*/
adapter->name = pci_name(pdev);
adapter->msg_enable = DFLT_MSG_ENABLE;
+
+ /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
+ * Ingress Packet Data to Free List Buffers in order to allow for
+ * chipset performance optimizations between the Root Complex and
+ * Memory Controllers. (Messages to the associated Ingress Queue
+ * notifying new Packet Placement in the Free Lists Buffers will be
+ * send without the Relaxed Ordering Attribute thus guaranteeing that
+ * all preceding PCIe Transaction Layer Packets will be processed
+ * first.) But some Root Complexes have various issues with Upstream
+ * Transaction Layer Packets with the Relaxed Ordering Attribute set.
+ * The PCIe devices which under the Root Complexes will be cleared the
+ * Relaxed Ordering bit in the configuration space, So we check our
+ * PCIe configuration space to see if it's flagged with advice against
+ * using Relaxed Ordering.
+ */
+ if (!pcie_relaxed_ordering_enabled(pdev))
+ adapter->flags |= ROOT_NO_RELAXED_ORDERING;
+
err = adap_init0(adapter);
if (err)
goto err_unmap_bar;
struct port_info *pi = netdev_priv(dev);
struct fw_iq_cmd cmd, rpl;
int ret, iqandst, flsz = 0;
+ int relaxed = !(adapter->flags & ROOT_NO_RELAXED_ORDERING);
/*
* If we're using MSI interrupts and we're not initializing the
cpu_to_be32(
FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
FW_IQ_CMD_FL0PACKEN_F |
+ FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
+ FW_IQ_CMD_FL0DATARO_V(relaxed) |
FW_IQ_CMD_FL0PADEN_F);
/* In T6, for egress queue type FL there is internal overhead