feature.rect);
- int lShift = (next - 1) * 2 + (sum >= leaf.threshold) ? 1 : 0;
+ // rescaling
+ scaling = CascadeIntrinsics::getFor(fLeaf.channel, level.relScale);
+ scaledRect = fLeaf.rect;
+ farea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
+ // rescale
+ scaledRect.x = cvRound(scaling * scaledRect.x);
+ scaledRect.y = cvRound(scaling * scaledRect.y);
+ scaledRect.width = cvRound(scaling * scaledRect.width);
+ scaledRect.height = cvRound(scaling * scaledRect.height);
+
+ sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y);
+
+ approx = 1.f;
+ if ((farea - 0.f) > FLT_EPSILON && (farea - 0.f) > FLT_EPSILON)
+ {
+ const float expected_new_area = farea*level.relScale*level.relScale;
+ approx = expected_new_area / sarea;
+ }
+
+ rootThreshold = leaf.threshold / approx; // ToDo check
+ rootThreshold *= scaling;
+
+ sum = storage.get(dx, dy, feature.channel, scaledRect);
+
+ int lShift = (next - 1) * 2 + (sum >= rootThreshold) ? 1 : 0;
float impact = leaves[nId + lShift];
detectionScore += impact;
}
+
+ if (detectionScore <= stage.threshold) break;
}
+
+ if (st == octave.stages - 1)
+ level.markDetection(dx, dy, detections);
}
octIt_t fitOctave(const float& logFactor)