--- /dev/null
+///////////////////////////////////////////////////////////////////////////////////////
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+
+// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
+
+// AUTHOR:
+// Rahul Kavi rahulkavi[at]live[at]com
+//
+
+// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
+
+// # You are free to use, change, or redistribute the code in any way you wish for
+// # non-commercial purposes, but please maintain the name of the original author.
+// # This code comes with no warranty of any kind.
+
+// #
+// # You are free to use, change, or redistribute the code in any way you wish for
+// # non-commercial purposes, but please maintain the name of the original author.
+// # This code comes with no warranty of any kind.
+
+// # Logistic Regression ALGORITHM
+
+
+// License Agreement
+// For Open Source Computer Vision Library
+
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+
+#include <iostream>
+
+#include <opencv2/core/core.hpp>
+#include <opencv2/ml/ml.hpp>
+#include <opencv2/highgui/highgui.hpp>
+
+
+using namespace std;
+using namespace cv;
+
+
+int main()
+{
+ Mat data_temp, labels_temp;
+ Mat data, labels;
+
+ Mat data_train, data_test;
+ Mat labels_train, labels_test;
+
+ Mat responses, result;
+
+ FileStorage f;
+
+ cout<<"*****************************************************************************************"<<endl;
+ cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl;
+ cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl;
+ cout<<"*****************************************************************************************\n\n"<<endl;
+
+ cout<<"loading the dataset\n"<<endl;
+
+ f.open("data01.xml", FileStorage::READ);
+
+ f["datamat"] >> data_temp;
+ f["labelsmat"] >> labels_temp;
+
+ data_temp.convertTo(data, CV_32F);
+ labels_temp.convertTo(labels, CV_32F);
+
+ for(int i =0;i<data.rows;i++)
+ {
+ if(i%2 ==0)
+ {
+ data_train.push_back(data.row(i));
+ labels_train.push_back(labels.row(i));
+ }
+ else
+ {
+ data_test.push_back(data.row(i));
+ labels_test.push_back(labels.row(i));
+ }
+ }
+
+ cout<<"training samples per class: "<<data_train.rows/2<<endl;
+ cout<<"testing samples per class: "<<data_test.rows/2<<endl;
+
+ // display sample image
+ Mat img_disp1 = data_train.row(2).reshape(0,28).t();
+ Mat img_disp2 = data_train.row(18).reshape(0,28).t();
+
+ imshow("digit 0", img_disp1);
+ imshow("digit 1", img_disp2);
+
+ cout<<"initializing Logisitc Regression Parameters\n"<<endl;
+
+ LogisticRegressionParams params = LogisticRegressionParams(0.001, 10, LogisticRegression::REG_L2, 1, LogisticRegression::BATCH, 1);
+
+ cout<<"training Logisitc Regression classifier\n"<<endl;
+
+ LogisticRegression lr_(data_train, labels_train, params);
+ lr_.predict(data_test, responses);
+ labels_test.convertTo(labels_test, CV_32S);
+
+ cout<<"Original Label :: Predicted Label"<<endl;
+ result = (labels_test == responses)/255;
+
+ for(int i=0;i<labels_test.rows;i++)
+ {
+ cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
+ }
+
+ // calculate accuracy
+ cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
+ cout<<"saving the classifier"<<endl;
+
+ // save the classfier
+ lr_.save("NewLR_Trained.xml");
+
+ // load the classifier onto new object
+ LogisticRegression lr2;
+ cout<<"loading a new classifier"<<endl;
+
+ lr2.load("NewLR_Trained.xml");
+
+ Mat responses2;
+
+ // predict using loaded classifier
+ cout<<"predicting the dataset using the loaded classfier\n"<<endl;
+
+ lr2.predict(data_test, responses2);
+
+ // calculate accuracy
+ cout<<"accuracy using loaded classifier: "<<100 * (float)cv::countNonZero(labels_test == responses2)/responses2.rows<<"%"<<endl;
+ waitKey(0);
+
+ return 0;
+}
+++ /dev/null
-///////////////////////////////////////////////////////////////////////////////////////
-// sample_logistic_regression.cpp
-// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
-
-// By downloading, copying, installing or using the software you agree to this license.
-// If you do not agree to this license, do not download, install,
-// copy or use the software.
-
-// This is a sample program demostrating classification of digits 0 and 1 using Logistic Regression
-
-// AUTHOR:
-// Rahul Kavi rahulkavi[at]live[at]com
-//
-
-#include <iostream>
-
-#include <opencv2/core/core.hpp>
-#include <opencv2/ml/ml.hpp>
-#include <opencv2/highgui/highgui.hpp>
-
-
-using namespace std;
-using namespace cv;
-
-
-int main()
-{
- Mat data_temp, labels_temp;
- Mat data, labels;
-
- Mat data_train, data_test;
- Mat labels_train, labels_test;
-
- Mat responses, result;
-
- FileStorage f;
-
- cout<<"*****************************************************************************************"<<endl;
- cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl;
- cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl;
- cout<<"*****************************************************************************************\n\n"<<endl;
-
- cout<<"loading the dataset\n"<<endl;
-
- f.open("data01.xml", FileStorage::READ);
-
- f["datamat"] >> data_temp;
- f["labelsmat"] >> labels_temp;
-
- data_temp.convertTo(data, CV_32F);
- labels_temp.convertTo(labels, CV_32F);
-
- for(int i =0;i<data.rows;i++)
- {
- if(i%2 ==0)
- {
- data_train.push_back(data.row(i));
- labels_train.push_back(labels.row(i));
- }
- else
- {
- data_test.push_back(data.row(i));
- labels_test.push_back(labels.row(i));
- }
- }
-
- cout<<"training samples per class: "<<data_train.rows/2<<endl;
- cout<<"testing samples per class: "<<data_test.rows/2<<endl;
-
- // display sample image
- Mat img_disp1 = data_train.row(2).reshape(0,28).t();
- Mat img_disp2 = data_train.row(18).reshape(0,28).t();
-
- imshow("digit 0", img_disp1);
- imshow("digit 1", img_disp2);
-
- cout<<"initializing Logisitc Regression Parameters\n"<<endl;
-
- CvLR_TrainParams params = CvLR_TrainParams();
-
- params.alpha = 0.001;
- params.num_iters = 10;
- params.norm = CvLR::REG_L2;
- params.regularized = 1;
- params.train_method = CvLR::BATCH;
-
- cout<<"training Logisitc Regression classifier\n"<<endl;
-
- CvLR lr_(data_train, labels_train, params);
- lr_.predict(data_test, responses);
- labels_test.convertTo(labels_test, CV_32S);
-
- cout<<"Original Label :: Predicted Label"<<endl;
- result = (labels_test == responses)/255;
-
- for(int i=0;i<labels_test.rows;i++)
- {
- cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
- }
-
- // calculate accuracy
- cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
- cout<<"saving the classifier"<<endl;
-
- // save the classfier
- lr_.save("NewLR_Trained.xml");
-
- // load the classifier onto new object
- CvLR lr2;
- cout<<"loading a new classifier"<<endl;
-
- lr2.load("NewLR_Trained.xml");
-
- Mat responses2;
-
- // predict using loaded classifier
- cout<<"predicting the dataset using the loaded classfier\n"<<endl;
-
- lr2.predict(data_test, responses2);
-
- // calculate accuracy
- result = (labels_test == responses2)/255;
- cout<<"accuracy using loaded classifier: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
- waitKey(0);
-
- return 0;
-}