NFC: Fix some post-review nits for the Tosa dialect.
authorStella Laurenzo <stellaraccident@gmail.com>
Sat, 7 Nov 2020 16:54:31 +0000 (08:54 -0800)
committerStella Laurenzo <stellaraccident@gmail.com>
Sat, 7 Nov 2020 16:54:31 +0000 (08:54 -0800)
* Moved various loose functions to either the mlir::tosa namespace or made static
* Fixed an unused variable warning in TosaMakeBroadcastable.cpp.

mlir/include/mlir/Dialect/Tosa/IR/TosaInterfaces.td
mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
mlir/include/mlir/Dialect/Tosa/Transforms/Passes.h
mlir/include/mlir/Dialect/Tosa/Utils/QuantUtils.h
mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
mlir/lib/Dialect/Tosa/Utils/QuantUtils.cpp

index df4aa70..5dfa1e6 100644 (file)
@@ -17,8 +17,7 @@ include "mlir/IR/OpBase.td"
 
 def TosaOpInterface : OpInterface<"TosaOp"> {
   let description = [{
-    Implements interfaces implemented by ops that correspond to the Tosa
-    specification.
+    Implemented by ops that correspond to the Tosa specification.
   }];
 }
 
index 74c60b7..5701e6e 100644 (file)
@@ -114,9 +114,9 @@ def Tosa_ConvOpQuantInfoBuilder : OpBuilderDAG<
   (ins "Type":$outputType, "Value":$input, "Value":$weight, "Value":$bias,
        "ArrayAttr":$pad, "ArrayAttr":$stride, "ArrayAttr":$dilation),
   [{
-    ::buildConvOpWithQuantInfo($_builder, $_state, outputType,
-                               input, weight, bias,
-                               pad, stride, dilation);
+    buildConvOpWithQuantInfo($_builder, $_state, outputType,
+                             input, weight, bias,
+                             pad, stride, dilation);
   }]>;
 
 // Handles tosa.transpose_conv2d which has an outpad and output shape attribute.
@@ -125,10 +125,10 @@ def Tosa_TransConvOpQuantInfoBuilder : OpBuilderDAG<
        "ArrayAttr":$outpad, "ArrayAttr":$stride, "ArrayAttr":$dilation,
        "ArrayAttr":$outputShape),
   [{
-    ::buildTransConvOpWithQuantInfo($_builder, $_state, outputType,
-                                    input, weight, bias,
-                                    outpad, stride, dilation,
-                                    outputShape);
+    buildTransConvOpWithQuantInfo($_builder, $_state, outputType,
+                                  input, weight, bias,
+                                  outpad, stride, dilation,
+                                  outputShape);
   }]>;
 
 // The tosa.fully_connected op has its own builder as it does not have
@@ -136,8 +136,8 @@ def Tosa_TransConvOpQuantInfoBuilder : OpBuilderDAG<
 def Tosa_FCOpQuantInfoBuilder : OpBuilderDAG<
   (ins "Type":$outputType, "Value":$input, "Value":$weight, "Value":$bias),
   [{
-    ::buildFCOpWithQuantInfo($_builder, $_state, outputType,
-                             input, weight, bias);
+    buildFCOpWithQuantInfo($_builder, $_state, outputType,
+                           input, weight, bias);
   }]>;
 
 // The tosa.matmul op is also intended to be generated where a fully_connected
@@ -147,8 +147,8 @@ def Tosa_FCOpQuantInfoBuilder : OpBuilderDAG<
 def Tosa_MatMulOpQuantInfoBuilder : OpBuilderDAG<
   (ins "Type":$outputType, "Value":$a, "Value":$b),
   [{
-    ::buildMatMulOpWithQuantInfo($_builder, $_state, outputType,
-                                 a, b);
+    buildMatMulOpWithQuantInfo($_builder, $_state, outputType,
+                               a, b);
   }]>;
 
 // Both the tosa.avg_pool2d and unary ops use the same
@@ -158,8 +158,8 @@ def Tosa_AvgPool2dOpQuantInfoBuilder : OpBuilderDAG<
   (ins "Type":$outputType, "Value":$input, "ArrayAttr":$kernel,
        "ArrayAttr":$stride, "ArrayAttr":$pad),
   [{
-    ::buildAvgPool2dOpWithQuantInfo($_builder, $_state, outputType,
-                                    input, kernel, stride, pad);
+    buildAvgPool2dOpWithQuantInfo($_builder, $_state, outputType,
+                                  input, kernel, stride, pad);
   }]>;
 
 // This builder is called on single-parameter unary operators that have a scale
@@ -168,7 +168,7 @@ def Tosa_AvgPool2dOpQuantInfoBuilder : OpBuilderDAG<
 def Tosa_UnaryOpQuantInfoBuilder : OpBuilderDAG<
   (ins "Type":$outputType, "Value":$input),
   [{
-    ::buildUnaryOpWithQuantInfo($_builder, $_state, outputType, input);
+    buildUnaryOpWithQuantInfo($_builder, $_state, outputType, input);
   }]>;
 
 // This builder is called on the TOSA pad operator that needs to create its own
@@ -177,8 +177,8 @@ def Tosa_UnaryOpQuantInfoBuilder : OpBuilderDAG<
 def Tosa_PadOpQuantInfoBuilder : OpBuilderDAG<
   (ins "Type":$outputType, "Value":$input, "Value":$paddings),
   [{
-    ::buildPadOpWithQuantInfo($_builder, $_state, outputType,
-                              input, paddings);
+    buildPadOpWithQuantInfo($_builder, $_state, outputType,
+                            input, paddings);
   }]>;
 
 //===----------------------------------------------------------------------===//
index e9dc5eb..43e8bfa 100644 (file)
@@ -104,7 +104,7 @@ def Tosa_Conv2DOp : Tosa_Op<"conv2d", [NoSideEffect]> {
 
   let builders = [Tosa_ConvOpQuantInfoBuilder];
 
-  let verifier = [{ return ::verifyConvOp(*this); }];
+  let verifier = [{ return verifyConvOp(*this); }];
 }
 
 //===----------------------------------------------------------------------===//
@@ -134,7 +134,7 @@ def Tosa_Conv3DOp : Tosa_Op<"conv3d", [NoSideEffect]> {
 
   let builders = [Tosa_ConvOpQuantInfoBuilder];
 
-  let verifier = [{ return ::verifyConvOp(*this); }];
+  let verifier = [{ return verifyConvOp(*this); }];
 }
 
 //===----------------------------------------------------------------------===//
@@ -165,7 +165,7 @@ def Tosa_DepthwiseConv2DOp : Tosa_Op<"depthwise_conv2d", [NoSideEffect]> {
 
   let builders = [Tosa_ConvOpQuantInfoBuilder];
 
-  let verifier = [{ return ::verifyConvOp(*this); }];
+  let verifier = [{ return verifyConvOp(*this); }];
 }
 
 //===----------------------------------------------------------------------===//
@@ -191,7 +191,7 @@ def Tosa_FullyConnectedOp : Tosa_Op<"fully_connected", [NoSideEffect]> {
 
   let builders = [Tosa_FCOpQuantInfoBuilder];
 
-  let verifier = [{ return ::verifyConvOp(*this); }];
+  let verifier = [{ return verifyConvOp(*this); }];
 }
 
 //===----------------------------------------------------------------------===//
index 7742281..b9032df 100644 (file)
@@ -16,7 +16,6 @@
 #include "mlir/Pass/Pass.h"
 
 namespace mlir {
-
 namespace tosa {
 
 std::unique_ptr<Pass> createTosaMakeBroadcastablePass();
index d4e2016..0ebec4e 100644 (file)
@@ -19,8 +19,8 @@
 #include "mlir/Dialect/Quant/FakeQuantSupport.h"
 #include "mlir/Dialect/Quant/UniformSupport.h"
 
-using namespace mlir;
-using namespace mlir::tosa;
+namespace mlir {
+namespace tosa {
 
 //===----------------------------------------------------------------------===//
 // Utililty functions to support quantization handling in Tosa.
@@ -65,4 +65,7 @@ TypeAttr buildQTypeAttrFromMinMax(OpBuilder builder, Type inputDType,
                                   IntegerAttr quantBits, int filterQuantDim,
                                   bool isSigned, BoolAttr narrowRange);
 
+} // namespace tosa
+} // namespace mlir
+
 #endif // DIALECT_TOSA_UTILS_QUANT_UTILS_H
index 9e27cbe..daf10b2 100644 (file)
@@ -93,7 +93,8 @@ void TosaDialect::initialize() {
 // TOSA Operator Verifiers.
 //===----------------------------------------------------------------------===//
 
-template <typename T> static LogicalResult verifyConvOp(T op) {
+template <typename T>
+static LogicalResult verifyConvOp(T op) {
   // All TOSA conv ops have an input() and weight().
   auto inputType = op.input().getType().template dyn_cast<RankedTensorType>();
   auto weightType = op.weight().getType().template dyn_cast<RankedTensorType>();
@@ -127,10 +128,10 @@ template <typename T> static LogicalResult verifyConvOp(T op) {
 /// This builder is called on all convolution operators except TransposeConv,
 /// which has specialized output shape semantics. The builder also defines the
 /// bitwidth of the output given the bit width of the input & weight content.
-void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                              Type outputType, Value input, Value weight,
-                              Value bias, ArrayAttr pad, ArrayAttr stride,
-                              ArrayAttr dilation) {
+static void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
+                                     Type outputType, Value input, Value weight,
+                                     Value bias, ArrayAttr pad,
+                                     ArrayAttr stride, ArrayAttr dilation) {
 
   result.addOperands({input, weight, bias});
   result.addAttribute("pad", pad);
@@ -148,11 +149,11 @@ void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 }
 
 /// Handles tosa.transpose_conv2d which has outpad and output shape attributes.
-void buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                                   Type outputType, Value input, Value weight,
-                                   Value bias, ArrayAttr outpad,
-                                   ArrayAttr stride, ArrayAttr dilation,
-                                   ArrayAttr outputShape) {
+static void
+buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
+                              Type outputType, Value input, Value weight,
+                              Value bias, ArrayAttr outpad, ArrayAttr stride,
+                              ArrayAttr dilation, ArrayAttr outputShape) {
   result.addOperands({input, weight, bias});
   result.addAttribute("out_pad", outpad);
   result.addAttribute("stride", stride);
@@ -171,9 +172,9 @@ void buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 
 /// The tosa.fully_connected op has its own builder as it does not have
 /// strides/dilation/padding.
-void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                            Type outputType, Value input, Value weight,
-                            Value bias) {
+static void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
+                                   Type outputType, Value input, Value weight,
+                                   Value bias) {
 
   result.addOperands({input, weight, bias});
   auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
@@ -190,8 +191,9 @@ void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 /// op must be constructed where the weight is not a constant. In this case,
 /// the fully_connected op must be expressed using matmul.
 /// TODO: Add link to the leglization document explaining this.
-void buildMatMulOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                                Type outputType, Value a, Value b) {
+static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
+                                       OperationState &result, Type outputType,
+                                       Value a, Value b) {
   result.addOperands({a, b});
   auto quantAttr = ::buildMatMulOpQuantizationAttr(builder, a, b);
 
@@ -227,10 +229,11 @@ void buildMatMulOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 /// Both the tosa.avg_pool2d and unary ops use the same UnaruOpQuantizationAttr
 /// but avg_pool operator has its own builder as it has additional parameters
 /// not part of the unary ops.
-void buildAvgPool2dOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                                   Type outputType, Value input,
-                                   ArrayAttr kernel, ArrayAttr stride,
-                                   ArrayAttr pad) {
+static void buildAvgPool2dOpWithQuantInfo(OpBuilder &builder,
+                                          OperationState &result,
+                                          Type outputType, Value input,
+                                          ArrayAttr kernel, ArrayAttr stride,
+                                          ArrayAttr pad) {
   result.addOperands(input);
   result.addAttribute("kernel", kernel);
   result.addAttribute("stride", stride);
@@ -244,8 +247,9 @@ void buildAvgPool2dOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 /// This builder is called on single-parameter unary operators that have scale
 /// relationship between their input and output, expressed by the
 /// UnaryOpQuantizationAttr.
-void buildUnaryOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                               Type outputType, Value input) {
+static void buildUnaryOpWithQuantInfo(OpBuilder &builder,
+                                      OperationState &result, Type outputType,
+                                      Value input) {
   result.addOperands(input);
   auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType);
   if (quantAttr)
@@ -256,8 +260,9 @@ void buildUnaryOpWithQuantInfo(OpBuilder &builder, OperationState &result,
 /// This builder is called on TOSA pad operator that needs to create its own
 /// OptionalAttr quantization_attr parameter to scale the padding values
 /// correctly.
-void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result,
-                             Type outputType, Value input, Value paddings) {
+static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result,
+                                    Type outputType, Value input,
+                                    Value paddings) {
   result.addOperands({input, paddings});
   auto quantAttr = buildPadOpQuantizationAttr(builder, input);
   if (quantAttr)
index 95076eb..ff1be9f 100644 (file)
@@ -128,8 +128,6 @@ static int reshapeLowerToHigher(PatternRewriter &rewriter, Location loc,
   }
 
   ArrayRef<int64_t> outputRankShape = outputType.getShape();
-  ArrayRef<int64_t> higherRankShape =
-      higherTensorValue.getType().cast<RankedTensorType>().getShape();
   ArrayRef<int64_t> lowerRankShape =
       lowerTensorValue.getType().cast<RankedTensorType>().getShape();
 
index 16ddd9f..af3d2be 100644 (file)
@@ -19,8 +19,9 @@ using namespace mlir::tosa;
 /// From a scale value, generates multiplier and shift values where
 /// mantissa is in [-1.0,-0.5] or [0.5, 1.0] such that
 /// multiplier = mantissa*2^shift for 16-bit scaling.
-void computeMultiplierAndShiftTosaScale16(double scale, int32_t &multiplier,
-                                          int32_t &shift) {
+static void computeMultiplierAndShiftTosaScale16(double scale,
+                                                 int32_t &multiplier,
+                                                 int32_t &shift) {
 
   const double mantissa = std::frexp(scale, &shift);
   auto shiftedM = std::round(mantissa * (int64_t(1) << 15));
@@ -47,8 +48,9 @@ void computeMultiplierAndShiftTosaScale16(double scale, int32_t &multiplier,
 /// From a scale value, generates multiplier and shift values where
 /// mantissa is in [-1.0,-0.5] or [0.5, 1.0] such that
 /// multiplier = mantissa*2^shift for 32-bit scaling.
-void computeMultiplierAndShiftTosaScale32(double scale, int32_t &multiplier,
-                                          int32_t &shift) {
+static void computeMultiplierAndShiftTosaScale32(double scale,
+                                                 int32_t &multiplier,
+                                                 int32_t &shift) {
 
   const double mantissa = std::frexp(scale, &shift);
   auto shiftedM = std::round(mantissa * (int64_t(1) << 31));
@@ -72,8 +74,8 @@ void computeMultiplierAndShiftTosaScale32(double scale, int32_t &multiplier,
 }
 
 /// Generates a quantized multiplier/shift from double.
-void computeMultiplierAndShift(double scale, int32_t &multiplier,
-                               int32_t &shift, int32_t scaleWidth) {
+void mlir::tosa::computeMultiplierAndShift(double scale, int32_t &multiplier,
+                                           int32_t &shift, int32_t scaleWidth) {
 
   switch (scaleWidth) {
   case 16:
@@ -96,8 +98,9 @@ void computeMultiplierAndShift(double scale, int32_t &multiplier,
 /// ConvOpQuantInfoBuilder/TransConvOpQuantInfoBuilder:
 /// input_zp: input zeropoint
 /// weight_zp: weight zeropoint.
-ConvOpQuantizationAttr buildConvOpQuantizationAttr(OpBuilder &builder,
-                                                   Value input, Value weight) {
+ConvOpQuantizationAttr
+mlir::tosa::buildConvOpQuantizationAttr(OpBuilder &builder, Value input,
+                                        Value weight) {
 
   auto inputType = input.getType().dyn_cast<RankedTensorType>();
   auto weightType = weight.getType().dyn_cast<RankedTensorType>();
@@ -144,8 +147,9 @@ ConvOpQuantizationAttr buildConvOpQuantizationAttr(OpBuilder &builder,
 /// MatMulOpQuantInfoBuilder:
 /// aZp: input a zeropoint
 /// bZp: input b zeropoint.
-MatMulOpQuantizationAttr buildMatMulOpQuantizationAttr(OpBuilder &builder,
-                                                       Value a, Value b) {
+MatMulOpQuantizationAttr
+mlir::tosa::buildMatMulOpQuantizationAttr(OpBuilder &builder, Value a,
+                                          Value b) {
 
   auto aType = a.getType().dyn_cast<RankedTensorType>();
   auto bType = b.getType().dyn_cast<RankedTensorType>();
@@ -179,9 +183,9 @@ MatMulOpQuantizationAttr buildMatMulOpQuantizationAttr(OpBuilder &builder,
 /// UnaryOpQuantInfoBuilder:
 /// inputZp: input zeropoint
 /// outputZp: output zeropoint.
-UnaryOpQuantizationAttr buildUnaryOpQuantizationAttr(OpBuilder &builder,
-                                                     Value input,
-                                                     Type outputRawType) {
+UnaryOpQuantizationAttr
+mlir::tosa::buildUnaryOpQuantizationAttr(OpBuilder &builder, Value input,
+                                         Type outputRawType) {
 
   auto inputType = input.getType().dyn_cast<RankedTensorType>();
   auto outputType = outputRawType.dyn_cast<RankedTensorType>();
@@ -213,8 +217,8 @@ UnaryOpQuantizationAttr buildUnaryOpQuantizationAttr(OpBuilder &builder,
 
 /// Builds PadOpQuantizationAttr, called from PadOpQuantInfoBuilder:
 /// inputZp: input zeropoint.
-PadOpQuantizationAttr buildPadOpQuantizationAttr(OpBuilder &builder,
-                                                 Value input) {
+PadOpQuantizationAttr mlir::tosa::buildPadOpQuantizationAttr(OpBuilder &builder,
+                                                             Value input) {
 
   auto inputType = input.getType().dyn_cast<RankedTensorType>();
 
@@ -238,8 +242,8 @@ PadOpQuantizationAttr buildPadOpQuantizationAttr(OpBuilder &builder,
 
 /// Builds output type for a quantized ConvOp with the right bitwidth.
 /// This is called by the builder when dealing with quantized content.
-Type buildConvOpResultTypeInfo(OpBuilder &builder, Type outputType, Value input,
-                               Value weight) {
+Type mlir::tosa::buildConvOpResultTypeInfo(OpBuilder &builder, Type outputType,
+                                           Value input, Value weight) {
 
   auto inputType = input.getType().dyn_cast<RankedTensorType>();
   auto weightType = weight.getType().dyn_cast<RankedTensorType>();
@@ -272,10 +276,10 @@ Type buildConvOpResultTypeInfo(OpBuilder &builder, Type outputType, Value input,
 }
 
 /// Builds Tosa quantization attributes from min/max values.
-Type buildQTypeFromMinMax(OpBuilder builder, Type inputDType, Attribute minAttr,
-                          Attribute maxAttr, IntegerAttr quantBits,
-                          int filterQuantDim, bool isSigned,
-                          BoolAttr narrowRange) {
+Type mlir::tosa::buildQTypeFromMinMax(OpBuilder builder, Type inputDType,
+                                      Attribute minAttr, Attribute maxAttr,
+                                      IntegerAttr quantBits, int filterQuantDim,
+                                      bool isSigned, BoolAttr narrowRange) {
 
   quant::QuantizedType retType;
 
@@ -339,10 +343,11 @@ Type buildQTypeFromMinMax(OpBuilder builder, Type inputDType, Attribute minAttr,
 }
 
 /// Builds Tosa quantization attributes from min/max values.
-TypeAttr buildQTypeAttrFromMinMax(OpBuilder builder, Type inputDtype,
-                                  Attribute minAttr, Attribute maxAttr,
-                                  IntegerAttr quantBits, int filterQuantDim,
-                                  bool isSigned, BoolAttr narrowRange) {
+TypeAttr
+mlir::tosa::buildQTypeAttrFromMinMax(OpBuilder builder, Type inputDtype,
+                                     Attribute minAttr, Attribute maxAttr,
+                                     IntegerAttr quantBits, int filterQuantDim,
+                                     bool isSigned, BoolAttr narrowRange) {
 
   return TypeAttr::get(buildQTypeFromMinMax(builder, inputDtype, minAttr,
                                             maxAttr, quantBits, filterQuantDim,