--- /dev/null
+//===-- LoopSink.cpp - Loop Sink Pass ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass does the inverse transformation of what LICM does.
+// It traverses all of the instructions in the loop's preheader and sinks
+// them to the loop body where frequency is lower than the loop's preheader.
+// This pass is a reverse-transformation of LICM. It differs from the Sink
+// pass in the following ways:
+//
+// * It only handles sinking of instructions from the loop's preheader to the
+// loop's body
+// * It uses alias set tracker to get more accurate alias info
+// * It uses block frequency info to find the optimal sinking locations
+//
+// Overall algorithm:
+//
+// For I in Preheader:
+// InsertBBs = BBs that uses I
+// For BB in sorted(LoopBBs):
+// DomBBs = BBs in InsertBBs that are dominated by BB
+// if freq(DomBBs) > freq(BB)
+// InsertBBs = UseBBs - DomBBs + BB
+// For BB in InsertBBs:
+// Insert I at BB's beginning
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/LoopPassManager.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loopsink"
+
+STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
+STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
+
+static cl::opt<unsigned> SinkFrequencyPercentThreshold(
+ "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
+ cl::desc("Do not sink instructions that require cloning unless they "
+ "execute less than this percent of the time."));
+
+static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
+ "max-uses-for-sinking", cl::Hidden, cl::init(30),
+ cl::desc("Do not sink instructions that have too many uses."));
+
+/// Return adjusted total frequency of \p BBs.
+///
+/// * If there is only one BB, sinking instruction will not introduce code
+/// size increase. Thus there is no need to adjust the frequency.
+/// * If there are more than one BB, sinking would lead to code size increase.
+/// In this case, we add some "tax" to the total frequency to make it harder
+/// to sink. E.g.
+/// Freq(Preheader) = 100
+/// Freq(BBs) = sum(50, 49) = 99
+/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
+/// BBs as the difference is too small to justify the code size increase.
+/// To model this, The adjusted Freq(BBs) will be:
+/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
+static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
+ BlockFrequencyInfo &BFI) {
+ BlockFrequency T = 0;
+ for (BasicBlock *B : BBs)
+ T += BFI.getBlockFreq(B);
+ if (BBs.size() > 1)
+ T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
+ return T;
+}
+
+/// Return a set of basic blocks to insert sinked instructions.
+///
+/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
+///
+/// * Inside the loop \p L
+/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
+/// that domintates the UseBB
+/// * Has minimum total frequency that is no greater than preheader frequency
+///
+/// The purpose of the function is to find the optimal sinking points to
+/// minimize execution cost, which is defined as "sum of frequency of
+/// BBsToSinkInto".
+/// As a result, the returned BBsToSinkInto needs to have minimum total
+/// frequency.
+/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
+/// frequency, the optimal solution is not sinking (return empty set).
+///
+/// \p ColdLoopBBs is used to help find the optimal sinking locations.
+/// It stores a list of BBs that is:
+///
+/// * Inside the loop \p L
+/// * Has a frequency no larger than the loop's preheader
+/// * Sorted by BB frequency
+///
+/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
+/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
+/// caller.
+static SmallPtrSet<BasicBlock *, 2>
+findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
+ const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
+ DominatorTree &DT, BlockFrequencyInfo &BFI) {
+ SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
+ if (UseBBs.size() == 0)
+ return BBsToSinkInto;
+
+ BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
+ SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
+
+ // For every iteration:
+ // * Pick the ColdestBB from ColdLoopBBs
+ // * Find the set BBsDominatedByColdestBB that satisfy:
+ // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
+ // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
+ // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
+ // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
+ // BBsToSinkInto
+ for (BasicBlock *ColdestBB : ColdLoopBBs) {
+ BBsDominatedByColdestBB.clear();
+ for (BasicBlock *SinkedBB : BBsToSinkInto)
+ if (DT.dominates(ColdestBB, SinkedBB))
+ BBsDominatedByColdestBB.insert(SinkedBB);
+ if (BBsDominatedByColdestBB.size() == 0)
+ continue;
+ if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
+ BFI.getBlockFreq(ColdestBB)) {
+ for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
+ BBsToSinkInto.erase(DominatedBB);
+ }
+ BBsToSinkInto.insert(ColdestBB);
+ }
+ }
+
+ // If the total frequency of BBsToSinkInto is larger than preheader frequency,
+ // do not sink.
+ if (adjustedSumFreq(BBsToSinkInto, BFI) >
+ BFI.getBlockFreq(L.getLoopPreheader()))
+ BBsToSinkInto.clear();
+ return BBsToSinkInto;
+}
+
+// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
+// sinking is successful.
+// \p LoopBlockNumber is used to sort the insertion blocks to ensure
+// determinism.
+static bool sinkInstruction(Loop &L, Instruction &I,
+ const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
+ const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
+ LoopInfo &LI, DominatorTree &DT,
+ BlockFrequencyInfo &BFI) {
+ // Compute the set of blocks in loop L which contain a use of I.
+ SmallPtrSet<BasicBlock *, 2> BBs;
+ for (auto &U : I.uses()) {
+ Instruction *UI = cast<Instruction>(U.getUser());
+ // We cannot sink I to PHI-uses.
+ if (dyn_cast<PHINode>(UI))
+ return false;
+ // We cannot sink I if it has uses outside of the loop.
+ if (!L.contains(LI.getLoopFor(UI->getParent())))
+ return false;
+ BBs.insert(UI->getParent());
+ }
+
+ // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
+ // BBs.size() to avoid expensive computation.
+ // FIXME: Handle code size growth for min_size and opt_size.
+ if (BBs.size() > MaxNumberOfUseBBsForSinking)
+ return false;
+
+ // Find the set of BBs that we should insert a copy of I.
+ SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
+ findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
+ if (BBsToSinkInto.empty())
+ return false;
+
+ // Copy the final BBs into a vector and sort them using the total ordering
+ // of the loop block numbers as iterating the set doesn't give a useful
+ // order. No need to stable sort as the block numbers are a total ordering.
+ SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
+ SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
+ BBsToSinkInto.end());
+ std::sort(SortedBBsToSinkInto.begin(), SortedBBsToSinkInto.end(),
+ [&](BasicBlock *A, BasicBlock *B) {
+ return *LoopBlockNumber.find(A) < *LoopBlockNumber.find(B);
+ });
+
+ BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
+ // FIXME: Optimize the efficiency for cloned value replacement. The current
+ // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
+ for (BasicBlock *N : SortedBBsToSinkInto) {
+ if (N == MoveBB)
+ continue;
+ // Clone I and replace its uses.
+ Instruction *IC = I.clone();
+ IC->setName(I.getName());
+ IC->insertBefore(&*N->getFirstInsertionPt());
+ // Replaces uses of I with IC in N
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
+ Use &U = *UI++;
+ auto *I = cast<Instruction>(U.getUser());
+ if (I->getParent() == N)
+ U.set(IC);
+ }
+ // Replaces uses of I with IC in blocks dominated by N
+ replaceDominatedUsesWith(&I, IC, DT, N);
+ DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
+ << '\n');
+ NumLoopSunkCloned++;
+ }
+ DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
+ NumLoopSunk++;
+ I.moveBefore(&*MoveBB->getFirstInsertionPt());
+
+ return true;
+}
+
+/// Sinks instructions from loop's preheader to the loop body if the
+/// sum frequency of inserted copy is smaller than preheader's frequency.
+static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
+ DominatorTree &DT,
+ BlockFrequencyInfo &BFI,
+ ScalarEvolution *SE) {
+ BasicBlock *Preheader = L.getLoopPreheader();
+ if (!Preheader)
+ return false;
+
+ const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
+ // If there are no basic blocks with lower frequency than the preheader then
+ // we can avoid the detailed analysis as we will never find profitable sinking
+ // opportunities.
+ if (all_of(L.blocks(), [&](const BasicBlock *BB) {
+ return BFI.getBlockFreq(BB) > PreheaderFreq;
+ }))
+ return false;
+
+ bool Changed = false;
+ AliasSetTracker CurAST(AA);
+
+ // Compute alias set.
+ for (BasicBlock *BB : L.blocks())
+ CurAST.add(*BB);
+
+ // Sort loop's basic blocks by frequency
+ SmallVector<BasicBlock *, 10> ColdLoopBBs;
+ SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
+ int i = 0;
+ for (BasicBlock *B : L.blocks())
+ if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
+ ColdLoopBBs.push_back(B);
+ LoopBlockNumber[B] = ++i;
+ }
+ std::stable_sort(ColdLoopBBs.begin(), ColdLoopBBs.end(),
+ [&](BasicBlock *A, BasicBlock *B) {
+ return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
+ });
+
+ // Traverse preheader's instructions in reverse order becaue if A depends
+ // on B (A appears after B), A needs to be sinked first before B can be
+ // sinked.
+ for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
+ Instruction *I = &*II++;
+ if (!L.hasLoopInvariantOperands(I) ||
+ !canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr))
+ continue;
+ if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
+ Changed = true;
+ }
+
+ if (Changed && SE)
+ SE->forgetLoopDispositions(&L);
+ return Changed;
+}
+
+namespace {
+struct LegacyLoopSinkPass : public LoopPass {
+ static char ID;
+ LegacyLoopSinkPass() : LoopPass(ID) {
+ initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
+ auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ return sinkLoopInvariantInstructions(
+ *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
+ getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
+ getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
+ SE ? &SE->getSE() : nullptr);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<BlockFrequencyInfoWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ }
+};
+}
+
+char LegacyLoopSinkPass::ID = 0;
+INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
+
+Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
--- /dev/null
+; RUN: opt -S -loop-sink < %s | FileCheck %s
+
+@g = global i32 0, align 4
+
+; b1
+; / \
+; b2 b6
+; / \ |
+; b3 b4 |
+; \ / |
+; b5 |
+; \ /
+; b7
+; preheader: 1000
+; b2: 15
+; b3: 7
+; b4: 7
+; Sink load to b2
+; CHECK: t1
+; CHECK: .b2:
+; CHECK: load i32, i32* @g
+; CHECK: .b3:
+; CHECK-NOT: load i32, i32* @g
+define i32 @t1(i32, i32) #0 {
+ %3 = icmp eq i32 %1, 0
+ br i1 %3, label %.exit, label %.preheader
+
+.preheader:
+ %invariant = load i32, i32* @g
+ br label %.b1
+
+.b1:
+ %iv = phi i32 [ %t7, %.b7 ], [ 0, %.preheader ]
+ %c1 = icmp sgt i32 %iv, %0
+ br i1 %c1, label %.b2, label %.b6, !prof !1
+
+.b2:
+ %c2 = icmp sgt i32 %iv, 1
+ br i1 %c2, label %.b3, label %.b4
+
+.b3:
+ %t3 = sub nsw i32 %invariant, %iv
+ br label %.b5
+
+.b4:
+ %t4 = add nsw i32 %invariant, %iv
+ br label %.b5
+
+.b5:
+ %p5 = phi i32 [ %t3, %.b3 ], [ %t4, %.b4 ]
+ %t5 = mul nsw i32 %p5, 5
+ br label %.b7
+
+.b6:
+ %t6 = add nsw i32 %iv, 100
+ br label %.b7
+
+.b7:
+ %p7 = phi i32 [ %t6, %.b6 ], [ %t5, %.b5 ]
+ %t7 = add nuw nsw i32 %iv, 1
+ %c7 = icmp eq i32 %t7, %p7
+ br i1 %c7, label %.b1, label %.exit, !prof !3
+
+.exit:
+ ret i32 10
+}
+
+; b1
+; / \
+; b2 b6
+; / \ |
+; b3 b4 |
+; \ / |
+; b5 |
+; \ /
+; b7
+; preheader: 500
+; b1: 16016
+; b3: 8
+; b6: 8
+; Sink load to b3 and b6
+; CHECK: t2
+; CHECK: .preheader:
+; CHECK-NOT: load i32, i32* @g
+; CHECK: .b3:
+; CHECK: load i32, i32* @g
+; CHECK: .b4:
+; CHECK: .b6:
+; CHECK: load i32, i32* @g
+; CHECK: .b7:
+define i32 @t2(i32, i32) #0 {
+ %3 = icmp eq i32 %1, 0
+ br i1 %3, label %.exit, label %.preheader
+
+.preheader:
+ %invariant = load i32, i32* @g
+ br label %.b1
+
+.b1:
+ %iv = phi i32 [ %t7, %.b7 ], [ 0, %.preheader ]
+ %c1 = icmp sgt i32 %iv, %0
+ br i1 %c1, label %.b2, label %.b6, !prof !2
+
+.b2:
+ %c2 = icmp sgt i32 %iv, 1
+ br i1 %c2, label %.b3, label %.b4, !prof !1
+
+.b3:
+ %t3 = sub nsw i32 %invariant, %iv
+ br label %.b5
+
+.b4:
+ %t4 = add nsw i32 5, %iv
+ br label %.b5
+
+.b5:
+ %p5 = phi i32 [ %t3, %.b3 ], [ %t4, %.b4 ]
+ %t5 = mul nsw i32 %p5, 5
+ br label %.b7
+
+.b6:
+ %t6 = add nsw i32 %iv, %invariant
+ br label %.b7
+
+.b7:
+ %p7 = phi i32 [ %t6, %.b6 ], [ %t5, %.b5 ]
+ %t7 = add nuw nsw i32 %iv, 1
+ %c7 = icmp eq i32 %t7, %p7
+ br i1 %c7, label %.b1, label %.exit, !prof !3
+
+.exit:
+ ret i32 10
+}
+
+; b1
+; / \
+; b2 b6
+; / \ |
+; b3 b4 |
+; \ / |
+; b5 |
+; \ /
+; b7
+; preheader: 500
+; b3: 8
+; b5: 16008
+; Do not sink load from preheader.
+; CHECK: t3
+; CHECK: .preheader:
+; CHECK: load i32, i32* @g
+; CHECK: .b1:
+; CHECK-NOT: load i32, i32* @g
+define i32 @t3(i32, i32) #0 {
+ %3 = icmp eq i32 %1, 0
+ br i1 %3, label %.exit, label %.preheader
+
+.preheader:
+ %invariant = load i32, i32* @g
+ br label %.b1
+
+.b1:
+ %iv = phi i32 [ %t7, %.b7 ], [ 0, %.preheader ]
+ %c1 = icmp sgt i32 %iv, %0
+ br i1 %c1, label %.b2, label %.b6, !prof !2
+
+.b2:
+ %c2 = icmp sgt i32 %iv, 1
+ br i1 %c2, label %.b3, label %.b4, !prof !1
+
+.b3:
+ %t3 = sub nsw i32 %invariant, %iv
+ br label %.b5
+
+.b4:
+ %t4 = add nsw i32 5, %iv
+ br label %.b5
+
+.b5:
+ %p5 = phi i32 [ %t3, %.b3 ], [ %t4, %.b4 ]
+ %t5 = mul nsw i32 %p5, %invariant
+ br label %.b7
+
+.b6:
+ %t6 = add nsw i32 %iv, 5
+ br label %.b7
+
+.b7:
+ %p7 = phi i32 [ %t6, %.b6 ], [ %t5, %.b5 ]
+ %t7 = add nuw nsw i32 %iv, 1
+ %c7 = icmp eq i32 %t7, %p7
+ br i1 %c7, label %.b1, label %.exit, !prof !3
+
+.exit:
+ ret i32 10
+}
+
+; For single-BB loop with <=1 avg trip count, sink load to b1
+; CHECK: t4
+; CHECK: .preheader:
+; CHECK-not: load i32, i32* @g
+; CHECK: .b1:
+; CHECK: load i32, i32* @g
+; CHECK: .exit:
+define i32 @t4(i32, i32) #0 {
+.preheader:
+ %invariant = load i32, i32* @g
+ br label %.b1
+
+.b1:
+ %iv = phi i32 [ %t1, %.b1 ], [ 0, %.preheader ]
+ %t1 = add nsw i32 %invariant, %iv
+ %c1 = icmp sgt i32 %iv, %0
+ br i1 %c1, label %.b1, label %.exit, !prof !1
+
+.exit:
+ ret i32 10
+}
+
+; b1
+; / \
+; b2 b6
+; / \ |
+; b3 b4 |
+; \ / |
+; b5 |
+; \ /
+; b7
+; preheader: 1000
+; b2: 15
+; b3: 7
+; b4: 7
+; There is alias store in loop, do not sink load
+; CHECK: t5
+; CHECK: .preheader:
+; CHECK: load i32, i32* @g
+; CHECK: .b1:
+; CHECK-NOT: load i32, i32* @g
+define i32 @t5(i32, i32*) #0 {
+ %3 = icmp eq i32 %0, 0
+ br i1 %3, label %.exit, label %.preheader
+
+.preheader:
+ %invariant = load i32, i32* @g
+ br label %.b1
+
+.b1:
+ %iv = phi i32 [ %t7, %.b7 ], [ 0, %.preheader ]
+ %c1 = icmp sgt i32 %iv, %0
+ br i1 %c1, label %.b2, label %.b6, !prof !1
+
+.b2:
+ %c2 = icmp sgt i32 %iv, 1
+ br i1 %c2, label %.b3, label %.b4
+
+.b3:
+ %t3 = sub nsw i32 %invariant, %iv
+ br label %.b5
+
+.b4:
+ %t4 = add nsw i32 %invariant, %iv
+ br label %.b5
+
+.b5:
+ %p5 = phi i32 [ %t3, %.b3 ], [ %t4, %.b4 ]
+ %t5 = mul nsw i32 %p5, 5
+ br label %.b7
+
+.b6:
+ %t6 = call i32 @foo()
+ br label %.b7
+
+.b7:
+ %p7 = phi i32 [ %t6, %.b6 ], [ %t5, %.b5 ]
+ %t7 = add nuw nsw i32 %iv, 1
+ %c7 = icmp eq i32 %t7, %p7
+ br i1 %c7, label %.b1, label %.exit, !prof !3
+
+.exit:
+ ret i32 10
+}
+
+declare i32 @foo()
+
+!1 = !{!"branch_weights", i32 1, i32 2000}
+!2 = !{!"branch_weights", i32 2000, i32 1}
+!3 = !{!"branch_weights", i32 100, i32 1}