//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
+// Dachuan Zhao, dachuan@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
}
}
#endif
+
+__kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset,
+ __global float *dst, int dst_step, int dst_offset,
+ int rows, int cols, int dst_step1, float scalar)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ if (x < cols && y < rows)
+ {
+ int src1_index = mad24(y, src1_step, (x << 2) + src1_offset);
+ int dst_index = mad24(y, dst_step, (x << 2) + dst_offset);
+
+ float data1 = *((__global float *)((__global char *)src1 + src1_index));
+ float tmp = data1 * scalar;
+
+ *((__global float *)((__global char *)dst + dst_index)) = tmp;
+ }
+}
\ No newline at end of file
//
// @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com
+// Yao Wang, bitwangyaoyao@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//#pragma OPENCL EXTENSION cl_amd_printf : enable
-__kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset,
- __global float *dst, int dst_step, int dst_offset,
- int rows, int cols, int dst_step1, float scalar)
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
-
- if (x < cols && y < rows)
- {
- int src1_index = mad24(y, src1_step, (x << 2) + src1_offset);
- int dst_index = mad24(y, dst_step, (x << 2) + dst_offset);
-
- float data1 = *((__global float *)((__global char *)src1 + src1_index));
- float tmp = data1 * scalar;
-
- *((__global float *)((__global char *)dst + dst_index)) = tmp;
- }
-}
-
-
__kernel void calcSharrDeriv_vertical_C1_D0(__global const uchar* src, int srcStep, int rows, int cols, int cn, __global short* dx_buf, int dx_bufStep, __global short* dy_buf, int dy_bufStep)
{
const int x = get_global_id(0);
return src_row[(int)x] * iw00 + src_row[(int)x + cn] * iw01 + src_row1[(int)x] * iw10 + src_row1[(int)x + cn] * iw11, W_BITS1 - 5;
}
+#define BUFFER 64
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
{
smem1[tid] = val1;
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
+#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
+#endif
if (tid < 32)
{
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
+#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
+#endif
if (tid < 32)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
+#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
+#endif
if (tid < 32)
{
}
#define SCALE (1.0f / (1 << 20))
+#define THRESHOLD 0.01f
+#define DIMENSION 21
// Image read mode
__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR;
+void SetPatch(image2d_t I, float x, float y,
+ float* Pch, float* Dx, float* Dy,
+ float* A11, float* A12, float* A22)
+{
+ *Pch = read_imagef(I, sampler, (float2)(x, y)).x;
+
+ float dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
+ (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x);
+
+ float dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
+ (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x);
+
+
+ *Dx = dIdx;
+ *Dy = dIdy;
+
+ *A11 += dIdx * dIdx;
+ *A12 += dIdx * dIdy;
+ *A22 += dIdy * dIdy;
+}
+
+void GetPatch(image2d_t J, float x, float y,
+ float* Pch, float* Dx, float* Dy,
+ float* b1, float* b2)
+{
+ float J_val = read_imagef(J, sampler, (float2)(x, y)).x;
+ float diff = (J_val - *Pch) * 32.0f;
+ *b1 += diff**Dx;
+ *b2 += diff**Dy;
+}
+
+void GetError(image2d_t J, const float x, const float y, const float* Pch, float* errval)
+{
+ float diff = read_imagef(J, sampler, (float2)(x,y)).x-*Pch;
+ *errval += fabs(diff);
+}
+
+void SetPatch4(image2d_t I, const float x, const float y,
+ float4* Pch, float4* Dx, float4* Dy,
+ float* A11, float* A12, float* A22)
+{
+ *Pch = read_imagef(I, sampler, (float2)(x, y));
+
+ float4 dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)) -
+ (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)) + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)));
+
+ float4 dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)) + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)) -
+ (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)));
+
+
+ *Dx = dIdx;
+ *Dy = dIdy;
+ float4 sqIdx = dIdx * dIdx;
+ *A11 += sqIdx.x + sqIdx.y + sqIdx.z;
+ sqIdx = dIdx * dIdy;
+ *A12 += sqIdx.x + sqIdx.y + sqIdx.z;
+ sqIdx = dIdy * dIdy;
+ *A22 += sqIdx.x + sqIdx.y + sqIdx.z;
+}
+
+void GetPatch4(image2d_t J, const float x, const float y,
+ const float4* Pch, const float4* Dx, const float4* Dy,
+ float* b1, float* b2)
+{
+ float4 J_val = read_imagef(J, sampler, (float2)(x, y));
+ float4 diff = (J_val - *Pch) * 32.0f;
+ float4 xdiff = diff* *Dx;
+ *b1 += xdiff.x + xdiff.y + xdiff.z;
+ xdiff = diff* *Dy;
+ *b2 += xdiff.x + xdiff.y + xdiff.z;
+}
+
+void GetError4(image2d_t J, const float x, const float y, const float4* Pch, float* errval)
+{
+ float4 diff = read_imagef(J, sampler, (float2)(x,y))-*Pch;
+ *errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
+}
+
+
__kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
- __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status/*, __global float* err*/, const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr, char GET_MIN_EIGENVALS)
+ __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
+ const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
- __local float smem1[256];
- __local float smem2[256];
- __local float smem3[256];
+ __local float smem1[BUFFER];
+ __local float smem2[BUFFER];
+ __local float smem3[BUFFER];
+
+ unsigned int xid=get_local_id(0);
+ unsigned int yid=get_local_id(1);
+ unsigned int gid=get_group_id(0);
+ unsigned int xsize=get_local_size(0);
+ unsigned int ysize=get_local_size(1);
+ int xBase, yBase, i, j, k;
- int c_halfWin_x = (c_winSize_x - 1) / 2;
- int c_halfWin_y = (c_winSize_y - 1) / 2;
+ float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);
- const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
+ const int tid = mad24(yid, xsize, xid);
- float2 prevPt = prevPts[get_group_id(0)];
- prevPt.x *= (1.0f / (1 << level));
- prevPt.y *= (1.0f / (1 << level));
+ float2 prevPt = prevPts[gid] / (1 << level);
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
- if (level == 0 && tid == 0)
+ if (tid == 0 && level == 0)
{
- status[get_group_id(0)] = 0;
-
- //if (calcErr)
- // err[get_group_id(0)] = 0;
+ status[gid] = 0;
}
return;
}
-
- prevPt.x -= c_halfWin_x;
- prevPt.y -= c_halfWin_y;
+ prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A12 = 0;
float A22 = 0;
- float I_patch[21][21];
- float dIdx_patch[21][21];
- float dIdy_patch[21][21];
+ float I_patch[3][3];
+ float dIdx_patch[3][3];
+ float dIdy_patch[3][3];
- for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
- {
- for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
+ yBase=yid;
{
- float x = (prevPt.x + xBase + 0.5f);
- float y = (prevPt.y + yBase + 0.5f);
-
- I_patch[i][j] = read_imagef(I, sampler, (float2)(x, y)).x;
-
- float dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
- (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x);
-
- float dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
- (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x);
-
- dIdx_patch[i][j] = dIdx;
- dIdy_patch[i][j] = dIdy;
-
- A11 += dIdx * dIdx;
- A12 += dIdx * dIdy;
- A22 += dIdy * dIdy;
+ xBase=xid;
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
+ &A11, &A12, &A22);
+
+
+ xBase+=xsize;
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
+ &A11, &A12, &A22);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
+ &A11, &A12, &A22);
+ }
+ yBase+=ysize;
+ {
+ xBase=xid;
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
+ &A11, &A12, &A22);
+
+
+ xBase+=xsize;
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
+ &A11, &A12, &A22);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
+ &A11, &A12, &A22);
+ }
+ yBase+=ysize;
+ if(yBase<c_winSize_y)
+ {
+ xBase=xid;
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
+ &A11, &A12, &A22);
+
+
+ xBase+=xsize;
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
+ &A11, &A12, &A22);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
+ &A11, &A12, &A22);
}
- }
-
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
float D = A11 * A22 - A12 * A12;
- //if (calcErr && GET_MIN_EIGENVALS && tid == 0)
- // err[get_group_id(0)] = minEig;
-
if (D < 1.192092896e-07f)
{
- if (level == 0 && tid == 0)
- status[get_group_id(0)] = 0;
+ if (tid == 0 && level == 0)
+ status[gid] = 0;
return;
}
- D = 1.f / D;
-
- A11 *= D;
- A12 *= D;
- A22 *= D;
-
- float2 nextPt = nextPts[get_group_id(0)];
- nextPt.x *= 2.0f;
- nextPt.y *= 2.0f;
+ A11 /= D;
+ A12 /= D;
+ A22 /= D;
- nextPt.x -= c_halfWin_x;
- nextPt.y -= c_halfWin_y;
+ prevPt = nextPts[gid] * 2.0f - c_halfWin;
- for (int k = 0; k < c_iters; ++k)
+ for (k = 0; k < c_iters; ++k)
{
- if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
+ if (prevPt.x < -c_halfWin.x || prevPt.x >= cols || prevPt.y < -c_halfWin.y || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
- status[get_group_id(0)] = 0;
+ status[gid] = 0;
return;
}
float b1 = 0;
float b2 = 0;
- for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
- {
- for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
- {
- float a = (nextPt.x + x + 0.5f);
- float b = (nextPt.y + y + 0.5f);
-
- float I_val = I_patch[i][j];
- float J_val = read_imagef(J, sampler, (float2)(a, b)).x;
-
- float diff = (J_val - I_val) * 32.0f;
-
- b1 += diff * dIdx_patch[i][j];
- b2 += diff * dIdy_patch[i][j];
- }
- }
+ yBase=yid;
+ {
+ xBase=xid;
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
+ &b1, &b2);
+
+
+ xBase+=xsize;
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
+ &b1, &b2);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
+ &b1, &b2);
+ }
+ yBase+=ysize;
+ {
+ xBase=xid;
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
+ &b1, &b2);
+
+
+ xBase+=xsize;
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
+ &b1, &b2);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
+ &b1, &b2);
+ }
+ yBase+=ysize;
+ if(yBase<c_winSize_y)
+ {
+ xBase=xid;
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
+ &b1, &b2);
+
+
+ xBase+=xsize;
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
+ &b1, &b2);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
+ &b1, &b2);
+ }
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
- nextPt.x += delta.x;
- nextPt.y += delta.y;
+ prevPt += delta;
- if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
+ if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
break;
}
- float errval = 0.0f;
+ D = 0.0f;
if (calcErr)
{
- for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
- {
- for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
- {
- float a = (nextPt.x + x + 0.5f);
- float b = (nextPt.y + y + 0.5f);
-
- float I_val = I_patch[i][j];
- float J_val = read_imagef(J, sampler, (float2)(a, b)).x;
-
- float diff = J_val - I_val;
-
- errval += fabs((float)diff);
- }
- }
-
- reduce1(errval, smem1, tid);
+ yBase=yid;
+ {
+ xBase=xid;
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][0], &D);
+
+
+ xBase+=xsize;
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][1], &D);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[0][2], &D);
+ }
+ yBase+=ysize;
+ {
+ xBase=xid;
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][0], &D);
+
+
+ xBase+=xsize;
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][1], &D);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[1][2], &D);
+ }
+ yBase+=ysize;
+ if(yBase<c_winSize_y)
+ {
+ xBase=xid;
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][0], &D);
+
+
+ xBase+=xsize;
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][1], &D);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
+ &I_patch[2][2], &D);
+ }
+
+ reduce1(D, smem1, tid);
}
if (tid == 0)
{
- nextPt.x += c_halfWin_x;
- nextPt.y += c_halfWin_y;
+ prevPt += c_halfWin;
- nextPts[get_group_id(0)] = nextPt;
+ nextPts[gid] = prevPt;
- //if (calcErr && !GET_MIN_EIGENVALS)
- // err[get_group_id(0)] = errval;
+ if (calcErr)
+ err[gid] = smem1[0] / (c_winSize_x * c_winSize_y);
}
+
}
+
__kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
- __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status/*, __global float* err*/, const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr, char GET_MIN_EIGENVALS)
+ __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
+ const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
- __local float smem1[256];
- __local float smem2[256];
- __local float smem3[256];
+ __local float smem1[BUFFER];
+ __local float smem2[BUFFER];
+ __local float smem3[BUFFER];
- int c_halfWin_x = (c_winSize_x - 1) / 2;
- int c_halfWin_y = (c_winSize_y - 1) / 2;
+ unsigned int xid=get_local_id(0);
+ unsigned int yid=get_local_id(1);
+ unsigned int gid=get_group_id(0);
+ unsigned int xsize=get_local_size(0);
+ unsigned int ysize=get_local_size(1);
+ int xBase, yBase, i, j, k;
- const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
+ float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);
- float2 prevPt = prevPts[get_group_id(0)];
- prevPt.x *= (1.0f / (1 << level));
- prevPt.y *= (1.0f / (1 << level));
+ const int tid = mad24(yid, xsize, xid);
- if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
+ float2 nextPt = prevPts[gid]/(1<<level);
+
+ if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{
- if (level == 0 && tid == 0)
+ if (tid == 0 && level == 0)
{
- status[get_group_id(0)] = 0;
-
- //if (calcErr)
- // err[get_group_id(0)] = 0;
+ status[gid] = 0;
}
return;
}
- prevPt.x -= c_halfWin_x;
- prevPt.y -= c_halfWin_y;
+ nextPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A12 = 0;
float A22 = 0;
- float4 I_patch[21][21];
- float4 dIdx_patch[21][21];
- float4 dIdy_patch[21][21];
+ float4 I_patch[8];
+ float4 dIdx_patch[8];
+ float4 dIdy_patch[8];
+ float4 I_add,Dx_add,Dy_add;
- for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
- {
- for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
+ yBase=yid;
{
- float x = (prevPt.x + xBase + 0.5f);
- float y = (prevPt.y + yBase + 0.5f);
+ xBase=xid;
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[0], &dIdx_patch[0], &dIdy_patch[0],
+ &A11, &A12, &A22);
- I_patch[i][j] = read_imagef(I, sampler, (float2)(x, y)).x;
-
- float4 dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
- (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x);
- float4 dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
- (3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x);
+ xBase+=xsize;
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[1], &dIdx_patch[1], &dIdy_patch[1],
+ &A11, &A12, &A22);
- dIdx_patch[i][j] = dIdx;
- dIdy_patch[i][j] = dIdy;
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[2], &dIdx_patch[2], &dIdy_patch[2],
+ &A11, &A12, &A22);
- A11 += (dIdx * dIdx).x + (dIdx * dIdx).y + (dIdx * dIdx).z;
- A12 += (dIdx * dIdy).x + (dIdx * dIdy).y + (dIdx * dIdy).z;
- A22 += (dIdy * dIdy).x + (dIdy * dIdy).y + (dIdy * dIdy).z;
}
- }
+ yBase+=ysize;
+ {
+ xBase=xid;
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[3], &dIdx_patch[3], &dIdy_patch[3],
+ &A11, &A12, &A22);
+
+
+ xBase+=xsize;
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[4], &dIdx_patch[4], &dIdy_patch[4],
+ &A11, &A12, &A22);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[5], &dIdx_patch[5], &dIdy_patch[5],
+ &A11, &A12, &A22);
+ }
+ yBase+=ysize;
+ if(yBase<c_winSize_y)
+ {
+ xBase=xid;
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[6], &dIdx_patch[6], &dIdy_patch[6],
+ &A11, &A12, &A22);
+
+
+ xBase+=xsize;
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[7], &dIdx_patch[7], &dIdy_patch[7],
+ &A11, &A12, &A22);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_add, &Dx_add, &Dy_add,
+ &A11, &A12, &A22);
+ }
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
float D = A11 * A22 - A12 * A12;
- //if (calcErr && GET_MIN_EIGENVALS && tid == 0)
- // err[get_group_id(0)] = minEig;
-
if (D < 1.192092896e-07f)
{
- if (level == 0 && tid == 0)
- status[get_group_id(0)] = 0;
+ if (tid == 0 && level == 0)
+ status[gid] = 0;
return;
}
- D = 1.f / D;
-
- A11 *= D;
- A12 *= D;
- A22 *= D;
-
- float2 nextPt = nextPts[get_group_id(0)];
- nextPt.x *= 2.0f;
- nextPt.y *= 2.0f;
+ A11 /= D;
+ A12 /= D;
+ A22 /= D;
- nextPt.x -= c_halfWin_x;
- nextPt.y -= c_halfWin_y;
+ nextPt = nextPts[gid] * 2.0f - c_halfWin;
- for (int k = 0; k < c_iters; ++k)
+ for (k = 0; k < c_iters; ++k)
{
- if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
+ if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
- status[get_group_id(0)] = 0;
+ status[gid] = 0;
return;
}
float b1 = 0;
float b2 = 0;
- for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
- {
- for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
- {
- float a = (nextPt.x + x + 0.5f);
- float b = (nextPt.y + y + 0.5f);
-
- float4 I_val = I_patch[i][j];
- float4 J_val = read_imagef(J, sampler, (float2)(a, b)).x;
-
- float4 diff = (J_val - I_val) * 32.0f;
+ yBase=yid;
+ {
+ xBase=xid;
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[0], &dIdx_patch[0], &dIdy_patch[0],
+ &b1, &b2);
+
+
+ xBase+=xsize;
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[1], &dIdx_patch[1], &dIdy_patch[1],
+ &b1, &b2);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[2], &dIdx_patch[2], &dIdy_patch[2],
+ &b1, &b2);
+ }
+ yBase+=ysize;
+ {
+ xBase=xid;
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[3], &dIdx_patch[3], &dIdy_patch[3],
+ &b1, &b2);
+
+
+ xBase+=xsize;
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[4], &dIdx_patch[4], &dIdy_patch[4],
+ &b1, &b2);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[5], &dIdx_patch[5], &dIdy_patch[5],
+ &b1, &b2);
+ }
+ yBase+=ysize;
+ if(yBase<c_winSize_y)
+ {
+ xBase=xid;
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[6], &dIdx_patch[6], &dIdy_patch[6],
+ &b1, &b2);
+
+
+ xBase+=xsize;
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[7], &dIdx_patch[7], &dIdy_patch[7],
+ &b1, &b2);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_add, &Dx_add, &Dy_add,
+ &b1, &b2);
+ }
- b1 += (diff * dIdx_patch[i][j]).x + (diff * dIdx_patch[i][j]).y + (diff * dIdx_patch[i][j]).z;
- b2 += (diff * dIdy_patch[i][j]).x + (diff * dIdy_patch[i][j]).y + (diff * dIdy_patch[i][j]).z;
- }
- }
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
- nextPt.x += delta.x;
- nextPt.y += delta.y;
+ nextPt +=delta;
- if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
+ if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
break;
}
- float errval = 0.0f;
+ D = 0.0f;
if (calcErr)
{
- for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
- {
- for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
- {
- float a = (nextPt.x + x + 0.5f);
- float b = (nextPt.y + y + 0.5f);
-
- float4 I_val = I_patch[i][j];
- float4 J_val = read_imagef(J, sampler, (float2)(a, b)).x;
-
- float4 diff = J_val - I_val;
-
- errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
- }
- }
-
- reduce1(errval, smem1, tid);
+ yBase=yid;
+ {
+ xBase=xid;
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[0], &D);
+
+
+ xBase+=xsize;
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[1], &D);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[2], &D);
+ }
+ yBase+=ysize;
+ {
+ xBase=xid;
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[3], &D);
+
+
+ xBase+=xsize;
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[4], &D);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[5], &D);
+ }
+ yBase+=ysize;
+ if(yBase<c_winSize_y)
+ {
+ xBase=xid;
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[6], &D);
+
+
+ xBase+=xsize;
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_patch[7], &D);
+
+ xBase+=xsize;
+ if(xBase<c_winSize_x)
+ GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
+ &I_add, &D);
+ }
+
+ reduce1(D, smem1, tid);
}
if (tid == 0)
{
- nextPt.x += c_halfWin_x;
- nextPt.y += c_halfWin_y;
-
- nextPts[get_group_id(0)] = nextPt;
+ nextPt += c_halfWin;
+ nextPts[gid] = nextPt;
- //if (calcErr && !GET_MIN_EIGENVALS)
- // err[get_group_id(0)] = errval;
+ if (calcErr)
+ err[gid] = smem1[0] / (3 * c_winSize_x * c_winSize_y);
}
}
__kernel void lkDense_C1_D0(image2d_t I, image2d_t J, __global float* u, int uStep, __global float* v, int vStep, __global const float* prevU, int prevUStep, __global const float* prevV, int prevVStep,
const int rows, const int cols, /*__global float* err, int errStep, int cn,*/ int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
- int c_halfWin_x = (c_winSize_x - 1) / 2;
- int c_halfWin_y = (c_winSize_y - 1) / 2;
+ int c_halfWin_x = (c_winSize_x - 1) / 2;
+ int c_halfWin_y = (c_winSize_y - 1) / 2;
const int patchWidth = get_local_size(0) + 2 * c_halfWin_x;
const int patchHeight = get_local_size(1) + 2 * c_halfWin_y;
const int xBase = get_group_id(0) * get_local_size(0);
const int yBase = get_group_id(1) * get_local_size(1);
- sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
+ sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
for (int i = get_local_id(1); i < patchHeight; i += get_local_size(1))
{
--- /dev/null
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
+// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// @Authors
+// Sen Liu, sen@multicorewareinc.com
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other oclMaterials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors as is and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#define BUFFER 256
+void reduce3(float val1, float val2, float val3, __local float *smem1, __local float *smem2, __local float *smem3, int tid)
+{
+ smem1[tid] = val1;
+ smem2[tid] = val2;
+ smem3[tid] = val3;
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+#if BUFFER > 128
+
+ if (tid < 128)
+ {
+ smem1[tid] = val1 += smem1[tid + 128];
+ smem2[tid] = val2 += smem2[tid + 128];
+ smem3[tid] = val3 += smem3[tid + 128];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+
+#if BUFFER > 64
+
+ if (tid < 64)
+ {
+ smem1[tid] = val1 += smem1[tid + 64];
+ smem2[tid] = val2 += smem2[tid + 64];
+ smem3[tid] = val3 += smem3[tid + 64];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+
+ if (tid < 32)
+ {
+ smem1[tid] = val1 += smem1[tid + 32];
+ smem2[tid] = val2 += smem2[tid + 32];
+ smem3[tid] = val3 += smem3[tid + 32];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (tid < 16)
+ {
+ smem1[tid] = val1 += smem1[tid + 16];
+ smem2[tid] = val2 += smem2[tid + 16];
+ smem3[tid] = val3 += smem3[tid + 16];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (tid < 8)
+ {
+ volatile __local float *vmem1 = smem1;
+ volatile __local float *vmem2 = smem2;
+ volatile __local float *vmem3 = smem3;
+
+ vmem1[tid] = val1 += vmem1[tid + 8];
+ vmem2[tid] = val2 += vmem2[tid + 8];
+ vmem3[tid] = val3 += vmem3[tid + 8];
+
+ vmem1[tid] = val1 += vmem1[tid + 4];
+ vmem2[tid] = val2 += vmem2[tid + 4];
+ vmem3[tid] = val3 += vmem3[tid + 4];
+
+ vmem1[tid] = val1 += vmem1[tid + 2];
+ vmem2[tid] = val2 += vmem2[tid + 2];
+ vmem3[tid] = val3 += vmem3[tid + 2];
+
+ vmem1[tid] = val1 += vmem1[tid + 1];
+ vmem2[tid] = val2 += vmem2[tid + 1];
+ vmem3[tid] = val3 += vmem3[tid + 1];
+ }
+}
+
+void reduce2(float val1, float val2, __local float *smem1, __local float *smem2, int tid)
+{
+ smem1[tid] = val1;
+ smem2[tid] = val2;
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+#if BUFFER > 128
+
+ if (tid < 128)
+ {
+ smem1[tid] = val1 += smem1[tid + 128];
+ smem2[tid] = val2 += smem2[tid + 128];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+
+#if BUFFER > 64
+
+ if (tid < 64)
+ {
+ smem1[tid] = val1 += smem1[tid + 64];
+ smem2[tid] = val2 += smem2[tid + 64];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+
+ if (tid < 32)
+ {
+ smem1[tid] = val1 += smem1[tid + 32];
+ smem2[tid] = val2 += smem2[tid + 32];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (tid < 16)
+ {
+ smem1[tid] = val1 += smem1[tid + 16];
+ smem2[tid] = val2 += smem2[tid + 16];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (tid < 8)
+ {
+ volatile __local float *vmem1 = smem1;
+ volatile __local float *vmem2 = smem2;
+
+ vmem1[tid] = val1 += vmem1[tid + 8];
+ vmem2[tid] = val2 += vmem2[tid + 8];
+
+ vmem1[tid] = val1 += vmem1[tid + 4];
+ vmem2[tid] = val2 += vmem2[tid + 4];
+
+ vmem1[tid] = val1 += vmem1[tid + 2];
+ vmem2[tid] = val2 += vmem2[tid + 2];
+
+ vmem1[tid] = val1 += vmem1[tid + 1];
+ vmem2[tid] = val2 += vmem2[tid + 1];
+ }
+}
+
+void reduce1(float val1, __local float *smem1, int tid)
+{
+ smem1[tid] = val1;
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+#if BUFFER > 128
+
+ if (tid < 128)
+ {
+ smem1[tid] = val1 += smem1[tid + 128];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+
+#if BUFFER > 64
+
+ if (tid < 64)
+ {
+ smem1[tid] = val1 += smem1[tid + 64];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+#endif
+
+ if (tid < 32)
+ {
+ smem1[tid] = val1 += smem1[tid + 32];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (tid < 16)
+ {
+ volatile __local float *vmem1 = smem1;
+
+ vmem1[tid] = val1 += vmem1[tid + 16];
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ if (tid < 8)
+ {
+ volatile __local float *vmem1 = smem1;
+
+ vmem1[tid] = val1 += vmem1[tid + 8];
+ vmem1[tid] = val1 += vmem1[tid + 4];
+ vmem1[tid] = val1 += vmem1[tid + 2];
+ vmem1[tid] = val1 += vmem1[tid + 1];
+ }
+}
+
+#define SCALE (1.0f / (1 << 20))
+#define THRESHOLD 0.01f
+#define DIMENSION 21
+
+float readImage2Df_C1(__global const float *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow)
+{
+ float2 coor = (float2)(x, y);
+
+ int i0 = clamp((int)floor(coor.x), 0, cols - 1);
+ int j0 = clamp((int)floor(coor.y), 0, rows - 1);
+ int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1);
+ int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1);
+ float a = coor.x - floor(coor.x);
+ float b = coor.y - floor(coor.y);
+
+ return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)]
+ + a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)]
+ + (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)]
+ + a * b * image[mad24(j1, elemCntPerRow, i1)];
+}
+
+__kernel void lkSparse_C1_D5(__global const float *I, __global const float *J,
+ __global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err,
+ const int level, const int rows, const int cols, const int elemCntPerRow,
+ int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
+{
+ __local float smem1[BUFFER];
+ __local float smem2[BUFFER];
+ __local float smem3[BUFFER];
+
+ float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1);
+
+ const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0));
+
+ float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level));
+
+ if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
+ {
+ if (tid == 0 && level == 0)
+ {
+ status[get_group_id(0)] = 0;
+ }
+
+ return;
+ }
+
+ prevPt -= c_halfWin;
+
+ // extract the patch from the first image, compute covariation matrix of derivatives
+
+ float A11 = 0;
+ float A12 = 0;
+ float A22 = 0;
+
+ float I_patch[1][3];
+ float dIdx_patch[1][3];
+ float dIdy_patch[1][3];
+
+ for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
+ {
+ for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
+ {
+ float x = (prevPt.x + xBase);
+ float y = (prevPt.y + yBase);
+
+ I_patch[i][j] = readImage2Df_C1(I, x, y, rows, cols, elemCntPerRow);
+ float dIdx = 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) -
+ (3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow));
+
+ float dIdy = 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) -
+ (3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow));
+
+ dIdx_patch[i][j] = dIdx;
+ dIdy_patch[i][j] = dIdy;
+
+ A11 += dIdx * dIdx;
+ A12 += dIdx * dIdy;
+ A22 += dIdy * dIdy;
+ }
+ }
+
+ reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ A11 = smem1[0];
+ A12 = smem2[0];
+ A22 = smem3[0];
+
+ float D = A11 * A22 - A12 * A12;
+
+ if (D < 1.192092896e-07f)
+ {
+ if (tid == 0 && level == 0)
+ {
+ status[get_group_id(0)] = 0;
+ }
+
+ return;
+ }
+
+ D = 1.f / D;
+
+ A11 *= D;
+ A12 *= D;
+ A22 *= D;
+
+ float2 nextPt = nextPts[get_group_id(0)];
+ nextPt = nextPt * 2.0f - c_halfWin;
+
+ for (int k = 0; k < c_iters; ++k)
+ {
+ if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
+ {
+ if (tid == 0 && level == 0)
+ {
+ status[get_group_id(0)] = 0;
+ }
+
+ return;
+ }
+
+ float b1 = 0;
+ float b2 = 0;
+
+ for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
+ {
+ for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
+ {
+ float diff = (readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f;
+
+ b1 += diff * dIdx_patch[i][j];
+ b2 += diff * dIdy_patch[i][j];
+ }
+ }
+
+ reduce2(b1, b2, smem1, smem2, tid);
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ b1 = smem1[0];
+ b2 = smem2[0];
+
+ float2 delta;
+ delta.x = A12 * b2 - A22 * b1;
+ delta.y = A12 * b1 - A11 * b2;
+
+ nextPt += delta;
+
+ //if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
+ // break;
+ }
+
+ float errval = 0.0f;
+
+ if (calcErr)
+ {
+ for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
+ {
+ for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
+ {
+ float diff = readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j];
+
+ errval += fabs(diff);
+ }
+ }
+
+ reduce1(errval, smem1, tid);
+ }
+
+ if (tid == 0)
+ {
+ nextPt += c_halfWin;
+
+ nextPts[get_group_id(0)] = nextPt;
+
+ if (calcErr)
+ {
+ err[get_group_id(0)] = smem1[0] / (c_winSize_x * c_winSize_y);
+ }
+ }
+}
+
+float4 readImage2Df_C4(__global const float4 *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow)
+{
+ float2 coor = (float2)(x, y);
+
+ int i0 = clamp((int)floor(coor.x), 0, cols - 1);
+ int j0 = clamp((int)floor(coor.y), 0, rows - 1);
+ int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1);
+ int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1);
+ float a = coor.x - floor(coor.x);
+ float b = coor.y - floor(coor.y);
+
+ return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)]
+ + a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)]
+ + (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)]
+ + a * b * image[mad24(j1, elemCntPerRow, i1)];
+}
+
+__kernel void lkSparse_C4_D5(__global const float *I, __global const float *J,
+ __global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err,
+ const int level, const int rows, const int cols, const int elemCntPerRow,
+ int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
+{
+ __local float smem1[BUFFER];
+ __local float smem2[BUFFER];
+ __local float smem3[BUFFER];
+
+ float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1);
+
+ const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0));
+
+ float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level));
+
+ if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
+ {
+ if (tid == 0 && level == 0)
+ {
+ status[get_group_id(0)] = 0;
+ }
+
+ return;
+ }
+
+ prevPt -= c_halfWin;
+
+ // extract the patch from the first image, compute covariation matrix of derivatives
+
+ float A11 = 0;
+ float A12 = 0;
+ float A22 = 0;
+
+ float4 I_patch[1][3];
+ float4 dIdx_patch[1][3];
+ float4 dIdy_patch[1][3];
+
+ __global float4 *ptrI = (__global float4 *)I;
+
+ for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
+ {
+ for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
+ {
+ float x = (prevPt.x + xBase);
+ float y = (prevPt.y + yBase);
+
+ I_patch[i][j] = readImage2Df_C4(ptrI, x, y, rows, cols, elemCntPerRow);
+
+ float4 dIdx = 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) -
+ (3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow));
+
+ float4 dIdy = 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) -
+ (3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow));
+
+ dIdx_patch[i][j] = dIdx;
+ dIdy_patch[i][j] = dIdy;
+
+ A11 += (dIdx * dIdx).x + (dIdx * dIdx).y + (dIdx * dIdx).z;
+ A12 += (dIdx * dIdy).x + (dIdx * dIdy).y + (dIdx * dIdy).z;
+ A22 += (dIdy * dIdy).x + (dIdy * dIdy).y + (dIdy * dIdy).z;
+ }
+ }
+
+ reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ A11 = smem1[0];
+ A12 = smem2[0];
+ A22 = smem3[0];
+
+ float D = A11 * A22 - A12 * A12;
+ //pD[get_group_id(0)] = D;
+
+ if (D < 1.192092896e-07f)
+ {
+ if (tid == 0 && level == 0)
+ {
+ status[get_group_id(0)] = 0;
+ }
+
+ return;
+ }
+
+ D = 1.f / D;
+
+ A11 *= D;
+ A12 *= D;
+ A22 *= D;
+
+ float2 nextPt = nextPts[get_group_id(0)];
+
+ nextPt = nextPt * 2.0f - c_halfWin;
+
+ __global float4 *ptrJ = (__global float4 *)J;
+
+ for (int k = 0; k < c_iters; ++k)
+ {
+ if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
+ {
+ if (tid == 0 && level == 0)
+ {
+ status[get_group_id(0)] = 0;
+ }
+
+ return;
+ }
+
+ float b1 = 0;
+ float b2 = 0;
+
+ for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
+ {
+ for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
+ {
+ float4 diff = (readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f;
+
+ b1 += (diff * dIdx_patch[i][j]).x + (diff * dIdx_patch[i][j]).y + (diff * dIdx_patch[i][j]).z;
+ b2 += (diff * dIdy_patch[i][j]).x + (diff * dIdy_patch[i][j]).y + (diff * dIdy_patch[i][j]).z;
+ }
+ }
+
+ reduce2(b1, b2, smem1, smem2, tid);
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ b1 = smem1[0];
+ b2 = smem2[0];
+
+ float2 delta;
+ delta.x = A12 * b2 - A22 * b1;
+ delta.y = A12 * b1 - A11 * b2;
+
+ nextPt += delta;
+
+ //if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
+ // break;
+ }
+
+ float errval = 0.0f;
+
+ if (calcErr)
+ {
+ for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
+ {
+ for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
+ {
+ float4 diff = readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j];
+
+ errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
+ }
+ }
+
+ reduce1(errval, smem1, tid);
+ }
+
+ if (tid == 0)
+ {
+ nextPt += c_halfWin;
+ nextPts[get_group_id(0)] = nextPt;
+
+ if (calcErr)
+ {
+ err[get_group_id(0)] = smem1[0] / (3 * c_winSize_x * c_winSize_y);
+ }
+ }
+}
+
+int readImage2Di_C1(__global const int *image, float2 coor, int2 size, const int elemCntPerRow)
+{
+ int i = clamp((int)floor(coor.x), 0, size.x - 1);
+ int j = clamp((int)floor(coor.y), 0, size.y - 1);
+ return image[mad24(j, elemCntPerRow, i)];
+}
+
+__kernel void lkDense_C1_D0(__global const int *I, __global const int *J, __global float *u, int uStep, __global float *v, int vStep, __global const float *prevU, int prevUStep, __global const float *prevV, int prevVStep,
+ const int rows, const int cols, /*__global float* err, int errStep, int cn,*/
+ const int elemCntPerRow, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
+{
+ int c_halfWin_x = (c_winSize_x - 1) / 2;
+ int c_halfWin_y = (c_winSize_y - 1) / 2;
+
+ const int patchWidth = get_local_size(0) + 2 * c_halfWin_x;
+ const int patchHeight = get_local_size(1) + 2 * c_halfWin_y;
+
+ __local int smem[8192];
+
+ __local int *I_patch = smem;
+ __local int *dIdx_patch = I_patch + patchWidth * patchHeight;
+ __local int *dIdy_patch = dIdx_patch + patchWidth * patchHeight;
+
+ const int xBase = get_group_id(0) * get_local_size(0);
+ const int yBase = get_group_id(1) * get_local_size(1);
+ int2 size = (int2)(cols, rows);
+
+ for (int i = get_local_id(1); i < patchHeight; i += get_local_size(1))
+ {
+ for (int j = get_local_id(0); j < patchWidth; j += get_local_size(0))
+ {
+ float x = xBase - c_halfWin_x + j + 0.5f;
+ float y = yBase - c_halfWin_y + i + 0.5f;
+
+ I_patch[i * patchWidth + j] = readImage2Di_C1(I, (float2)(x, y), size, elemCntPerRow);
+
+ // Sharr Deriv
+
+ dIdx_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x + 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) -
+ (3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x - 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow));
+
+ dIdy_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y + 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) -
+ (3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y - 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow));
+ }
+ }
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // extract the patch from the first image, compute covariation matrix of derivatives
+
+ const int x = get_global_id(0);
+ const int y = get_global_id(1);
+
+ if (x >= cols || y >= rows)
+ {
+ return;
+ }
+
+ int A11i = 0;
+ int A12i = 0;
+ int A22i = 0;
+
+ for (int i = 0; i < c_winSize_y; ++i)
+ {
+ for (int j = 0; j < c_winSize_x; ++j)
+ {
+ int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
+ int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
+
+ A11i += dIdx * dIdx;
+ A12i += dIdx * dIdy;
+ A22i += dIdy * dIdy;
+ }
+ }
+
+ float A11 = A11i;
+ float A12 = A12i;
+ float A22 = A22i;
+
+ float D = A11 * A22 - A12 * A12;
+
+ //if (calcErr && GET_MIN_EIGENVALS)
+ // (err + y * errStep)[x] = minEig;
+
+ if (D < 1.192092896e-07f)
+ {
+ //if (calcErr)
+ // err(y, x) = 3.402823466e+38f;
+
+ return;
+ }
+
+ D = 1.f / D;
+
+ A11 *= D;
+ A12 *= D;
+ A22 *= D;
+
+ float2 nextPt;
+ nextPt.x = x + prevU[y / 2 * prevUStep / 4 + x / 2] * 2.0f;
+ nextPt.y = y + prevV[y / 2 * prevVStep / 4 + x / 2] * 2.0f;
+
+ for (int k = 0; k < c_iters; ++k)
+ {
+ if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
+ {
+ //if (calcErr)
+ // err(y, x) = 3.402823466e+38f;
+
+ return;
+ }
+
+ int b1 = 0;
+ int b2 = 0;
+
+ for (int i = 0; i < c_winSize_y; ++i)
+ {
+ for (int j = 0; j < c_winSize_x; ++j)
+ {
+ int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
+ int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow);
+
+ int diff = (iJ - iI) * 32;
+
+ int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
+ int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
+
+ b1 += diff * dIdx;
+ b2 += diff * dIdy;
+ }
+ }
+
+ float2 delta;
+ delta.x = A12 * b2 - A22 * b1;
+ delta.y = A12 * b1 - A11 * b2;
+
+ nextPt.x += delta.x;
+ nextPt.y += delta.y;
+
+ if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
+ {
+ break;
+ }
+ }
+
+ u[y * uStep / 4 + x] = nextPt.x - x;
+ v[y * vStep / 4 + x] = nextPt.y - y;
+
+ if (calcErr)
+ {
+ int errval = 0;
+
+ for (int i = 0; i < c_winSize_y; ++i)
+ {
+ for (int j = 0; j < c_winSize_x; ++j)
+ {
+ int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
+ int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow);
+
+ errval += abs(iJ - iI);
+ }
+ }
+
+ //err[y * errStep / 4 + x] = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
+ }
+}
#if !defined (HAVE_OPENCL)
-void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &, const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat *) { }
+void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &, const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat &) { }
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat *) { }
#else /* !defined (HAVE_OPENCL) */
namespace cv
{
- namespace ocl
- {
- ///////////////////////////OpenCL kernel strings///////////////////////////
- extern const char *pyrlk;
- extern const char *operator_setTo;
- extern const char *operator_convertTo;
- extern const char *operator_copyToM;
- extern const char *arithm_mul;
- extern const char *pyr_down;
- }
+namespace ocl
+{
+///////////////////////////OpenCL kernel strings///////////////////////////
+extern const char *pyrlk;
+extern const char *pyrlk_no_image;
+extern const char *operator_setTo;
+extern const char *operator_convertTo;
+extern const char *operator_copyToM;
+extern const char *arithm_mul;
+extern const char *pyr_down;
+}
}
struct dim3
namespace
{
- void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
- {
- winSize.width *= cn;
+void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
+{
+ winSize.width *= cn;
- if (winSize.width > 32 && winSize.width > 2 * winSize.height)
- {
- block.x = isDeviceArch11 ? 16 : 32;
- block.y = 8;
- }
- else
- {
- block.x = 16;
- block.y = isDeviceArch11 ? 8 : 16;
- }
+ if (winSize.width > 32 && winSize.width > 2 * winSize.height)
+ {
+ block.x = isDeviceArch11 ? 16 : 32;
+ block.y = 8;
+ }
+ else
+ {
+ block.x = 16;
+ block.y = isDeviceArch11 ? 8 : 16;
+ }
- patch.x = (winSize.width + block.x - 1) / block.x;
- patch.y = (winSize.height + block.y - 1) / block.y;
+ patch.x = (winSize.width + block.x - 1) / block.x;
+ patch.y = (winSize.height + block.y - 1) / block.y;
- block.z = patch.z = 1;
- }
+ block.z = patch.z = 1;
+}
}
inline int divUp(int total, int grain)
void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
- arithmetic_run(src1, dst, "arithm_muls", &pyrlk, (void *)(&scalar));
+ arithmetic_run(src1, dst, "arithm_muls", &arithm_mul, (void *)(&scalar));
}
void pyrdown_run_cus(const oclMat &src, const oclMat &dst)
//
//void callF(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask)
//{
-// Mat srcTemp;
-// Mat dstTemp;
-// src.download(srcTemp);
-// dst.download(dstTemp);
+// Mat srcTemp;
+// Mat dstTemp;
+// src.download(srcTemp);
+// dst.download(dstTemp);
//
-// int i;
-// int j;
-// int k;
-// for(i = 0; i < srcTemp.rows; i++)
-// {
-// for(j = 0; j < srcTemp.cols; j++)
-// {
-// for(k = 0; k < srcTemp.channels(); k++)
-// {
-// ((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]);
-// }
-// }
-// }
+// int i;
+// int j;
+// int k;
+// for(i = 0; i < srcTemp.rows; i++)
+// {
+// for(j = 0; j < srcTemp.cols; j++)
+// {
+// for(k = 0; k < srcTemp.channels(); k++)
+// {
+// ((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]);
+// }
+// }
+// }
//
-// dst = dstTemp;
+// dst = dstTemp;
//}
//
//static inline bool isAligned(const unsigned char* ptr, size_t size)
// return;
// }
//
-// Mat srcTemp;
-// Mat dstTemp;
-// src.download(srcTemp);
-// dst.download(dstTemp);
+// Mat srcTemp;
+// Mat dstTemp;
+// src.download(srcTemp);
+// dst.download(dstTemp);
//
-// int x_shifted;
+// int x_shifted;
//
-// int i;
-// int j;
-// for(i = 0; i < srcTemp.rows; i++)
-// {
-// const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows;
+// int i;
+// int j;
+// for(i = 0; i < srcTemp.rows; i++)
+// {
+// const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows;
// double* dstRow = (double*)dstTemp.data + i * dstTemp.rows;;
//
-// for(j = 0; j < srcTemp.cols; j++)
-// {
-// x_shifted = j * 4;
+// for(j = 0; j < srcTemp.cols; j++)
+// {
+// x_shifted = j * 4;
//
-// if(x_shifted + 4 - 1 < srcTemp.cols)
-// {
-// dstRow[x_shifted ] = op(srcRow[x_shifted ]);
-// dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]);
-// dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]);
-// dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]);
-// }
-// else
-// {
-// for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x)
-// {
-// ((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]);
-// }
-// }
-// }
-// }
+// if(x_shifted + 4 - 1 < srcTemp.cols)
+// {
+// dstRow[x_shifted ] = op(srcRow[x_shifted ]);
+// dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]);
+// dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]);
+// dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]);
+// }
+// else
+// {
+// for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x)
+// {
+// ((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]);
+// }
+// }
+// }
+// }
//}
//
//void multiply(const oclMat& src1, double val, oclMat& dst, double scale = 1.0f);
//void multiply(const oclMat& src1, double val, oclMat& dst, double scale)
//{
// MultiplyScalar op(val, scale);
-// //if(src1.channels() == 1 && dst.channels() == 1)
-// //{
-// // callT(src1, dst, op, 0);
-// //}
-// //else
-// //{
-// callF(src1, dst, op, 0);
-// //}
+// //if(src1.channels() == 1 && dst.channels() == 1)
+// //{
+// // callT(src1, dst, op, 0);
+// //}
+// //else
+// //{
+// callF(src1, dst, op, 0);
+// //}
//}
cl_mem bindTexture(const oclMat &mat, int depth, int channels)
}
void lkSparse_run(oclMat &I, oclMat &J,
- const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err, bool GET_MIN_EIGENVALS, int ptcount,
+ const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
int level, /*dim3 block, */dim3 patch, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
+ char platform[256] = {0};
+ cl_platform_id pid;
+ clGetDeviceInfo(*clCxt->impl->devices, CL_DEVICE_PLATFORM, sizeof(pid), &pid, NULL);
+ clGetPlatformInfo(pid, CL_PLATFORM_NAME, 256, platform, NULL);
+ std::string namestr = platform;
+ bool isImageSupported = true;
+ if(namestr.find("NVIDIA")!=string::npos || namestr.find("Intel")!=string::npos)
+ isImageSupported = false;
+
+ int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkSparse";
- size_t localThreads[3] = { 8, 32, 1 };
- size_t globalThreads[3] = { 8 * ptcount, 32, 1};
+
+ size_t localThreads[3] = { 8, isImageSupported?8:32, 1 };
+ size_t globalThreads[3] = { 8 * ptcount, isImageSupported?8:32, 1};
int cn = I.oclchannels();
- bool calcErr;
- if (err)
+ char calcErr;
+ if (level == 0)
{
- calcErr = true;
+ calcErr = 1;
}
else
{
- calcErr = false;
+ calcErr = 0;
}
- calcErr = true;
-
- cl_mem ITex = bindTexture(I, I.depth(), cn);
- cl_mem JTex = bindTexture(J, J.depth(), cn);
vector<pair<size_t , const void *> > args;
+ cl_mem ITex;
+ cl_mem JTex;
+ if (isImageSupported)
+ {
+ ITex = bindTexture(I, I.depth(), cn);
+ JTex = bindTexture(J, J.depth(), cn);
+ }
+ else
+ {
+ ITex = (cl_mem)I.data;
+ JTex = (cl_mem)J.data;
+ }
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex ));
-
+ //cl_mem clmD = clCreateBuffer(clCxt, CL_MEM_READ_WRITE, ptcount * sizeof(float), NULL, NULL);
args.push_back( make_pair( sizeof(cl_mem), (void *)&prevPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&prevPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&nextPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&nextPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&status.data ));
- //args.push_back( make_pair( sizeof(cl_mem), (void *)&(err->data) ));
+ args.push_back( make_pair( sizeof(cl_mem), (void *)&err.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&level ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
+ if (!isImageSupported)
+ {
+ args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
+ }
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x ));
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cn ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
- args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS ));
+ //args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS ));
- openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
+ if (isImageSupported)
+ {
+ openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
- releaseTexture(ITex);
- releaseTexture(JTex);
+ releaseTexture(ITex);
+ releaseTexture(JTex);
+ }
+ else
+ {
+ //printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
+ openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
+ }
}
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err)
{
- if (prevImg.clCxt->impl->devName.find("Intel(R) HD Graphics") != string::npos)
- {
- cout << " Intel HD GPU device unsupported " << endl;
- return;
- }
-
if (prevPts.empty())
{
nextPts.release();
status.release();
- if (err) err->release();
+ //if (err) err->release();
return;
}
//status.setTo(Scalar::all(1));
setTo(status, Scalar::all(1));
- //if (err)
- // ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
+ bool errMat = false;
+ if (!err)
+ {
+ err = new oclMat(1, prevPts.cols, CV_32FC1);
+ errMat = true;
+ }
+ else
+ ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
+ //ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, err);
// build the image pyramids.
for (int level = maxLevel; level >= 0; level--)
{
lkSparse_run(prevPyr_[level], nextPyr_[level],
- prevPts, nextPts, status, level == 0 && err ? err : 0, getMinEigenVals, prevPts.cols,
+ prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols,
level, /*block, */patch, winSize, iters);
}
clFinish(prevImg.clCxt->impl->clCmdQueue);
+
+ if(errMat)
+ delete err;
}
void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
+ bool isImageSupported = clCxt->impl->devName.find("Intel(R) HD Graphics") == string::npos;
+ int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkDense";
calcErr = false;
}
- cl_mem ITex = bindTexture(I, I.depth(), cn);
- cl_mem JTex = bindTexture(J, J.depth(), cn);
+ cl_mem ITex;
+ cl_mem JTex;
+
+ if (isImageSupported)
+ {
+ ITex = bindTexture(I, I.depth(), cn);
+ JTex = bindTexture(J, J.depth(), cn);
+ }
+ else
+ {
+ ITex = (cl_mem)I.data;
+ JTex = (cl_mem)J.data;
+ }
//int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2};
//const int patchWidth = 16 + 2 * halfWin.x;
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&(*err).data ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&(*err).step ));
+ if (!isImageSupported)
+ {
+ args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
+ }
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
- openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
+ if (isImageSupported)
+ {
+ openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
- releaseTexture(ITex);
- releaseTexture(JTex);
+ releaseTexture(ITex);
+ releaseTexture(JTex);
+ }
+ else
+ {
+ //printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
+ openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
+ }
}
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err)
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void *)&status[0]);
d_status.download(status_mat);
- //std::vector<float> err(d_err.cols);
- //cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
- //d_err.download(err_mat);
+ std::vector<float> err(d_err.cols);
+ cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
+ d_err.download(err_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
}
}
- double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size() * 2);
+ double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size());
- ASSERT_LE(bad_ratio, 0.05f);
+ ASSERT_LE(bad_ratio, 0.02f);
}