cgehd2.f cgehrd.f cgelq2.f cgelqf.f
cgels.f cgelsd.f cgelss.f cgelsy.f cgeql2.f cgeqlf.f cgeqp3.f
cgeqr2.f cgeqr2p.f cgeqrf.f cgeqrfp.f cgerfs.f cgerq2.f cgerqf.f
- cgesc2.f cgesdd.f cgesv.f cgesvd.f cgesvdx.f cgesvx.f cgetc2.f cgetf2.f cgetrf.f
+ cgesc2.f cgesdd.f cgesv.f cgesvd.f cgesvdx.f
+ cgesvj.f cgsvj0.f cgsvj1.f
+ cgesvx.f cgetc2.f cgetf2.f cgetrf.f
cgetri.f cgetrs.f
cggbak.f cggbal.f
cgges.f cgges3.f cggesx.f cggev.f cggev3.f cggevx.f
zgehd2.f zgehrd.f zgelq2.f zgelqf.f
zgels.f zgelsd.f zgelss.f zgelsy.f zgeql2.f zgeqlf.f zgeqp3.f
zgeqr2.f zgeqr2p.f zgeqrf.f zgeqrfp.f zgerfs.f zgerq2.f zgerqf.f
- zgesc2.f zgesdd.f zgesv.f zgesvd.f zgesvdx.f zgesvx.f zgetc2.f zgetf2.f zgetrf.f
+ zgesc2.f zgesdd.f zgesv.f zgesvd.f zgesvdx.f zgesvx.f
+ zgesvj.f zgsvj0.f zgsvj1.f
+ zgetc2.f zgetf2.f zgetrf.f
zgetri.f zgetrs.f
zggbak.f zggbal.f
zgges.f zgges3.f zggesx.f zggev.f zggev3.f zggevx.f
cgehd2.o cgehrd.o cgelq2.o cgelqf.o \
cgels.o cgelsd.o cgelss.o cgelsy.o cgeql2.o cgeqlf.o cgeqp3.o \
cgeqr2.o cgeqr2p.o cgeqrf.o cgeqrfp.o cgerfs.o \
- cgerq2.o cgerqf.o cgesc2.o cgesdd.o cgesv.o cgesvd.o cgesvdx.o\
+ cgerq2.o cgerqf.o cgesc2.o cgesdd.o cgesv.o cgesvd.o cgesvdx.o \
+ cgesvj.o cgsvj0.o cgsvj1.o \
cgesvx.o cgetc2.o cgetf2.o cgetri.o \
cggbak.o cggbal.o cgges.o cgges3.o cggesx.o \
cggev.o cggev3.o cggevx.o cggglm.o\
zgehd2.o zgehrd.o zgelq2.o zgelqf.o \
zgels.o zgelsd.o zgelss.o zgelsy.o zgeql2.o zgeqlf.o zgeqp3.o \
zgeqr2.o zgeqr2p.o zgeqrf.o zgeqrfp.o zgerfs.o zgerq2.o zgerqf.o \
- zgesc2.o zgesdd.o zgesv.o zgesvd.o zgesvdx.o zgesvx.o zgetc2.o zgetf2.o zgetrf.o \
+ zgesc2.o zgesdd.o zgesv.o zgesvd.o zgesvdx.o \
+ zgesvj.o zgsvj0.o zgsvj1.o \
+ zgesvx.o zgetc2.o zgetf2.o zgetrf.o \
zgetri.o zgetrs.o \
zggbak.o zggbal.o zgges.o zgges3.o zggesx.o \
zggev.o zggev3.o zggevx.o zggglm.o \
--- /dev/null
+*> \brief \b CGESVJ
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGESVJ + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvj.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvj.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvj.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
+* LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
+* CHARACTER*1 JOBA, JOBU, JOBV
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), V( LDV, * ), CWORK( LWORK )
+* REAL RWORK( LRWORK ), SVA( N )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+* CGESVJ computes the singular value decomposition (SVD) of a complex
+* M-by-N matrix A, where M >= N. The SVD of A is written as
+* [++] [xx] [x0] [xx]
+* A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
+* [++] [xx]
+* where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
+* matrix, and V is an N-by-N unitary matrix. The diagonal elements
+* of SIGMA are the singular values of A. The columns of U and V are the
+* left and the right singular vectors of A, respectively.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBA
+*> \verbatim
+*> JOBA is CHARACTER* 1
+*> Specifies the structure of A.
+*> = 'L': The input matrix A is lower triangular;
+*> = 'U': The input matrix A is upper triangular;
+*> = 'G': The input matrix A is general M-by-N matrix, M >= N.
+*> \endverbatim
+*>
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> Specifies whether to compute the left singular vectors
+*> (columns of U):
+*> = 'U': The left singular vectors corresponding to the nonzero
+*> singular values are computed and returned in the leading
+*> columns of A. See more details in the description of A.
+*> The default numerical orthogonality threshold is set to
+*> approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E').
+*> = 'C': Analogous to JOBU='U', except that user can control the
+*> level of numerical orthogonality of the computed left
+*> singular vectors. TOL can be set to TOL = CTOL*EPS, where
+*> CTOL is given on input in the array WORK.
+*> No CTOL smaller than ONE is allowed. CTOL greater
+*> than 1 / EPS is meaningless. The option 'C'
+*> can be used if M*EPS is satisfactory orthogonality
+*> of the computed left singular vectors, so CTOL=M could
+*> save few sweeps of Jacobi rotations.
+*> See the descriptions of A and WORK(1).
+*> = 'N': The matrix U is not computed. However, see the
+*> description of A.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether to compute the right singular vectors, that
+*> is, the matrix V:
+*> = 'V' : the matrix V is computed and returned in the array V
+*> = 'A' : the Jacobi rotations are applied to the MV-by-N
+*> array V. In other words, the right singular vector
+*> matrix V is not computed explicitly; instead it is
+*> applied to an MV-by-N matrix initially stored in the
+*> first MV rows of V.
+*> = 'N' : the matrix V is not computed and the array V is not
+*> referenced
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. 1/SLAMCH('E') > M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A.
+*> M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
+*> If INFO .EQ. 0 :
+*> RANKA orthonormal columns of U are returned in the
+*> leading RANKA columns of the array A. Here RANKA <= N
+*> is the number of computed singular values of A that are
+*> above the underflow threshold SLAMCH('S'). The singular
+*> vectors corresponding to underflowed or zero singular
+*> values are not computed. The value of RANKA is returned
+*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
+*> descriptions of SVA and RWORK. The computed columns of U
+*> are mutually numerically orthogonal up to approximately
+*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
+*> see the description of JOBU.
+*> If INFO .GT. 0,
+*> the procedure CGESVJ did not converge in the given number
+*> of iterations (sweeps). In that case, the computed
+*> columns of U may not be orthogonal up to TOL. The output
+*> U (stored in A), SIGMA (given by the computed singular
+*> values in SVA(1:N)) and V is still a decomposition of the
+*> input matrix A in the sense that the residual
+*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
+*> If JOBU .EQ. 'N':
+*> If INFO .EQ. 0 :
+*> Note that the left singular vectors are 'for free' in the
+*> one-sided Jacobi SVD algorithm. However, if only the
+*> singular values are needed, the level of numerical
+*> orthogonality of U is not an issue and iterations are
+*> stopped when the columns of the iterated matrix are
+*> numerically orthogonal up to approximately M*EPS. Thus,
+*> on exit, A contains the columns of U scaled with the
+*> corresponding singular values.
+*> If INFO .GT. 0 :
+*> the procedure CGESVJ did not converge in the given number
+*> of iterations (sweeps).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] SVA
+*> \verbatim
+*> SVA is REAL array, dimension (N)
+*> On exit,
+*> If INFO .EQ. 0 :
+*> depending on the value SCALE = RWORK(1), we have:
+*> If SCALE .EQ. ONE:
+*> SVA(1:N) contains the computed singular values of A.
+*> During the computation SVA contains the Euclidean column
+*> norms of the iterated matrices in the array A.
+*> If SCALE .NE. ONE:
+*> The singular values of A are SCALE*SVA(1:N), and this
+*> factored representation is due to the fact that some of the
+*> singular values of A might underflow or overflow.
+*>
+*> If INFO .GT. 0 :
+*> the procedure CGESVJ did not converge in the given number of
+*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*> MV is INTEGER
+*> If JOBV .EQ. 'A', then the product of Jacobi rotations in CGESVJ
+*> is applied to the first MV rows of V. See the description of JOBV.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*> V is COMPLEX array, dimension (LDV,N)
+*> If JOBV = 'V', then V contains on exit the N-by-N matrix of
+*> the right singular vectors;
+*> If JOBV = 'A', then V contains the product of the computed right
+*> singular vector matrix and the initial matrix in
+*> the array V.
+*> If JOBV = 'N', then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV .GE. 1.
+*> If JOBV .EQ. 'V', then LDV .GE. max(1,N).
+*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
+*> \endverbatim
+*>
+*> \param[in,out] CWORK
+*> CWORK is COMPLEX array, dimension M+N.
+*> Used as work space.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> Length of CWORK, LWORK >= M+N.
+*>
+*> \param[in,out] RWORK
+*> RWORK is REAL array, dimension max(6,M+N).
+*> On entry,
+*> If JOBU .EQ. 'C' :
+*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
+*> The process stops if all columns of A are mutually
+*> orthogonal up to CTOL*EPS, EPS=SLAMCH('E').
+*> It is required that CTOL >= ONE, i.e. it is not
+*> allowed to force the routine to obtain orthogonality
+*> below EPSILON.
+*> On exit,
+*> RWORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
+*> are the computed singular values of A.
+*> (See description of SVA().)
+*> RWORK(2) = NINT(RWORK(2)) is the number of the computed nonzero
+*> singular values.
+*> RWORK(3) = NINT(RWORK(3)) is the number of the computed singular
+*> values that are larger than the underflow threshold.
+*> RWORK(4) = NINT(RWORK(4)) is the number of sweeps of Jacobi
+*> rotations needed for numerical convergence.
+*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
+*> This is useful information in cases when CGESVJ did
+*> not converge, as it can be used to estimate whether
+*> the output is stil useful and for post festum analysis.
+*> RWORK(6) = the largest absolute value over all sines of the
+*> Jacobi rotation angles in the last sweep. It can be
+*> useful for a post festum analysis.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> LRWORK is INTEGER
+*> Length of RWORK, LRWORK >= MAX(6,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0 : successful exit.
+*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> > 0 : CGESVJ did not converge in the maximal allowed number
+*> (NSWEEP=30) of sweeps. The output may still be useful.
+*> See the description of RWORK.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup complexGEcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
+*> rotations. In the case of underflow of the tangent of the Jacobi angle, a
+*> modified Jacobi transformation of Drmac [3] is used. Pivot strategy uses
+*> column interchanges of de Rijk [1]. The relative accuracy of the computed
+*> singular values and the accuracy of the computed singular vectors (in
+*> angle metric) is as guaranteed by the theory of Demmel and Veselic [2].
+*> The condition number that determines the accuracy in the full rank case
+*> is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
+*> spectral condition number. The best performance of this Jacobi SVD
+*> procedure is achieved if used in an accelerated version of Drmac and
+*> Veselic [4,5], and it is the kernel routine in the SIGMA library [6].
+*> Some tunning parameters (marked with [TP]) are available for the
+*> implementer.
+*> The computational range for the nonzero singular values is the machine
+*> number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
+*> denormalized singular values can be computed with the corresponding
+*> gradual loss of accurate digits.
+*>
+*> \par Contributors:
+* ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*>
+*> \par References:
+* ================
+*>
+*> [1] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
+*> singular value decomposition on a vector computer.
+*> SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
+*> [2] J. Demmel and K. Veselic: Jacobi method is more accurate than QR.
+*> [3] Z. Drmac: Implementation of Jacobi rotations for accurate singular
+*> value computation in floating point arithmetic.
+*> SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
+*> [4] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
+*> LAPACK Working note 169.
+*> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
+*> LAPACK Working note 170.
+*> [6] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
+*> QSVD, (H,K)-SVD computations.
+*> Department of Mathematics, University of Zagreb, 2008, 2015.
+*>
+*> \par Bugs, Examples and Comments:
+* =================================
+*>
+*> Please report all bugs and send interesting test examples and comments to
+*> drmac@math.hr. Thank you.
+*
+* =====================================================================
+ SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
+ $ LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2015
+*
+ IMPLICIT NONE
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
+ CHARACTER*1 JOBA, JOBU, JOBV
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), V( LDV, * ), CWORK( LWORK )
+ REAL RWORK( LRWORK ), SVA( N )
+* ..
+*
+* =====================================================================
+*
+* .. Local Parameters ..
+ REAL ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = (0.0E0, 0.0E0), CONE = (1.0E0, 0.0E0) )
+ INTEGER NSWEEP
+ PARAMETER ( NSWEEP = 30 )
+* ..
+* .. Local Scalars ..
+ COMPLEX AAPQ, OMPQ
+ REAL AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
+ $ BIGTHETA, CS, CTOL, EPSLN, LARGE, MXAAPQ,
+ $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
+ $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL
+ INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
+ $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
+ $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
+ LOGICAL APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK,
+ $ RSVEC, UCTOL, UPPER
+* ..
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AMAX1, AMIN1, CONJG, FLOAT, MIN0, MAX0,
+ $ SIGN, SQRT
+* ..
+* .. External Functions ..
+* ..
+* from BLAS
+ REAL SCNRM2
+ COMPLEX CDOTC
+ EXTERNAL CDOTC, SCNRM2
+ INTEGER ISAMAX
+ EXTERNAL ISAMAX
+* from LAPACK
+ REAL SLAMCH
+ EXTERNAL SLAMCH
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+* ..
+* from BLAS
+ EXTERNAL CCOPY, CSROT, CSSCAL, CSWAP
+* from LAPACK
+ EXTERNAL CLASCL, CLASET, CLASSQ, XERBLA
+ EXTERNAL CGSVJ0, CGSVJ1
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ LSVEC = LSAME( JOBU, 'U' )
+ UCTOL = LSAME( JOBU, 'C' )
+ RSVEC = LSAME( JOBV, 'V' )
+ APPLV = LSAME( JOBV, 'A' )
+ UPPER = LSAME( JOBA, 'U' )
+ LOWER = LSAME( JOBA, 'L' )
+*
+ IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.M ) THEN
+ INFO = -7
+ ELSE IF( MV.LT.0 ) THEN
+ INFO = -9
+ ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR.
+ $ ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN
+ INFO = -11
+ ELSE IF( UCTOL .AND. ( RWORK( 1 ).LE.ONE ) ) THEN
+ INFO = -12
+ ELSE IF( LWORK.LT.( M+N ) ) THEN
+ INFO = -13
+ ELSE IF( LRWORK.LT.MAX0( N, 6 ) ) THEN
+ INFO = -15
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGESVJ', -INFO )
+ RETURN
+ END IF
+*
+* #:) Quick return for void matrix
+*
+ IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN
+*
+* Set numerical parameters
+* The stopping criterion for Jacobi rotations is
+*
+* max_{i<>j}|A(:,i)^* * A(:,j)| / (||A(:,i)||*||A(:,j)||) < CTOL*EPS
+*
+* where EPS is the round-off and CTOL is defined as follows:
+*
+ IF( UCTOL ) THEN
+* ... user controlled
+ CTOL = RWORK( 1 )
+ ELSE
+* ... default
+ IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN
+ CTOL = SQRT( FLOAT( M ) )
+ ELSE
+ CTOL = FLOAT( M )
+ END IF
+ END IF
+* ... and the machine dependent parameters are
+*[!] (Make sure that SLAMCH() works properly on the target machine.)
+*
+ EPSLN = SLAMCH( 'Epsilon' )
+ ROOTEPS = SQRT( EPSLN )
+ SFMIN = SLAMCH( 'SafeMinimum' )
+ ROOTSFMIN = SQRT( SFMIN )
+ SMALL = SFMIN / EPSLN
+ BIG = SLAMCH( 'Overflow' )
+* BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ LARGE = BIG / SQRT( FLOAT( M*N ) )
+ BIGTHETA = ONE / ROOTEPS
+*
+ TOL = CTOL*EPSLN
+ ROOTTOL = SQRT( TOL )
+*
+ IF( FLOAT( M )*EPSLN.GE.ONE ) THEN
+ INFO = -4
+ CALL XERBLA( 'CGESVJ', -INFO )
+ RETURN
+ END IF
+*
+* Initialize the right singular vector matrix.
+*
+ IF( RSVEC ) THEN
+ MVL = N
+ CALL CLASET( 'A', MVL, N, CZERO, CONE, V, LDV )
+ ELSE IF( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+*
+* Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
+*(!) If necessary, scale A to protect the largest singular value
+* from overflow. It is possible that saving the largest singular
+* value destroys the information about the small ones.
+* This initial scaling is almost minimal in the sense that the
+* goal is to make sure that no column norm overflows, and that
+* SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
+* in A are detected, the procedure returns with INFO=-6.
+*
+ SKL = ONE / SQRT( FLOAT( M )*FLOAT( N ) )
+ NOSCALE = .TRUE.
+ GOSCALE = .TRUE.
+*
+ IF( LOWER ) THEN
+* the input matrix is M-by-N lower triangular (trapezoidal)
+ DO 1874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ )
+ IF( AAPP.GT.BIG ) THEN
+ INFO = -6
+ CALL XERBLA( 'CGESVJ', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT( AAQQ )
+ IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
+ SVA( p ) = AAPP*AAQQ
+ ELSE
+ NOSCALE = .FALSE.
+ SVA( p ) = AAPP*( AAQQ*SKL )
+ IF( GOSCALE ) THEN
+ GOSCALE = .FALSE.
+ DO 1873 q = 1, p - 1
+ SVA( q ) = SVA( q )*SKL
+ 1873 CONTINUE
+ END IF
+ END IF
+ 1874 CONTINUE
+ ELSE IF( UPPER ) THEN
+* the input matrix is M-by-N upper triangular (trapezoidal)
+ DO 2874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( p, A( 1, p ), 1, AAPP, AAQQ )
+ IF( AAPP.GT.BIG ) THEN
+ INFO = -6
+ CALL XERBLA( 'CGESVJ', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT( AAQQ )
+ IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
+ SVA( p ) = AAPP*AAQQ
+ ELSE
+ NOSCALE = .FALSE.
+ SVA( p ) = AAPP*( AAQQ*SKL )
+ IF( GOSCALE ) THEN
+ GOSCALE = .FALSE.
+ DO 2873 q = 1, p - 1
+ SVA( q ) = SVA( q )*SKL
+ 2873 CONTINUE
+ END IF
+ END IF
+ 2874 CONTINUE
+ ELSE
+* the input matrix is M-by-N general dense
+ DO 3874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, AAPP, AAQQ )
+ IF( AAPP.GT.BIG ) THEN
+ INFO = -6
+ CALL XERBLA( 'CGESVJ', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT( AAQQ )
+ IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
+ SVA( p ) = AAPP*AAQQ
+ ELSE
+ NOSCALE = .FALSE.
+ SVA( p ) = AAPP*( AAQQ*SKL )
+ IF( GOSCALE ) THEN
+ GOSCALE = .FALSE.
+ DO 3873 q = 1, p - 1
+ SVA( q ) = SVA( q )*SKL
+ 3873 CONTINUE
+ END IF
+ END IF
+ 3874 CONTINUE
+ END IF
+*
+ IF( NOSCALE )SKL = ONE
+*
+* Move the smaller part of the spectrum from the underflow threshold
+*(!) Start by determining the position of the nonzero entries of the
+* array SVA() relative to ( SFMIN, BIG ).
+*
+ AAPP = ZERO
+ AAQQ = BIG
+ DO 4781 p = 1, N
+ IF( SVA( p ).NE.ZERO )AAQQ = AMIN1( AAQQ, SVA( p ) )
+ AAPP = AMAX1( AAPP, SVA( p ) )
+ 4781 CONTINUE
+*
+* #:) Quick return for zero matrix
+*
+ IF( AAPP.EQ.ZERO ) THEN
+ IF( LSVEC )CALL CLASET( 'G', M, N, CZERO, CONE, A, LDA )
+ RWORK( 1 ) = ONE
+ RWORK( 2 ) = ZERO
+ RWORK( 3 ) = ZERO
+ RWORK( 4 ) = ZERO
+ RWORK( 5 ) = ZERO
+ RWORK( 6 ) = ZERO
+ RETURN
+ END IF
+*
+* #:) Quick return for one-column matrix
+*
+ IF( N.EQ.1 ) THEN
+ IF( LSVEC )CALL CLASCL( 'G', 0, 0, SVA( 1 ), SKL, M, 1,
+ $ A( 1, 1 ), LDA, IERR )
+ RWORK( 1 ) = ONE / SKL
+ IF( SVA( 1 ).GE.SFMIN ) THEN
+ RWORK( 2 ) = ONE
+ ELSE
+ RWORK( 2 ) = ZERO
+ END IF
+ RWORK( 3 ) = ZERO
+ RWORK( 4 ) = ZERO
+ RWORK( 5 ) = ZERO
+ RWORK( 6 ) = ZERO
+ RETURN
+ END IF
+*
+* Protect small singular values from underflow, and try to
+* avoid underflows/overflows in computing Jacobi rotations.
+*
+ SN = SQRT( SFMIN / EPSLN )
+ TEMP1 = SQRT( BIG / FLOAT( N ) )
+ IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR.
+ $ ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN
+ TEMP1 = AMIN1( BIG, TEMP1 / AAPP )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN
+ TEMP1 = AMIN1( SN / AAQQ, BIG / ( AAPP*SQRT( FLOAT( N ) ) ) )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
+ TEMP1 = AMAX1( SN / AAQQ, TEMP1 / AAPP )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
+ TEMP1 = AMIN1( SN / AAQQ, BIG / ( SQRT( FLOAT( N ) )*AAPP ) )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE
+ TEMP1 = ONE
+ END IF
+*
+* Scale, if necessary
+*
+ IF( TEMP1.NE.ONE ) THEN
+ CALL SLASCL( 'G', 0, 0, ONE, TEMP1, N, 1, SVA, N, IERR )
+ END IF
+ SKL = TEMP1*SKL
+ IF( SKL.NE.ONE ) THEN
+ CALL CLASCL( JOBA, 0, 0, ONE, SKL, M, N, A, LDA, IERR )
+ SKL = ONE / SKL
+ END IF
+*
+* Row-cyclic Jacobi SVD algorithm with column pivoting
+*
+ EMPTSW = ( N*( N-1 ) ) / 2
+ NOTROT = 0
+
+ DO 1868 q = 1, N
+ CWORK( q ) = CONE
+ 1868 CONTINUE
+*
+*
+*
+ SWBAND = 3
+*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
+* if CGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure
+* works on pivots inside a band-like region around the diagonal.
+* The boundaries are determined dynamically, based on the number of
+* pivots above a threshold.
+*
+ KBL = MIN0( 8, N )
+*[TP] KBL is a tuning parameter that defines the tile size in the
+* tiling of the p-q loops of pivot pairs. In general, an optimal
+* value of KBL depends on the matrix dimensions and on the
+* parameters of the computer's memory.
+*
+ NBL = N / KBL
+ IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
+*
+ BLSKIP = KBL**2
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+*
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+*
+ LKAHEAD = 1
+*[TP] LKAHEAD is a tuning parameter.
+*
+* Quasi block transformations, using the lower (upper) triangular
+* structure of the input matrix. The quasi-block-cycling usually
+* invokes cubic convergence. Big part of this cycle is done inside
+* canonical subspaces of dimensions less than M.
+*
+ IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX0( 64, 4*KBL ) ) ) THEN
+*[TP] The number of partition levels and the actual partition are
+* tuning parameters.
+ N4 = N / 4
+ N2 = N / 2
+ N34 = 3*N4
+ IF( APPLV ) THEN
+ q = 0
+ ELSE
+ q = 1
+ END IF
+*
+ IF( LOWER ) THEN
+*
+* This works very well on lower triangular matrices, in particular
+* in the framework of the preconditioned Jacobi SVD (xGEJSV).
+* The idea is simple:
+* [+ 0 0 0] Note that Jacobi transformations of [0 0]
+* [+ + 0 0] [0 0]
+* [+ + x 0] actually work on [x 0] [x 0]
+* [+ + x x] [x x]. [x x]
+*
+ CALL CGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA,
+ $ CWORK( N34+1 ), SVA( N34+1 ), MVL,
+ $ V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL,
+ $ 2, CWORK( N+1 ), LWORK-N, IERR )
+
+ CALL CGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA,
+ $ CWORK( N2+1 ), SVA( N2+1 ), MVL,
+ $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+
+ CALL CGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA,
+ $ CWORK( N2+1 ), SVA( N2+1 ), MVL,
+ $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+*
+ CALL CGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA,
+ $ CWORK( N4+1 ), SVA( N4+1 ), MVL,
+ $ V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+*
+ CALL CGSVJ0( JOBV, M, N4, A, LDA, CWORK, SVA, MVL, V, LDV,
+ $ EPSLN, SFMIN, TOL, 1, CWORK( N+1 ), LWORK-N,
+ $ IERR )
+*
+ CALL CGSVJ1( JOBV, M, N2, N4, A, LDA, CWORK, SVA, MVL, V,
+ $ LDV, EPSLN, SFMIN, TOL, 1, CWORK( N+1 ),
+ $ LWORK-N, IERR )
+*
+*
+ ELSE IF( UPPER ) THEN
+*
+*
+ CALL CGSVJ0( JOBV, N4, N4, A, LDA, CWORK, SVA, MVL, V, LDV,
+ $ EPSLN, SFMIN, TOL, 2, CWORK( N+1 ), LWORK-N,
+ $ IERR )
+*
+ CALL CGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA, CWORK( N4+1 ),
+ $ SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV,
+ $ EPSLN, SFMIN, TOL, 1, CWORK( N+1 ), LWORK-N,
+ $ IERR )
+*
+ CALL CGSVJ1( JOBV, N2, N2, N4, A, LDA, CWORK, SVA, MVL, V,
+ $ LDV, EPSLN, SFMIN, TOL, 1, CWORK( N+1 ),
+ $ LWORK-N, IERR )
+*
+ CALL CGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA,
+ $ CWORK( N2+1 ), SVA( N2+1 ), MVL,
+ $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+
+ END IF
+*
+ END IF
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+ DO 1993 i = 1, NSWEEP
+*
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
+* 1 <= p < q <= N. This is the first step toward a blocked implementation
+* of the rotations. New implementation, based on block transformations,
+* is under development.
+*
+ DO 2000 ibr = 1, NBL
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
+*
+ igl = igl + ir1*KBL
+*
+ DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
+*
+* .. de Rijk's pivoting
+*
+ q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1,
+ $ V( 1, q ), 1 )
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = CWORK(p)
+ CWORK(p) = CWORK(q)
+ CWORK(q) = AAPQ
+ END IF
+*
+ IF( ir1.EQ.0 ) THEN
+*
+* Column norms are periodically updated by explicit
+* norm computation.
+*[!] Caveat:
+* Unfortunately, some BLAS implementations compute SCNRM2(M,A(1,p),1)
+* as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
+* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
+* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
+* Hence, SCNRM2 cannot be trusted, not even in the case when
+* the true norm is far from the under(over)flow boundaries.
+* If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF
+* below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )".
+*
+ IF( ( SVA( p ).LT.ROOTBIG ) .AND.
+ $ ( SVA( p ).GT.ROOTSFMIN ) ) THEN
+ SVA( p ) = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ TEMP1 = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
+ SVA( p ) = TEMP1*SQRT( AAPP )
+ END IF
+ AAPP = SVA( p )
+ ELSE
+ AAPP = SVA( p )
+ END IF
+*
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+*
+ IF( AAQQ.GT.ZERO ) THEN
+*
+ AAPP0 = AAPP
+ IF( AAQQ.GE.ONE ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, CWORK(N+1), LDA, IERR )
+ AAPQ = CDOTC( M, CWORK(N+1), 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ CWORK(N+1), LDA, IERR )
+ AAPQ = CDOTC( M, A(1, p ), 1,
+ $ CWORK(N+1), 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+*
+* .. rotate
+*[RTD] ROTATED = ROTATED + ONE
+*
+ IF( ir1.EQ.0 ) THEN
+ NOTROT = 0
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+ END IF
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+*
+ T = HALF / THETA
+ CS = ONE
+
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*T )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*T )
+ END IF
+
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+*
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+*
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*SN )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*SN )
+ END IF
+ END IF
+ CWORK(p) = -CWORK(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE, M,
+ $ 1, CWORK(N+1), LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ CALL CAXPY( M, -AAPQ, CWORK(N+1), 1,
+ $ A( 1, q ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAQQ, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* recompute SVA(q), SVA(p).
+*
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = SCNRM2( M, A( 1, q ), 1 )
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+*
+ ELSE
+* A(:,p) and A(:,q) already numerically orthogonal
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+ ELSE
+* A(:,q) is zero column
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ IF( ir1.EQ.0 )AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2103
+ END IF
+*
+ 2002 CONTINUE
+* END q-LOOP
+*
+ 2103 CONTINUE
+* bailed out of q-loop
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+ SVA( p ) = AAPP
+ IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
+ $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
+ END IF
+*
+ 2001 CONTINUE
+* end of the p-loop
+* end of doing the block ( ibr, ibr )
+ 1002 CONTINUE
+* end of ir1-loop
+*
+* ... go to the off diagonal blocks
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 2010 jbc = ibr + 1, NBL
+*
+ jgl = ( jbc-1 )*KBL + 1
+*
+* doing the block at ( ibr, jbc )
+*
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl+KBL-1, N )
+*
+ AAPP = SVA( p )
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+ IF( AAQQ.GT.ZERO ) THEN
+ AAPP0 = AAPP
+*
+* .. M x 2 Jacobi SVD ..
+*
+* Safe Gram matrix computation
+*
+ IF( AAQQ.GE.ONE ) THEN
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ).LE.AAPP
+ END IF
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP,
+ $ ONE, M, 1,
+ $ CWORK(N+1), LDA, IERR )
+ AAPQ = CDOTC( M, CWORK(N+1), 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ.LE.( AAPP / SMALL )
+ END IF
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ CWORK(N+1), LDA, IERR )
+ AAPQ = CDOTC( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+ NOTROT = 0
+*[RTD] ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
+ IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+ T = HALF / THETA
+ CS = ONE
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*T )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*T )
+ END IF
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*SN )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*SN )
+ END IF
+ END IF
+ CWORK(p) = -CWORK(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ IF( AAPP.GT.AAQQ ) THEN
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, CWORK(N+1),LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -AAPQ, CWORK(N+1),
+ $ 1, A( 1, q ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAQQ,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ CWORK(N+1), 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, CWORK(N+1),LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -CONJG(AAPQ),
+ $ CWORK(N+1), 1, A( 1, p ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAPP,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* .. recompute SVA(q), SVA(p)
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = SCNRM2( M, A( 1, q ), 1)
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+ $ THEN
+ SVA( p ) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+*
+ IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+ $ MIN0( jgl+KBL-1, N ) - jgl + 1
+ IF( AAPP.LT.ZERO )NOTROT = 0
+*
+ END IF
+*
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl+KBL-1, N )
+ SVA( p ) = ABS( SVA( p ) )
+ 2012 CONTINUE
+***
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+ $ THEN
+ SVA( N ) = SCNRM2( M, A( 1, N ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, N ), 1, T, AAPP )
+ SVA( N ) = T*SQRT( AAPP )
+ END IF
+*
+* Additional steering devices
+*
+ IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ $ ( ISWROT.LE.N ) ) )SWBAND = i
+*
+ IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( FLOAT( N ) )*
+ $ TOL ) .AND. ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+ GO TO 1994
+ END IF
+*
+ IF( NOTROT.GE.EMPTSW )GO TO 1994
+*
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+*
+* #:( Reaching this point means that the procedure has not converged.
+ INFO = NSWEEP - 1
+ GO TO 1995
+*
+ 1994 CONTINUE
+* #:) Reaching this point means numerical convergence after the i-th
+* sweep.
+*
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the singular values and find how many are above
+* the underflow threshold.
+*
+ N2 = 0
+ N4 = 0
+ DO 5991 p = 1, N - 1
+ q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
+ END IF
+ IF( SVA( p ).NE.ZERO ) THEN
+ N4 = N4 + 1
+ IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1
+ END IF
+ 5991 CONTINUE
+ IF( SVA( N ).NE.ZERO ) THEN
+ N4 = N4 + 1
+ IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1
+ END IF
+*
+* Normalize the left singular vectors.
+*
+ IF( LSVEC .OR. UCTOL ) THEN
+ DO 1998 p = 1, N2
+ CALL CSSCAL( M, ONE / SVA( p ), A( 1, p ), 1 )
+ 1998 CONTINUE
+ END IF
+*
+* Scale the product of Jacobi rotations.
+*
+ IF( RSVEC ) THEN
+ DO 2399 p = 1, N
+ TEMP1 = ONE / SCNRM2( MVL, V( 1, p ), 1 )
+ CALL CSSCAL( MVL, TEMP1, V( 1, p ), 1 )
+ 2399 CONTINUE
+ END IF
+*
+* Undo scaling, if necessary (and possible).
+ IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / SKL ) ) )
+ $ .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( MAX( N2, 1 ) ) .GT.
+ $ ( SFMIN / SKL ) ) ) ) THEN
+ DO 2400 p = 1, N
+ SVA( P ) = SKL*SVA( P )
+ 2400 CONTINUE
+ SKL = ONE
+ END IF
+*
+ RWORK( 1 ) = SKL
+* The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
+* then some of the singular values may overflow or underflow and
+* the spectrum is given in this factored representation.
+*
+ RWORK( 2 ) = FLOAT( N4 )
+* N4 is the number of computed nonzero singular values of A.
+*
+ RWORK( 3 ) = FLOAT( N2 )
+* N2 is the number of singular values of A greater than SFMIN.
+* If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
+* that may carry some information.
+*
+ RWORK( 4 ) = FLOAT( i )
+* i is the index of the last sweep before declaring convergence.
+*
+ RWORK( 5 ) = MXAAPQ
+* MXAAPQ is the largest absolute value of scaled pivots in the
+* last sweep
+*
+ RWORK( 6 ) = MXSINJ
+* MXSINJ is the largest absolute value of the sines of Jacobi angles
+* in the last sweep
+*
+ RETURN
+* ..
+* .. END OF CGESVJ
+* ..
+ END
--- /dev/null
+*> \brief \b CGSVJ0 pre-processor for the routine sgesvj.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGSVJ0 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj0.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj0.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj0.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+* REAL EPS, SFMIN, TOL
+* CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+* REAL SVA( N )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGSVJ0 is called from CGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as CGESVJ does, but
+*> it does not check convergence (stopping criterion). Few tuning
+*> parameters (marked by [TP]) are available for the implementer.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether the output from this procedure is used
+*> to compute the matrix V:
+*> = 'V': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the N-by-N array V.
+*> (See the description of V.)
+*> = 'A': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the MV-by-N array V.
+*> (See the descriptions of MV and V.)
+*> = 'N': the Jacobi rotations are not accumulated.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A.
+*> M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, M-by-N matrix A, such that A*diag(D) represents
+*> the input matrix.
+*> On exit,
+*> A_onexit * diag(D_onexit) represents the input matrix A*diag(D)
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of D, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] D
+*> \verbatim
+*> D is COMPLEX array, dimension (N)
+*> The array D accumulates the scaling factors from the complex scaled
+*> Jacobi rotations.
+*> On entry, A*diag(D) represents the input matrix.
+*> On exit, A_onexit*diag(D_onexit) represents the input matrix
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of A, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in,out] SVA
+*> \verbatim
+*> SVA is REAL array, dimension (N)
+*> On entry, SVA contains the Euclidean norms of the columns of
+*> the matrix A*diag(D).
+*> On exit, SVA contains the Euclidean norms of the columns of
+*> the matrix A_onexit*diag(D_onexit).
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*> MV is INTEGER
+*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then MV is not referenced.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*> V is COMPLEX array, dimension (LDV,N)
+*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V', LDV .GE. N.
+*> If JOBV = 'A', LDV .GE. MV.
+*> \endverbatim
+*>
+*> \param[in] EPS
+*> \verbatim
+*> EPS is REAL
+*> EPS = SLAMCH('Epsilon')
+*> \endverbatim
+*>
+*> \param[in] SFMIN
+*> \verbatim
+*> SFMIN is REAL
+*> SFMIN = SLAMCH('Safe Minimum')
+*> \endverbatim
+*>
+*> \param[in] TOL
+*> \verbatim
+*> TOL is REAL
+*> TOL is the threshold for Jacobi rotations. For a pair
+*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> \endverbatim
+*>
+*> \param[in] NSWEEP
+*> \verbatim
+*> NSWEEP is INTEGER
+*> NSWEEP is the number of sweeps of Jacobi rotations to be
+*> performed.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0 : successful exit.
+*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup complexOTHERcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> CGSVJ0 is used just to enable CGESVJ to call a simplified version of
+*> itself to work on a submatrix of the original matrix.
+*>
+*> \par Contributors:
+* ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*>
+*> \par Bugs, Examples and Comments:
+* =================================
+*>
+*> Please report all bugs and send interesting test examples and comments to
+*> drmac@math.hr. Thank you.
+*
+* =====================================================================
+ SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+ $ SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2015
+*
+ IMPLICIT NONE
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+ REAL EPS, SFMIN, TOL
+ CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+ REAL SVA( N )
+* ..
+*
+* =====================================================================
+*
+* .. Local Parameters ..
+ REAL ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = (0.0E0, 0.0E0), CONE = (1.0E0, 0.0E0) )
+* ..
+* .. Local Scalars ..
+ COMPLEX AAPQ, OMPQ
+ REAL AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
+ $ BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
+ $ ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
+ $ THSIGN
+ INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
+ $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
+ $ NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
+ LOGICAL APPLV, ROTOK, RSVEC
+* ..
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AMAX1, CONJG, FLOAT, MIN0, MAX0, SIGN, SQRT
+* ..
+* .. External Functions ..
+ REAL SCNRM2
+ COMPLEX CDOTC
+ INTEGER ISAMAX
+ LOGICAL LSAME
+ EXTERNAL ISAMAX, LSAME, CDOTC, SCNRM2
+* ..
+* ..
+* .. External Subroutines ..
+* ..
+* from BLAS
+ EXTERNAL CCOPY, CSROT, CSSCAL, CSWAP
+* from LAPACK
+ EXTERNAL CLASCL, CLASSQ, XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ APPLV = LSAME( JOBV, 'A' )
+ RSVEC = LSAME( JOBV, 'V' )
+ IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.M ) THEN
+ INFO = -5
+ ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
+ INFO = -8
+ ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
+ $ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
+ INFO = -10
+ ELSE IF( TOL.LE.EPS ) THEN
+ INFO = -13
+ ELSE IF( NSWEEP.LT.0 ) THEN
+ INFO = -14
+ ELSE IF( LWORK.LT.M ) THEN
+ INFO = -16
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGSVJ0', -INFO )
+ RETURN
+ END IF
+*
+ IF( RSVEC ) THEN
+ MVL = N
+ ELSE IF( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+
+ ROOTEPS = SQRT( EPS )
+ ROOTSFMIN = SQRT( SFMIN )
+ SMALL = SFMIN / EPS
+ BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ BIGTHETA = ONE / ROOTEPS
+ ROOTTOL = SQRT( TOL )
+*
+* .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
+*
+ EMPTSW = ( N*( N-1 ) ) / 2
+ NOTROT = 0
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+
+ SWBAND = 0
+*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
+* if CGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure
+* works on pivots inside a band-like region around the diagonal.
+* The boundaries are determined dynamically, based on the number of
+* pivots above a threshold.
+*
+ KBL = MIN0( 8, N )
+*[TP] KBL is a tuning parameter that defines the tile size in the
+* tiling of the p-q loops of pivot pairs. In general, an optimal
+* value of KBL depends on the matrix dimensions and on the
+* parameters of the computer's memory.
+*
+ NBL = N / KBL
+ IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
+*
+ BLSKIP = KBL**2
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+*
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+*
+ LKAHEAD = 1
+*[TP] LKAHEAD is a tuning parameter.
+*
+* Quasi block transformations, using the lower (upper) triangular
+* structure of the input matrix. The quasi-block-cycling usually
+* invokes cubic convergence. Big part of this cycle is done inside
+* canonical subspaces of dimensions less than M.
+*
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+ DO 1993 i = 1, NSWEEP
+*
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
+* 1 <= p < q <= N. This is the first step toward a blocked implementation
+* of the rotations. New implementation, based on block transformations,
+* is under development.
+*
+ DO 2000 ibr = 1, NBL
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
+*
+ igl = igl + ir1*KBL
+*
+ DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
+*
+* .. de Rijk's pivoting
+*
+ q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1,
+ $ V( 1, q ), 1 )
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = D(p)
+ D(p) = D(q)
+ D(q) = AAPQ
+ END IF
+*
+ IF( ir1.EQ.0 ) THEN
+*
+* Column norms are periodically updated by explicit
+* norm computation.
+* Caveat:
+* Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1)
+* as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
+* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
+* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
+* Hence, SCNRM2 cannot be trusted, not even in the case when
+* the true norm is far from the under(over)flow boundaries.
+* If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF
+* below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )".
+*
+ IF( ( SVA( p ).LT.ROOTBIG ) .AND.
+ $ ( SVA( p ).GT.ROOTSFMIN ) ) THEN
+ SVA( p ) = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ TEMP1 = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
+ SVA( p ) = TEMP1*SQRT( AAPP )
+ END IF
+ AAPP = SVA( p )
+ ELSE
+ AAPP = SVA( p )
+ END IF
+*
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+*
+ IF( AAQQ.GT.ZERO ) THEN
+*
+ AAPP0 = AAPP
+ IF( AAQQ.GE.ONE ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, WORK, LDA, IERR )
+ AAPQ = CDOTC( M, WORK, 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = CDOTC( M, A( 1, p ), 1,
+ $ WORK, 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+*
+* .. rotate
+*[RTD] ROTATED = ROTATED + ONE
+*
+ IF( ir1.EQ.0 ) THEN
+ NOTROT = 0
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+ END IF
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+*
+ T = HALF / THETA
+ CS = ONE
+
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*T )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*T )
+ END IF
+
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+*
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+*
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*SN )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*SN )
+ END IF
+ END IF
+ D(p) = -D(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE, M,
+ $ 1, WORK, LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ CALL CAXPY( M, -AAPQ, WORK, 1,
+ $ A( 1, q ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAQQ, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* recompute SVA(q), SVA(p).
+*
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = SCNRM2( M, A( 1, q ), 1 )
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+*
+ ELSE
+* A(:,p) and A(:,q) already numerically orthogonal
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+ ELSE
+* A(:,q) is zero column
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ IF( ir1.EQ.0 )AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2103
+ END IF
+*
+ 2002 CONTINUE
+* END q-LOOP
+*
+ 2103 CONTINUE
+* bailed out of q-loop
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+ SVA( p ) = AAPP
+ IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
+ $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
+ END IF
+*
+ 2001 CONTINUE
+* end of the p-loop
+* end of doing the block ( ibr, ibr )
+ 1002 CONTINUE
+* end of ir1-loop
+*
+* ... go to the off diagonal blocks
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 2010 jbc = ibr + 1, NBL
+*
+ jgl = ( jbc-1 )*KBL + 1
+*
+* doing the block at ( ibr, jbc )
+*
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl+KBL-1, N )
+*
+ AAPP = SVA( p )
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+ IF( AAQQ.GT.ZERO ) THEN
+ AAPP0 = AAPP
+*
+* .. M x 2 Jacobi SVD ..
+*
+* Safe Gram matrix computation
+*
+ IF( AAQQ.GE.ONE ) THEN
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ).LE.AAPP
+ END IF
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = CDOTC( M, WORK, 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ.LE.( AAPP / SMALL )
+ END IF
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = CDOTC( M, A( 1, p ), 1,
+ $ WORK, 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+ NOTROT = 0
+*[RTD] ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
+ IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+ T = HALF / THETA
+ CS = ONE
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*T )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*T )
+ END IF
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*SN )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*SN )
+ END IF
+ END IF
+ D(p) = -D(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ IF( AAPP.GT.AAQQ ) THEN
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -AAPQ, WORK,
+ $ 1, A( 1, q ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAQQ,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -CONJG(AAPQ),
+ $ WORK, 1, A( 1, p ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAPP,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* .. recompute SVA(q), SVA(p)
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = SCNRM2( M, A( 1, q ), 1)
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+ $ THEN
+ SVA( p ) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+*
+ IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+ $ MIN0( jgl+KBL-1, N ) - jgl + 1
+ IF( AAPP.LT.ZERO )NOTROT = 0
+*
+ END IF
+*
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl+KBL-1, N )
+ SVA( p ) = ABS( SVA( p ) )
+ 2012 CONTINUE
+***
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+ $ THEN
+ SVA( N ) = SCNRM2( M, A( 1, N ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, N ), 1, T, AAPP )
+ SVA( N ) = T*SQRT( AAPP )
+ END IF
+*
+* Additional steering devices
+*
+ IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ $ ( ISWROT.LE.N ) ) )SWBAND = i
+*
+ IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( FLOAT( N ) )*
+ $ TOL ) .AND. ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+ GO TO 1994
+ END IF
+*
+ IF( NOTROT.GE.EMPTSW )GO TO 1994
+*
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+*
+* #:( Reaching this point means that the procedure has not converged.
+ INFO = NSWEEP - 1
+ GO TO 1995
+*
+ 1994 CONTINUE
+* #:) Reaching this point means numerical convergence after the i-th
+* sweep.
+*
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the vector SVA() of column norms.
+ DO 5991 p = 1, N - 1
+ q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = D( p )
+ D( p ) = D( q )
+ D( q ) = AAPQ
+ CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
+ END IF
+ 5991 CONTINUE
+*
+ RETURN
+* ..
+* .. END OF CGSVJ0
+* ..
+ END
--- /dev/null
+*> \brief \b CGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGSVJ1 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj1.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj1.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj1.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
+* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* REAL EPS, SFMIN, TOL
+* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
+* CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+* COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+* REAL SVA( N )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CGSVJ1 is called from CGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as CGESVJ does, but
+*> it targets only particular pivots and it does not check convergence
+*> (stopping criterion). Few tunning parameters (marked by [TP]) are
+*> available for the implementer.
+*>
+*> Further Details
+*> ~~~~~~~~~~~~~~~
+*> CGSVJ1 applies few sweeps of Jacobi rotations in the column space of
+*> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
+*> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
+*> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
+*> [x]'s in the following scheme:
+*>
+*> | * * * [x] [x] [x]|
+*> | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
+*> | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
+*> |[x] [x] [x] * * * |
+*> |[x] [x] [x] * * * |
+*> |[x] [x] [x] * * * |
+*>
+*> In terms of the columns of A, the first N1 columns are rotated 'against'
+*> the remaining N-N1 columns, trying to increase the angle between the
+*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
+*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
+*> The number of sweeps is given in NSWEEP and the orthogonality threshold
+*> is given in TOL.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether the output from this procedure is used
+*> to compute the matrix V:
+*> = 'V': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the N-by-N array V.
+*> (See the description of V.)
+*> = 'A': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the MV-by-N array V.
+*> (See the descriptions of MV and V.)
+*> = 'N': the Jacobi rotations are not accumulated.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A.
+*> M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] N1
+*> \verbatim
+*> N1 is INTEGER
+*> N1 specifies the 2 x 2 block partition, the first N1 columns are
+*> rotated 'against' the remaining N-N1 columns of A.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, M-by-N matrix A, such that A*diag(D) represents
+*> the input matrix.
+*> On exit,
+*> A_onexit * D_onexit represents the input matrix A*diag(D)
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of N1, D, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] D
+*> \verbatim
+*> D is REAL array, dimension (N)
+*> The array D accumulates the scaling factors from the fast scaled
+*> Jacobi rotations.
+*> On entry, A*diag(D) represents the input matrix.
+*> On exit, A_onexit*diag(D_onexit) represents the input matrix
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of N1, A, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in,out] SVA
+*> \verbatim
+*> SVA is REAL array, dimension (N)
+*> On entry, SVA contains the Euclidean norms of the columns of
+*> the matrix A*diag(D).
+*> On exit, SVA contains the Euclidean norms of the columns of
+*> the matrix onexit*diag(D_onexit).
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*> MV is INTEGER
+*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then MV is not referenced.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*> V is REAL array, dimension (LDV,N)
+*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V', LDV .GE. N.
+*> If JOBV = 'A', LDV .GE. MV.
+*> \endverbatim
+*>
+*> \param[in] EPS
+*> \verbatim
+*> EPS is REAL
+*> EPS = SLAMCH('Epsilon')
+*> \endverbatim
+*>
+*> \param[in] SFMIN
+*> \verbatim
+*> SFMIN is REAL
+*> SFMIN = SLAMCH('Safe Minimum')
+*> \endverbatim
+*>
+*> \param[in] TOL
+*> \verbatim
+*> TOL is REAL
+*> TOL is the threshold for Jacobi rotations. For a pair
+*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> \endverbatim
+*>
+*> \param[in] NSWEEP
+*> \verbatim
+*> NSWEEP is INTEGER
+*> NSWEEP is the number of sweeps of Jacobi rotations to be
+*> performed.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0 : successful exit.
+*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup complexOTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*
+* =====================================================================
+ SUBROUTINE CGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
+ $ EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2015
+*
+* .. Scalar Arguments ..
+ REAL EPS, SFMIN, TOL
+ INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
+ CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+ COMPLEX A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+ REAL SVA( N )
+* ..
+*
+* =====================================================================
+*
+* .. Local Parameters ..
+ REAL ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
+* ..
+* .. Local Scalars ..
+ COMPLEX AAPQ, OMPQ
+ REAL AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
+ $ BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG,
+ $ ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
+ $ TEMP1, THETA, THSIGN
+ INTEGER BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
+ $ ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
+ $ p, PSKIPPED, q, ROWSKIP, SWBAND
+ LOGICAL APPLV, ROTOK, RSVEC
+* ..
+* .. Local Arrays ..
+ REAL FASTR( 5 )
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AMAX1, FLOAT, MIN0, SIGN, SQRT
+* ..
+* .. External Functions ..
+ REAL SCNRM2
+ COMPLEX CDOTC
+ INTEGER ISAMAX
+ LOGICAL LSAME
+ EXTERNAL ISAMAX, LSAME, CDOTC, SCNRM2
+* ..
+* .. External Subroutines ..
+* .. from BLAS
+ EXTERNAL CCOPY, CSROT, CSSCAL, CSWAP
+* .. from LAPACK
+ EXTERNAL CLASCL, CLASSQ, XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ APPLV = LSAME( JOBV, 'A' )
+ RSVEC = LSAME( JOBV, 'V' )
+ IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -3
+ ELSE IF( N1.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.M ) THEN
+ INFO = -6
+ ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
+ INFO = -9
+ ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
+ $ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
+ INFO = -11
+ ELSE IF( TOL.LE.EPS ) THEN
+ INFO = -14
+ ELSE IF( NSWEEP.LT.0 ) THEN
+ INFO = -15
+ ELSE IF( LWORK.LT.M ) THEN
+ INFO = -17
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGSVJ1', -INFO )
+ RETURN
+ END IF
+*
+ IF( RSVEC ) THEN
+ MVL = N
+ ELSE IF( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+
+ ROOTEPS = SQRT( EPS )
+ ROOTSFMIN = SQRT( SFMIN )
+ SMALL = SFMIN / EPS
+ BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ LARGE = BIG / SQRT( FLOAT( M*N ) )
+ BIGTHETA = ONE / ROOTEPS
+ ROOTTOL = SQRT( TOL )
+*
+* .. Initialize the right singular vector matrix ..
+*
+* RSVEC = LSAME( JOBV, 'Y' )
+*
+ EMPTSW = N1*( N-N1 )
+ NOTROT = 0
+ FASTR( 1 ) = ZERO
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+ KBL = MIN0( 8, N )
+ NBLR = N1 / KBL
+ IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1
+
+* .. the tiling is nblr-by-nblc [tiles]
+
+ NBLC = ( N-N1 ) / KBL
+ IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
+ BLSKIP = ( KBL**2 ) + 1
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+ SWBAND = 0
+*[TP] SWBAND is a tuning parameter. It is meaningful and effective
+* if CGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm CGEJSV.
+*
+*
+* | * * * [x] [x] [x]|
+* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
+* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+*
+*
+ DO 1993 i = 1, NSWEEP
+*
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
+* 1 <= p < q <= N. This is the first step toward a blocked implementation
+* of the rotations. New implementation, based on block transformations,
+* is under development.
+*
+ DO 2000 ibr = 1, NBLR
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+
+*
+* ... go to the off diagonal blocks
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+* DO 2010 jbc = ibr + 1, NBL
+ DO 2010 jbc = 1, NBLC
+*
+ jgl = ( jbc-1 )*KBL + N1 + 1
+*
+* doing the block at ( ibr, jbc )
+*
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl+KBL-1, N1 )
+*
+ AAPP = SVA( p )
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+ IF( AAQQ.GT.ZERO ) THEN
+ AAPP0 = AAPP
+*
+* .. M x 2 Jacobi SVD ..
+*
+* Safe Gram matrix computation
+*
+ IF( AAQQ.GE.ONE ) THEN
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ).LE.AAPP
+ END IF
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = CDOTC( M, WORK, 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ.LE.( AAPP / SMALL )
+ END IF
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( CDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = CDOTC( M, A( 1, p ), 1,
+ $ WORK, 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+ NOTROT = 0
+*[RTD] ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
+ IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+ T = HALF / THETA
+ CS = ONE
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*T )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*T )
+ END IF
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, CONJG(OMPQ)*SN )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, CONJG(OMPQ)*SN )
+ END IF
+ END IF
+ D(p) = -D(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ IF( AAPP.GT.AAQQ ) THEN
+ CALL CCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -AAPQ, WORK,
+ $ 1, A( 1, q ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAQQ,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL CCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL CLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -CONJG(AAPQ),
+ $ WORK, 1, A( 1, p ), 1 )
+ CALL CLASCL( 'G', 0, 0, ONE, AAPP,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* .. recompute SVA(q), SVA(p)
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = SCNRM2( M, A( 1, q ), 1)
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL CLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = SCNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+ $ THEN
+ SVA( p ) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+*
+ IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+ $ MIN0( jgl+KBL-1, N ) - jgl + 1
+ IF( AAPP.LT.ZERO )NOTROT = 0
+*
+ END IF
+*
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl+KBL-1, N )
+ SVA( p ) = ABS( SVA( p ) )
+ 2012 CONTINUE
+***
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+ $ THEN
+ SVA( N ) = SCNRM2( M, A( 1, N ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL CLASSQ( M, A( 1, N ), 1, T, AAPP )
+ SVA( N ) = T*SQRT( AAPP )
+ END IF
+*
+* Additional steering devices
+*
+ IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ $ ( ISWROT.LE.N ) ) )SWBAND = i
+*
+ IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( FLOAT( N ) )*
+ $ TOL ) .AND. ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+ GO TO 1994
+ END IF
+*
+ IF( NOTROT.GE.EMPTSW )GO TO 1994
+*
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+*
+* #:( Reaching this point means that the procedure has not converged.
+ INFO = NSWEEP - 1
+ GO TO 1995
+*
+ 1994 CONTINUE
+* #:) Reaching this point means numerical convergence after the i-th
+* sweep.
+*
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the vector SVA() of column norms.
+ DO 5991 p = 1, N - 1
+ q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = D( p )
+ D( p ) = D( q )
+ D( q ) = AAPQ
+ CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
+ END IF
+ 5991 CONTINUE
+*
+*
+ RETURN
+* ..
+* .. END OF CGSVJ1
+* ..
+ END
-*> \brief \b DGSVJ0 pre-processor for the routine sgesvj.
+*> \brief \b DGSVJ0 pre-processor for the routine dgesvj.
*
* =========== DOCUMENTATION ===========
*
*>
*> \verbatim
*>
-*> DGSVJ1 is called from SGESVJ as a pre-processor and that is its main
-*> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
+*> DGSVJ1 is called from DGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as DGESVJ does, but
*> it targets only particular pivots and it does not check convergence
*> (stopping criterion). Few tunning parameters (marked by [TP]) are
*> available for the implementer.
--- /dev/null
+*> \brief \b ZGESVJ
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGESVJ + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvj.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvj.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvj.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
+* LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
+* CHARACTER*1 JOBA, JOBU, JOBV
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), V( LDV, * ), CWORK( LWORK )
+* DOUBLE PRECISION RWORK( LRWORK ), SVA( N )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGESVJ computes the singular value decomposition (SVD) of a complex
+*> M-by-N matrix A, where M >= N. The SVD of A is written as
+*> [++] [xx] [x0] [xx]
+*> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
+*> [++] [xx]
+*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
+*> matrix, and V is an N-by-N unitary matrix. The diagonal elements
+*> of SIGMA are the singular values of A. The columns of U and V are the
+*> left and the right singular vectors of A, respectively.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBA
+*> \verbatim
+*> JOBA is CHARACTER* 1
+*> Specifies the structure of A.
+*> = 'L': The input matrix A is lower triangular;
+*> = 'U': The input matrix A is upper triangular;
+*> = 'G': The input matrix A is general M-by-N matrix, M >= N.
+*> \endverbatim
+*>
+*> \param[in] JOBU
+*> \verbatim
+*> JOBU is CHARACTER*1
+*> Specifies whether to compute the left singular vectors
+*> (columns of U):
+*> = 'U': The left singular vectors corresponding to the nonzero
+*> singular values are computed and returned in the leading
+*> columns of A. See more details in the description of A.
+*> The default numerical orthogonality threshold is set to
+*> approximately TOL=CTOL*EPS, CTOL=DSQRT(M), EPS=DLAMCH('E').
+*> = 'C': Analogous to JOBU='U', except that user can control the
+*> level of numerical orthogonality of the computed left
+*> singular vectors. TOL can be set to TOL = CTOL*EPS, where
+*> CTOL is given on input in the array WORK.
+*> No CTOL smaller than ONE is allowed. CTOL greater
+*> than 1 / EPS is meaningless. The option 'C'
+*> can be used if M*EPS is satisfactory orthogonality
+*> of the computed left singular vectors, so CTOL=M could
+*> save few sweeps of Jacobi rotations.
+*> See the descriptions of A and WORK(1).
+*> = 'N': The matrix U is not computed. However, see the
+*> description of A.
+*> \endverbatim
+*>
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether to compute the right singular vectors, that
+*> is, the matrix V:
+*> = 'V' : the matrix V is computed and returned in the array V
+*> = 'A' : the Jacobi rotations are applied to the MV-by-N
+*> array V. In other words, the right singular vector
+*> matrix V is not computed explicitly, instead it is
+*> applied to an MV-by-N matrix initially stored in the
+*> first MV rows of V.
+*> = 'N' : the matrix V is not computed and the array V is not
+*> referenced
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. 1/DLAMCH('E') > M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A.
+*> M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit,
+*> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
+*> If INFO .EQ. 0 :
+*> RANKA orthonormal columns of U are returned in the
+*> leading RANKA columns of the array A. Here RANKA <= N
+*> is the number of computed singular values of A that are
+*> above the underflow threshold DLAMCH('S'). The singular
+*> vectors corresponding to underflowed or zero singular
+*> values are not computed. The value of RANKA is returned
+*> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
+*> descriptions of SVA and RWORK. The computed columns of U
+*> are mutually numerically orthogonal up to approximately
+*> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
+*> see the description of JOBU.
+*> If INFO .GT. 0,
+*> the procedure ZGESVJ did not converge in the given number
+*> of iterations (sweeps). In that case, the computed
+*> columns of U may not be orthogonal up to TOL. The output
+*> U (stored in A), SIGMA (given by the computed singular
+*> values in SVA(1:N)) and V is still a decomposition of the
+*> input matrix A in the sense that the residual
+*> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
+*> If JOBU .EQ. 'N':
+*> If INFO .EQ. 0 :
+*> Note that the left singular vectors are 'for free' in the
+*> one-sided Jacobi SVD algorithm. However, if only the
+*> singular values are needed, the level of numerical
+*> orthogonality of U is not an issue and iterations are
+*> stopped when the columns of the iterated matrix are
+*> numerically orthogonal up to approximately M*EPS. Thus,
+*> on exit, A contains the columns of U scaled with the
+*> corresponding singular values.
+*> If INFO .GT. 0 :
+*> the procedure ZGESVJ did not converge in the given number
+*> of iterations (sweeps).
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] SVA
+*> \verbatim
+*> SVA is DOUBLE PRECISION array, dimension (N)
+*> On exit,
+*> If INFO .EQ. 0 :
+*> depending on the value SCALE = RWORK(1), we have:
+*> If SCALE .EQ. ONE:
+*> SVA(1:N) contains the computed singular values of A.
+*> During the computation SVA contains the Euclidean column
+*> norms of the iterated matrices in the array A.
+*> If SCALE .NE. ONE:
+*> The singular values of A are SCALE*SVA(1:N), and this
+*> factored representation is due to the fact that some of the
+*> singular values of A might underflow or overflow.
+*>
+*> If INFO .GT. 0 :
+*> the procedure ZGESVJ did not converge in the given number of
+*> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*> MV is INTEGER
+*> If JOBV .EQ. 'A', then the product of Jacobi rotations in ZGESVJ
+*> is applied to the first MV rows of V. See the description of JOBV.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*> V is COMPLEX*16 array, dimension (LDV,N)
+*> If JOBV = 'V', then V contains on exit the N-by-N matrix of
+*> the right singular vectors;
+*> If JOBV = 'A', then V contains the product of the computed right
+*> singular vector matrix and the initial matrix in
+*> the array V.
+*> If JOBV = 'N', then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV .GE. 1.
+*> If JOBV .EQ. 'V', then LDV .GE. max(1,N).
+*> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
+*> \endverbatim
+*>
+*> \param[in,out] CWORK
+*> \verbatim
+*> CWORK is COMPLEX*16 array, dimension M+N.
+*> Used as work space.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER.
+*> Length of CWORK, LWORK >= M+N.
+*> \endverbatim
+*>
+*> \param[in,out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array, dimension max(6,M+N).
+*> On entry,
+*> If JOBU .EQ. 'C' :
+*> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
+*> The process stops if all columns of A are mutually
+*> orthogonal up to CTOL*EPS, EPS=DLAMCH('E').
+*> It is required that CTOL >= ONE, i.e. it is not
+*> allowed to force the routine to obtain orthogonality
+*> below EPSILON.
+*> On exit,
+*> RWORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
+*> are the computed singular values of A.
+*> (See description of SVA().)
+*> RWORK(2) = NINT(RWORK(2)) is the number of the computed nonzero
+*> singular values.
+*> RWORK(3) = NINT(RWORK(3)) is the number of the computed singular
+*> values that are larger than the underflow threshold.
+*> RWORK(4) = NINT(RWORK(4)) is the number of sweeps of Jacobi
+*> rotations needed for numerical convergence.
+*> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
+*> This is useful information in cases when ZGESVJ did
+*> not converge, as it can be used to estimate whether
+*> the output is stil useful and for post festum analysis.
+*> RWORK(6) = the largest absolute value over all sines of the
+*> Jacobi rotation angles in the last sweep. It can be
+*> useful for a post festum analysis.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> Length of RWORK, LRWORK >= MAX(6,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0 : successful exit.
+*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> > 0 : ZGESVJ did not converge in the maximal allowed number
+*> (NSWEEP=30) of sweeps. The output may still be useful.
+*> See the description of RWORK.
+*> \endverbatim
+*>
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup doubleGEcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
+*> rotations. In the case of underflow of the tangent of the Jacobi angle, a
+*> modified Jacobi transformation of Drmac [3] is used. Pivot strategy uses
+*> column interchanges of de Rijk [1]. The relative accuracy of the computed
+*> singular values and the accuracy of the computed singular vectors (in
+*> angle metric) is as guaranteed by the theory of Demmel and Veselic [2].
+*> The condition number that determines the accuracy in the full rank case
+*> is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
+*> spectral condition number. The best performance of this Jacobi SVD
+*> procedure is achieved if used in an accelerated version of Drmac and
+*> Veselic [4,5], and it is the kernel routine in the SIGMA library [6].
+*> Some tunning parameters (marked with [TP]) are available for the
+*> implementer.
+*> The computational range for the nonzero singular values is the machine
+*> number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
+*> denormalized singular values can be computed with the corresponding
+*> gradual loss of accurate digits.
+*> \endverbatim
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> ============
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*> \endverbatim
+*
+*> \par References:
+* ================
+*>
+*> [1] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
+*> singular value decomposition on a vector computer.
+*> SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
+*> [2] J. Demmel and K. Veselic: Jacobi method is more accurate than QR.
+*> [3] Z. Drmac: Implementation of Jacobi rotations for accurate singular
+*> value computation in floating point arithmetic.
+*> SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
+*> [4] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
+*> LAPACK Working note 169.
+*> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
+*> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
+*> LAPACK Working note 170.
+*> [6] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
+*> QSVD, (H,K)-SVD computations.
+*> Department of Mathematics, University of Zagreb, 2008, 2015.
+*> \endverbatim
+*
+*> \par Bugs, examples and comments:
+* =================================
+*>
+*> \verbatim
+*> ===========================
+*> Please report all bugs and send interesting test examples and comments to
+*> drmac@math.hr. Thank you.
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
+ $ LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2015
+*
+ IMPLICIT NONE
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
+ CHARACTER*1 JOBA, JOBU, JOBV
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), V( LDV, * ), CWORK( LWORK )
+ DOUBLE PRECISION RWORK( LRWORK ), SVA( N )
+* ..
+*
+* =====================================================================
+*
+* .. Local Parameters ..
+ DOUBLE PRECISION ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = (0.0E0, 0.0E0), CONE = (1.0E0, 0.0E0) )
+ INTEGER NSWEEP
+ PARAMETER ( NSWEEP = 30 )
+* ..
+* .. Local Scalars ..
+ COMPLEX*16 AAPQ, OMPQ
+ DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
+ $ BIGTHETA, CS, CTOL, EPSLN, LARGE, MXAAPQ,
+ $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL,
+ $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL
+ INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
+ $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34,
+ $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
+ LOGICAL APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK,
+ $ RSVEC, UCTOL, UPPER
+* ..
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AMAX1, AMIN1, DCONJG, DBLE, MIN0, MAX0,
+ $ SIGN, SQRT
+* ..
+* .. External Functions ..
+* ..
+* from BLAS
+ DOUBLE PRECISION DZNRM2
+ COMPLEX*16 ZDOTC
+ EXTERNAL ZDOTC, DZNRM2
+ INTEGER IZAMAX
+ EXTERNAL IZAMAX
+* from LAPACK
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+* ..
+* from BLAS
+ EXTERNAL ZCOPY, ZDROT, ZDSCAL, ZSWAP
+* from LAPACK
+ EXTERNAL ZLASCL, ZLASET, ZLASSQ, XERBLA
+ EXTERNAL ZGSVJ0, ZGSVJ1
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ LSVEC = LSAME( JOBU, 'U' )
+ UCTOL = LSAME( JOBU, 'C' )
+ RSVEC = LSAME( JOBV, 'V' )
+ APPLV = LSAME( JOBV, 'A' )
+ UPPER = LSAME( JOBA, 'U' )
+ LOWER = LSAME( JOBA, 'L' )
+*
+ IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.M ) THEN
+ INFO = -7
+ ELSE IF( MV.LT.0 ) THEN
+ INFO = -9
+ ELSE IF( ( RSVEC .AND. ( LDV.LT.N ) ) .OR.
+ $ ( APPLV .AND. ( LDV.LT.MV ) ) ) THEN
+ INFO = -11
+ ELSE IF( UCTOL .AND. ( RWORK( 1 ).LE.ONE ) ) THEN
+ INFO = -12
+ ELSE IF( LWORK.LT.( M+N ) ) THEN
+ INFO = -13
+ ELSE IF( LRWORK.LT.MAX0( N, 6 ) ) THEN
+ INFO = -15
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGESVJ', -INFO )
+ RETURN
+ END IF
+*
+* #:) Quick return for void matrix
+*
+ IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN
+*
+* Set numerical parameters
+* The stopping criterion for Jacobi rotations is
+*
+* max_{i<>j}|A(:,i)^* * A(:,j)| / (||A(:,i)||*||A(:,j)||) < CTOL*EPS
+*
+* where EPS is the round-off and CTOL is defined as follows:
+*
+ IF( UCTOL ) THEN
+* ... user controlled
+ CTOL = RWORK( 1 )
+ ELSE
+* ... default
+ IF( LSVEC .OR. RSVEC .OR. APPLV ) THEN
+ CTOL = SQRT( DBLE( M ) )
+ ELSE
+ CTOL = DBLE( M )
+ END IF
+ END IF
+* ... and the machine dependent parameters are
+*[!] (Make sure that DLAMCH() works properly on the target machine.)
+*
+ EPSLN = DLAMCH( 'Epsilon' )
+ ROOTEPS = SQRT( EPSLN )
+ SFMIN = DLAMCH( 'SafeMinimum' )
+ ROOTSFMIN = SQRT( SFMIN )
+ SMALL = SFMIN / EPSLN
+ BIG = DLAMCH( 'Overflow' )
+* BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ LARGE = BIG / SQRT( DBLE( M*N ) )
+ BIGTHETA = ONE / ROOTEPS
+*
+ TOL = CTOL*EPSLN
+ ROOTTOL = SQRT( TOL )
+*
+ IF( DBLE( M )*EPSLN.GE.ONE ) THEN
+ INFO = -4
+ CALL XERBLA( 'ZGESVJ', -INFO )
+ RETURN
+ END IF
+*
+* Initialize the right singular vector matrix.
+*
+ IF( RSVEC ) THEN
+ MVL = N
+ CALL ZLASET( 'A', MVL, N, CZERO, CONE, V, LDV )
+ ELSE IF( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+*
+* Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
+*(!) If necessary, scale A to protect the largest singular value
+* from overflow. It is possible that saving the largest singular
+* value destroys the information about the small ones.
+* This initial scaling is almost minimal in the sense that the
+* goal is to make sure that no column norm overflows, and that
+* SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
+* in A are detected, the procedure returns with INFO=-6.
+*
+ SKL = ONE / SQRT( DBLE( M )*DBLE( N ) )
+ NOSCALE = .TRUE.
+ GOSCALE = .TRUE.
+*
+ IF( LOWER ) THEN
+* the input matrix is M-by-N lower triangular (trapezoidal)
+ DO 1874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M-p+1, A( p, p ), 1, AAPP, AAQQ )
+ IF( AAPP.GT.BIG ) THEN
+ INFO = -6
+ CALL XERBLA( 'ZGESVJ', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT( AAQQ )
+ IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
+ SVA( p ) = AAPP*AAQQ
+ ELSE
+ NOSCALE = .FALSE.
+ SVA( p ) = AAPP*( AAQQ*SKL )
+ IF( GOSCALE ) THEN
+ GOSCALE = .FALSE.
+ DO 1873 q = 1, p - 1
+ SVA( q ) = SVA( q )*SKL
+ 1873 CONTINUE
+ END IF
+ END IF
+ 1874 CONTINUE
+ ELSE IF( UPPER ) THEN
+* the input matrix is M-by-N upper triangular (trapezoidal)
+ DO 2874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( p, A( 1, p ), 1, AAPP, AAQQ )
+ IF( AAPP.GT.BIG ) THEN
+ INFO = -6
+ CALL XERBLA( 'ZGESVJ', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT( AAQQ )
+ IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
+ SVA( p ) = AAPP*AAQQ
+ ELSE
+ NOSCALE = .FALSE.
+ SVA( p ) = AAPP*( AAQQ*SKL )
+ IF( GOSCALE ) THEN
+ GOSCALE = .FALSE.
+ DO 2873 q = 1, p - 1
+ SVA( q ) = SVA( q )*SKL
+ 2873 CONTINUE
+ END IF
+ END IF
+ 2874 CONTINUE
+ ELSE
+* the input matrix is M-by-N general dense
+ DO 3874 p = 1, N
+ AAPP = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, AAPP, AAQQ )
+ IF( AAPP.GT.BIG ) THEN
+ INFO = -6
+ CALL XERBLA( 'ZGESVJ', -INFO )
+ RETURN
+ END IF
+ AAQQ = SQRT( AAQQ )
+ IF( ( AAPP.LT.( BIG / AAQQ ) ) .AND. NOSCALE ) THEN
+ SVA( p ) = AAPP*AAQQ
+ ELSE
+ NOSCALE = .FALSE.
+ SVA( p ) = AAPP*( AAQQ*SKL )
+ IF( GOSCALE ) THEN
+ GOSCALE = .FALSE.
+ DO 3873 q = 1, p - 1
+ SVA( q ) = SVA( q )*SKL
+ 3873 CONTINUE
+ END IF
+ END IF
+ 3874 CONTINUE
+ END IF
+*
+ IF( NOSCALE )SKL = ONE
+*
+* Move the smaller part of the spectrum from the underflow threshold
+*(!) Start by determining the position of the nonzero entries of the
+* array SVA() relative to ( SFMIN, BIG ).
+*
+ AAPP = ZERO
+ AAQQ = BIG
+ DO 4781 p = 1, N
+ IF( SVA( p ).NE.ZERO )AAQQ = AMIN1( AAQQ, SVA( p ) )
+ AAPP = AMAX1( AAPP, SVA( p ) )
+ 4781 CONTINUE
+*
+* #:) Quick return for zero matrix
+*
+ IF( AAPP.EQ.ZERO ) THEN
+ IF( LSVEC )CALL ZLASET( 'G', M, N, CZERO, CONE, A, LDA )
+ RWORK( 1 ) = ONE
+ RWORK( 2 ) = ZERO
+ RWORK( 3 ) = ZERO
+ RWORK( 4 ) = ZERO
+ RWORK( 5 ) = ZERO
+ RWORK( 6 ) = ZERO
+ RETURN
+ END IF
+*
+* #:) Quick return for one-column matrix
+*
+ IF( N.EQ.1 ) THEN
+ IF( LSVEC )CALL ZLASCL( 'G', 0, 0, SVA( 1 ), SKL, M, 1,
+ $ A( 1, 1 ), LDA, IERR )
+ RWORK( 1 ) = ONE / SKL
+ IF( SVA( 1 ).GE.SFMIN ) THEN
+ RWORK( 2 ) = ONE
+ ELSE
+ RWORK( 2 ) = ZERO
+ END IF
+ RWORK( 3 ) = ZERO
+ RWORK( 4 ) = ZERO
+ RWORK( 5 ) = ZERO
+ RWORK( 6 ) = ZERO
+ RETURN
+ END IF
+*
+* Protect small singular values from underflow, and try to
+* avoid underflows/overflows in computing Jacobi rotations.
+*
+ SN = SQRT( SFMIN / EPSLN )
+ TEMP1 = SQRT( BIG / DBLE( N ) )
+ IF( ( AAPP.LE.SN ) .OR. ( AAQQ.GE.TEMP1 ) .OR.
+ $ ( ( SN.LE.AAQQ ) .AND. ( AAPP.LE.TEMP1 ) ) ) THEN
+ TEMP1 = AMIN1( BIG, TEMP1 / AAPP )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.LE.TEMP1 ) ) THEN
+ TEMP1 = AMIN1( SN / AAQQ, BIG / ( AAPP*SQRT( DBLE( N ) ) ) )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE IF( ( AAQQ.GE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
+ TEMP1 = AMAX1( SN / AAQQ, TEMP1 / AAPP )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE IF( ( AAQQ.LE.SN ) .AND. ( AAPP.GE.TEMP1 ) ) THEN
+ TEMP1 = AMIN1( SN / AAQQ, BIG / ( SQRT( DBLE( N ) )*AAPP ) )
+* AAQQ = AAQQ*TEMP1
+* AAPP = AAPP*TEMP1
+ ELSE
+ TEMP1 = ONE
+ END IF
+*
+* Scale, if necessary
+*
+ IF( TEMP1.NE.ONE ) THEN
+ CALL SLASCL( 'G', 0, 0, ONE, TEMP1, N, 1, SVA, N, IERR )
+ END IF
+ SKL = TEMP1*SKL
+ IF( SKL.NE.ONE ) THEN
+ CALL ZLASCL( JOBA, 0, 0, ONE, SKL, M, N, A, LDA, IERR )
+ SKL = ONE / SKL
+ END IF
+*
+* Row-cyclic Jacobi SVD algorithm with column pivoting
+*
+ EMPTSW = ( N*( N-1 ) ) / 2
+ NOTROT = 0
+
+ DO 1868 q = 1, N
+ CWORK( q ) = CONE
+ 1868 CONTINUE
+*
+*
+*
+ SWBAND = 3
+*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
+* if ZGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure
+* works on pivots inside a band-like region around the diagonal.
+* The boundaries are determined dynamically, based on the number of
+* pivots above a threshold.
+*
+ KBL = MIN0( 8, N )
+*[TP] KBL is a tuning parameter that defines the tile size in the
+* tiling of the p-q loops of pivot pairs. In general, an optimal
+* value of KBL depends on the matrix dimensions and on the
+* parameters of the computer's memory.
+*
+ NBL = N / KBL
+ IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
+*
+ BLSKIP = KBL**2
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+*
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+*
+ LKAHEAD = 1
+*[TP] LKAHEAD is a tuning parameter.
+*
+* Quasi block transformations, using the lower (upper) triangular
+* structure of the input matrix. The quasi-block-cycling usually
+* invokes cubic convergence. Big part of this cycle is done inside
+* canonical subspaces of dimensions less than M.
+*
+ IF( ( LOWER .OR. UPPER ) .AND. ( N.GT.MAX0( 64, 4*KBL ) ) ) THEN
+*[TP] The number of partition levels and the actual partition are
+* tuning parameters.
+ N4 = N / 4
+ N2 = N / 2
+ N34 = 3*N4
+ IF( APPLV ) THEN
+ q = 0
+ ELSE
+ q = 1
+ END IF
+*
+ IF( LOWER ) THEN
+*
+* This works very well on lower triangular matrices, in particular
+* in the framework of the preconditioned Jacobi SVD (xGEJSV).
+* The idea is simple:
+* [+ 0 0 0] Note that Jacobi transformations of [0 0]
+* [+ + 0 0] [0 0]
+* [+ + x 0] actually work on [x 0] [x 0]
+* [+ + x x] [x x]. [x x]
+*
+ CALL ZGSVJ0( JOBV, M-N34, N-N34, A( N34+1, N34+1 ), LDA,
+ $ CWORK( N34+1 ), SVA( N34+1 ), MVL,
+ $ V( N34*q+1, N34+1 ), LDV, EPSLN, SFMIN, TOL,
+ $ 2, CWORK( N+1 ), LWORK-N, IERR )
+
+ CALL ZGSVJ0( JOBV, M-N2, N34-N2, A( N2+1, N2+1 ), LDA,
+ $ CWORK( N2+1 ), SVA( N2+1 ), MVL,
+ $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 2,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+
+ CALL ZGSVJ1( JOBV, M-N2, N-N2, N4, A( N2+1, N2+1 ), LDA,
+ $ CWORK( N2+1 ), SVA( N2+1 ), MVL,
+ $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+*
+ CALL ZGSVJ0( JOBV, M-N4, N2-N4, A( N4+1, N4+1 ), LDA,
+ $ CWORK( N4+1 ), SVA( N4+1 ), MVL,
+ $ V( N4*q+1, N4+1 ), LDV, EPSLN, SFMIN, TOL, 1,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+*
+ CALL ZGSVJ0( JOBV, M, N4, A, LDA, CWORK, SVA, MVL, V, LDV,
+ $ EPSLN, SFMIN, TOL, 1, CWORK( N+1 ), LWORK-N,
+ $ IERR )
+*
+ CALL ZGSVJ1( JOBV, M, N2, N4, A, LDA, CWORK, SVA, MVL, V,
+ $ LDV, EPSLN, SFMIN, TOL, 1, CWORK( N+1 ),
+ $ LWORK-N, IERR )
+*
+*
+ ELSE IF( UPPER ) THEN
+*
+*
+ CALL ZGSVJ0( JOBV, N4, N4, A, LDA, CWORK, SVA, MVL, V, LDV,
+ $ EPSLN, SFMIN, TOL, 2, CWORK( N+1 ), LWORK-N,
+ $ IERR )
+*
+ CALL ZGSVJ0( JOBV, N2, N4, A( 1, N4+1 ), LDA, CWORK( N4+1 ),
+ $ SVA( N4+1 ), MVL, V( N4*q+1, N4+1 ), LDV,
+ $ EPSLN, SFMIN, TOL, 1, CWORK( N+1 ), LWORK-N,
+ $ IERR )
+*
+ CALL ZGSVJ1( JOBV, N2, N2, N4, A, LDA, CWORK, SVA, MVL, V,
+ $ LDV, EPSLN, SFMIN, TOL, 1, CWORK( N+1 ),
+ $ LWORK-N, IERR )
+*
+ CALL ZGSVJ0( JOBV, N2+N4, N4, A( 1, N2+1 ), LDA,
+ $ CWORK( N2+1 ), SVA( N2+1 ), MVL,
+ $ V( N2*q+1, N2+1 ), LDV, EPSLN, SFMIN, TOL, 1,
+ $ CWORK( N+1 ), LWORK-N, IERR )
+
+ END IF
+*
+ END IF
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+ DO 1993 i = 1, NSWEEP
+*
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
+* 1 <= p < q <= N. This is the first step toward a blocked implementation
+* of the rotations. New implementation, based on block transformations,
+* is under development.
+*
+ DO 2000 ibr = 1, NBL
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
+*
+ igl = igl + ir1*KBL
+*
+ DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
+*
+* .. de Rijk's pivoting
+*
+ q = IZAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1,
+ $ V( 1, q ), 1 )
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = CWORK(p)
+ CWORK(p) = CWORK(q)
+ CWORK(q) = AAPQ
+ END IF
+*
+ IF( ir1.EQ.0 ) THEN
+*
+* Column norms are periodically updated by explicit
+* norm computation.
+*[!] Caveat:
+* Unfortunately, some BLAS implementations compute DZNRM2(M,A(1,p),1)
+* as SQRT(S=ZDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
+* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
+* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
+* Hence, DZNRM2 cannot be trusted, not even in the case when
+* the true norm is far from the under(over)flow boundaries.
+* If properly implemented DZNRM2 is available, the IF-THEN-ELSE-END IF
+* below should be replaced with "AAPP = DZNRM2( M, A(1,p), 1 )".
+*
+ IF( ( SVA( p ).LT.ROOTBIG ) .AND.
+ $ ( SVA( p ).GT.ROOTSFMIN ) ) THEN
+ SVA( p ) = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ TEMP1 = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
+ SVA( p ) = TEMP1*SQRT( AAPP )
+ END IF
+ AAPP = SVA( p )
+ ELSE
+ AAPP = SVA( p )
+ END IF
+*
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+*
+ IF( AAQQ.GT.ZERO ) THEN
+*
+ AAPP0 = AAPP
+ IF( AAQQ.GE.ONE ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, CWORK(N+1), LDA, IERR )
+ AAPQ = ZDOTC( M, CWORK(N+1), 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ CWORK(N+1), LDA, IERR )
+ AAPQ = ZDOTC( M, A(1, p ), 1,
+ $ CWORK(N+1), 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * DCONJG( CWORK(p) ) * CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+*
+* .. rotate
+*[RTD] ROTATED = ROTATED + ONE
+*
+ IF( ir1.EQ.0 ) THEN
+ NOTROT = 0
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+ END IF
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+*
+ T = HALF / THETA
+ CS = ONE
+
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*T )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*T )
+ END IF
+
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+*
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+*
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*SN )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*SN )
+ END IF
+ END IF
+ CWORK(p) = -CWORK(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE, M,
+ $ 1, CWORK(N+1), LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ CALL CAXPY( M, -AAPQ, CWORK(N+1), 1,
+ $ A( 1, q ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAQQ, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* recompute SVA(q), SVA(p).
+*
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = DZNRM2( M, A( 1, q ), 1 )
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+*
+ ELSE
+* A(:,p) and A(:,q) already numerically orthogonal
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+ ELSE
+* A(:,q) is zero column
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ IF( ir1.EQ.0 )AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2103
+ END IF
+*
+ 2002 CONTINUE
+* END q-LOOP
+*
+ 2103 CONTINUE
+* bailed out of q-loop
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+ SVA( p ) = AAPP
+ IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
+ $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
+ END IF
+*
+ 2001 CONTINUE
+* end of the p-loop
+* end of doing the block ( ibr, ibr )
+ 1002 CONTINUE
+* end of ir1-loop
+*
+* ... go to the off diagonal blocks
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 2010 jbc = ibr + 1, NBL
+*
+ jgl = ( jbc-1 )*KBL + 1
+*
+* doing the block at ( ibr, jbc )
+*
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl+KBL-1, N )
+*
+ AAPP = SVA( p )
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+ IF( AAQQ.GT.ZERO ) THEN
+ AAPP0 = AAPP
+*
+* .. M x 2 Jacobi SVD ..
+*
+* Safe Gram matrix computation
+*
+ IF( AAQQ.GE.ONE ) THEN
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ).LE.AAPP
+ END IF
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP,
+ $ ONE, M, 1,
+ $ CWORK(N+1), LDA, IERR )
+ AAPQ = ZDOTC( M, CWORK(N+1), 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ.LE.( AAPP / SMALL )
+ END IF
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ CWORK(N+1), LDA, IERR )
+ AAPQ = ZDOTC( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * DCONJG(CWORK(p))*CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+ NOTROT = 0
+*[RTD] ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
+ IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+ T = HALF / THETA
+ CS = ONE
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*T )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*T )
+ END IF
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*SN )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*SN )
+ END IF
+ END IF
+ CWORK(p) = -CWORK(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ IF( AAPP.GT.AAQQ ) THEN
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, CWORK(N+1),LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -AAPQ, CWORK(N+1),
+ $ 1, A( 1, q ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAQQ,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ CWORK(N+1), 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, CWORK(N+1),LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -DCONJG(AAPQ),
+ $ CWORK(N+1), 1, A( 1, p ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAPP,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* .. recompute SVA(q), SVA(p)
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = DZNRM2( M, A( 1, q ), 1)
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+ $ THEN
+ SVA( p ) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+*
+ IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+ $ MIN0( jgl+KBL-1, N ) - jgl + 1
+ IF( AAPP.LT.ZERO )NOTROT = 0
+*
+ END IF
+*
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl+KBL-1, N )
+ SVA( p ) = ABS( SVA( p ) )
+ 2012 CONTINUE
+***
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+ $ THEN
+ SVA( N ) = DZNRM2( M, A( 1, N ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, N ), 1, T, AAPP )
+ SVA( N ) = T*SQRT( AAPP )
+ END IF
+*
+* Additional steering devices
+*
+ IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ $ ( ISWROT.LE.N ) ) )SWBAND = i
+*
+ IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( DBLE( N ) )*
+ $ TOL ) .AND. ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+ GO TO 1994
+ END IF
+*
+ IF( NOTROT.GE.EMPTSW )GO TO 1994
+*
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+*
+* #:( Reaching this point means that the procedure has not converged.
+ INFO = NSWEEP - 1
+ GO TO 1995
+*
+ 1994 CONTINUE
+* #:) Reaching this point means numerical convergence after the i-th
+* sweep.
+*
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the singular values and find how many are above
+* the underflow threshold.
+*
+ N2 = 0
+ N4 = 0
+ DO 5991 p = 1, N - 1
+ q = IZAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
+ END IF
+ IF( SVA( p ).NE.ZERO ) THEN
+ N4 = N4 + 1
+ IF( SVA( p )*SKL.GT.SFMIN )N2 = N2 + 1
+ END IF
+ 5991 CONTINUE
+ IF( SVA( N ).NE.ZERO ) THEN
+ N4 = N4 + 1
+ IF( SVA( N )*SKL.GT.SFMIN )N2 = N2 + 1
+ END IF
+*
+* Normalize the left singular vectors.
+*
+ IF( LSVEC .OR. UCTOL ) THEN
+ DO 1998 p = 1, N2
+ CALL ZDSCAL( M, ONE / SVA( p ), A( 1, p ), 1 )
+ 1998 CONTINUE
+ END IF
+*
+* Scale the product of Jacobi rotations.
+*
+ IF( RSVEC ) THEN
+ DO 2399 p = 1, N
+ TEMP1 = ONE / DZNRM2( MVL, V( 1, p ), 1 )
+ CALL ZDSCAL( MVL, TEMP1, V( 1, p ), 1 )
+ 2399 CONTINUE
+ END IF
+*
+* Undo scaling, if necessary (and possible).
+ IF( ( ( SKL.GT.ONE ) .AND. ( SVA( 1 ).LT.( BIG / SKL ) ) )
+ $ .OR. ( ( SKL.LT.ONE ) .AND. ( SVA( MAX( N2, 1 ) ) .GT.
+ $ ( SFMIN / SKL ) ) ) ) THEN
+ DO 2400 p = 1, N
+ SVA( P ) = SKL*SVA( P )
+ 2400 CONTINUE
+ SKL = ONE
+ END IF
+*
+ RWORK( 1 ) = SKL
+* The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
+* then some of the singular values may overflow or underflow and
+* the spectrum is given in this factored representation.
+*
+ RWORK( 2 ) = DBLE( N4 )
+* N4 is the number of computed nonzero singular values of A.
+*
+ RWORK( 3 ) = DBLE( N2 )
+* N2 is the number of singular values of A greater than SFMIN.
+* If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
+* that may carry some information.
+*
+ RWORK( 4 ) = DBLE( i )
+* i is the index of the last sweep before declaring convergence.
+*
+ RWORK( 5 ) = MXAAPQ
+* MXAAPQ is the largest absolute value of scaled pivots in the
+* last sweep
+*
+ RWORK( 6 ) = MXSINJ
+* MXSINJ is the largest absolute value of the sines of Jacobi angles
+* in the last sweep
+*
+ RETURN
+* ..
+* .. END OF ZGESVJ
+* ..
+ END
--- /dev/null
+*> \brief \b ZGSVJ0 pre-processor for the routine dgesvj.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGSVJ0 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgsvj0.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgsvj0.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgsvj0.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+* DOUBLE PRECISION EPS, SFMIN, TOL
+* CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+* DOUBLE PRECISION SVA( N )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGSVJ0 is called from ZGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but
+*> it does not check convergence (stopping criterion). Few tuning
+*> parameters (marked by [TP]) are available for the implementer.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether the output from this procedure is used
+*> to compute the matrix V:
+*> = 'V': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the N-by-N array V.
+*> (See the description of V.)
+*> = 'A': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the MV-by-N array V.
+*> (See the descriptions of MV and V.)
+*> = 'N': the Jacobi rotations are not accumulated.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A.
+*> M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, M-by-N matrix A, such that A*diag(D) represents
+*> the input matrix.
+*> On exit,
+*> A_onexit * diag(D_onexit) represents the input matrix A*diag(D)
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of D, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] D
+*> \verbatim
+*> D is COMPLEX*16 array, dimension (N)
+*> The array D accumulates the scaling factors from the complex scaled
+*> Jacobi rotations.
+*> On entry, A*diag(D) represents the input matrix.
+*> On exit, A_onexit*diag(D_onexit) represents the input matrix
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of A, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in,out] SVA
+*> \verbatim
+*> SVA is DOUBLE PRECISION array, dimension (N)
+*> On entry, SVA contains the Euclidean norms of the columns of
+*> the matrix A*diag(D).
+*> On exit, SVA contains the Euclidean norms of the columns of
+*> the matrix A_onexit*diag(D_onexit).
+*>
+*> \param[in] MV
+*> \verbatim
+*> MV is INTEGER
+*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then MV is not referenced.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*> V is COMPLEX*16 array, dimension (LDV,N)
+*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V', LDV .GE. N.
+*> If JOBV = 'A', LDV .GE. MV.
+*> \endverbatim
+*>
+*> \param[in] EPS
+*> \verbatim
+*> EPS is DOUBLE PRECISION
+*> EPS = DLAMCH('Epsilon')
+*> \endverbatim
+*>
+*> \param[in] SFMIN
+*> \verbatim
+*> SFMIN is DOUBLE PRECISION
+*> SFMIN = DLAMCH('Safe Minimum')
+*> \endverbatim
+*>
+*> \param[in] TOL
+*> \verbatim
+*> TOL is DOUBLE PRECISION
+*> TOL is the threshold for Jacobi rotations. For a pair
+*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> \endverbatim
+*>
+*> \param[in] NSWEEP
+*> \verbatim
+*> NSWEEP is INTEGER
+*> NSWEEP is the number of sweeps of Jacobi rotations to be
+*> performed.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0 : successful exit.
+*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup complex16OTHERcomputational
+*>
+*> \par Further Details:
+* =====================
+*>
+*> ZGSVJ0 is used just to enable ZGESVJ to call a simplified version of
+*> itself to work on a submatrix of the original matrix.
+*>
+*> Contributors:
+* =============
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*>
+*> Bugs, Examples and Comments:
+* ============================
+*>
+*> Please report all bugs and send interesting test examples and comments to
+*> drmac@math.hr. Thank you.
+*
+* =====================================================================
+ SUBROUTINE ZGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
+ $ SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2015
+*
+ IMPLICIT NONE
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
+ DOUBLE PRECISION EPS, SFMIN, TOL
+ CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+ DOUBLE PRECISION SVA( N )
+* ..
+*
+* =====================================================================
+*
+* .. Local Parameters ..
+ DOUBLE PRECISION ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0)
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = (0.0D0, 0.0D0), CONE = (1.0D0, 0.0D0) )
+* ..
+* .. Local Scalars ..
+ COMPLEX*16 AAPQ, OMPQ
+ DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
+ $ BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
+ $ ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
+ $ THSIGN
+ INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
+ $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
+ $ NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
+ LOGICAL APPLV, ROTOK, RSVEC
+* ..
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AMAX1, DCONJG, DBLE, MIN0, MAX0, SIGN, SQRT
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DZNRM2
+ COMPLEX*16 ZDOTC
+ INTEGER IZAMAX
+ LOGICAL LSAME
+ EXTERNAL IZAMAX, LSAME, ZDOTC, DZNRM2
+* ..
+* ..
+* .. External Subroutines ..
+* ..
+* from BLAS
+ EXTERNAL ZCOPY, ZDROT, ZDSCAL, ZSWAP
+* from LAPACK
+ EXTERNAL ZLASCL, ZLASSQ, XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ APPLV = LSAME( JOBV, 'A' )
+ RSVEC = LSAME( JOBV, 'V' )
+ IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.M ) THEN
+ INFO = -5
+ ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
+ INFO = -8
+ ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
+ $ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
+ INFO = -10
+ ELSE IF( TOL.LE.EPS ) THEN
+ INFO = -13
+ ELSE IF( NSWEEP.LT.0 ) THEN
+ INFO = -14
+ ELSE IF( LWORK.LT.M ) THEN
+ INFO = -16
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGSVJ0', -INFO )
+ RETURN
+ END IF
+*
+ IF( RSVEC ) THEN
+ MVL = N
+ ELSE IF( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+
+ ROOTEPS = SQRT( EPS )
+ ROOTSFMIN = SQRT( SFMIN )
+ SMALL = SFMIN / EPS
+ BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ BIGTHETA = ONE / ROOTEPS
+ ROOTTOL = SQRT( TOL )
+*
+* .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
+*
+ EMPTSW = ( N*( N-1 ) ) / 2
+ NOTROT = 0
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+
+ SWBAND = 0
+*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
+* if ZGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm ZGEJSV. For sweeps i=1:SWBAND the procedure
+* works on pivots inside a band-like region around the diagonal.
+* The boundaries are determined dynamically, based on the number of
+* pivots above a threshold.
+*
+ KBL = MIN0( 8, N )
+*[TP] KBL is a tuning parameter that defines the tile size in the
+* tiling of the p-q loops of pivot pairs. In general, an optimal
+* value of KBL depends on the matrix dimensions and on the
+* parameters of the computer's memory.
+*
+ NBL = N / KBL
+ IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
+*
+ BLSKIP = KBL**2
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+*
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+*
+ LKAHEAD = 1
+*[TP] LKAHEAD is a tuning parameter.
+*
+* Quasi block transformations, using the lower (upper) triangular
+* structure of the input matrix. The quasi-block-cycling usually
+* invokes cubic convergence. Big part of this cycle is done inside
+* canonical subspaces of dimensions less than M.
+*
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+ DO 1993 i = 1, NSWEEP
+*
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
+* 1 <= p < q <= N. This is the first step toward a blocked implementation
+* of the rotations. New implementation, based on block transformations,
+* is under development.
+*
+ DO 2000 ibr = 1, NBL
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
+*
+ igl = igl + ir1*KBL
+*
+ DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
+*
+* .. de Rijk's pivoting
+*
+ q = IZAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1,
+ $ V( 1, q ), 1 )
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = D(p)
+ D(p) = D(q)
+ D(q) = AAPQ
+ END IF
+*
+ IF( ir1.EQ.0 ) THEN
+*
+* Column norms are periodically updated by explicit
+* norm computation.
+* Caveat:
+* Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1)
+* as SQRT(S=ZDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
+* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
+* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
+* Hence, DZNRM2 cannot be trusted, not even in the case when
+* the true norm is far from the under(over)flow boundaries.
+* If properly implemented DZNRM2 is available, the IF-THEN-ELSE-END IF
+* below should be replaced with "AAPP = DZNRM2( M, A(1,p), 1 )".
+*
+ IF( ( SVA( p ).LT.ROOTBIG ) .AND.
+ $ ( SVA( p ).GT.ROOTSFMIN ) ) THEN
+ SVA( p ) = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ TEMP1 = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
+ SVA( p ) = TEMP1*SQRT( AAPP )
+ END IF
+ AAPP = SVA( p )
+ ELSE
+ AAPP = SVA( p )
+ END IF
+*
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+*
+ IF( AAQQ.GT.ZERO ) THEN
+*
+ AAPP0 = AAPP
+ IF( AAQQ.GE.ONE ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, WORK, LDA, IERR )
+ AAPQ = ZDOTC( M, WORK, 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = ZDOTC( M, A( 1, p ), 1,
+ $ WORK, 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * DCONJG( CWORK(p) ) * CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+*
+* .. rotate
+*[RTD] ROTATED = ROTATED + ONE
+*
+ IF( ir1.EQ.0 ) THEN
+ NOTROT = 0
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+ END IF
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+*
+ T = HALF / THETA
+ CS = ONE
+
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*T )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*T )
+ END IF
+
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+*
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+*
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*SN )
+ IF ( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*SN )
+ END IF
+ END IF
+ D(p) = -D(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE, M,
+ $ 1, WORK, LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ CALL CAXPY( M, -AAPQ, WORK, 1,
+ $ A( 1, q ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAQQ, M,
+ $ 1, A( 1, q ), LDA, IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* recompute SVA(q), SVA(p).
+*
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = DZNRM2( M, A( 1, q ), 1 )
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+*
+ ELSE
+* A(:,p) and A(:,q) already numerically orthogonal
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+ ELSE
+* A(:,q) is zero column
+ IF( ir1.EQ.0 )NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ IF( ir1.EQ.0 )AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2103
+ END IF
+*
+ 2002 CONTINUE
+* END q-LOOP
+*
+ 2103 CONTINUE
+* bailed out of q-loop
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+ SVA( p ) = AAPP
+ IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
+ $ NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
+ END IF
+*
+ 2001 CONTINUE
+* end of the p-loop
+* end of doing the block ( ibr, ibr )
+ 1002 CONTINUE
+* end of ir1-loop
+*
+* ... go to the off diagonal blocks
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+ DO 2010 jbc = ibr + 1, NBL
+*
+ jgl = ( jbc-1 )*KBL + 1
+*
+* doing the block at ( ibr, jbc )
+*
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl+KBL-1, N )
+*
+ AAPP = SVA( p )
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+ IF( AAQQ.GT.ZERO ) THEN
+ AAPP0 = AAPP
+*
+* .. M x 2 Jacobi SVD ..
+*
+* Safe Gram matrix computation
+*
+ IF( AAQQ.GE.ONE ) THEN
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ).LE.AAPP
+ END IF
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = ZDOTC( M, WORK, 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ.LE.( AAPP / SMALL )
+ END IF
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = ZDOTC( M, A( 1, p ), 1,
+ $ WORK, 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * DCONJG(CWORK(p))*CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+ NOTROT = 0
+*[RTD] ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
+ IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+ T = HALF / THETA
+ CS = ONE
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*T )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*T )
+ END IF
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*SN )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*SN )
+ END IF
+ END IF
+ D(p) = -D(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ IF( AAPP.GT.AAQQ ) THEN
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -AAPQ, WORK,
+ $ 1, A( 1, q ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAQQ,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -DCONJG(AAPQ),
+ $ WORK, 1, A( 1, p ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAPP,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* .. recompute SVA(q), SVA(p)
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = DZNRM2( M, A( 1, q ), 1)
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+ $ THEN
+ SVA( p ) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+*
+ IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+ $ MIN0( jgl+KBL-1, N ) - jgl + 1
+ IF( AAPP.LT.ZERO )NOTROT = 0
+*
+ END IF
+*
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl+KBL-1, N )
+ SVA( p ) = ABS( SVA( p ) )
+ 2012 CONTINUE
+***
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+ $ THEN
+ SVA( N ) = DZNRM2( M, A( 1, N ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, N ), 1, T, AAPP )
+ SVA( N ) = T*SQRT( AAPP )
+ END IF
+*
+* Additional steering devices
+*
+ IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ $ ( ISWROT.LE.N ) ) )SWBAND = i
+*
+ IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( DBLE( N ) )*
+ $ TOL ) .AND. ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+ GO TO 1994
+ END IF
+*
+ IF( NOTROT.GE.EMPTSW )GO TO 1994
+*
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+*
+* #:( Reaching this point means that the procedure has not converged.
+ INFO = NSWEEP - 1
+ GO TO 1995
+*
+ 1994 CONTINUE
+* #:) Reaching this point means numerical convergence after the i-th
+* sweep.
+*
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the vector SVA() of column norms.
+ DO 5991 p = 1, N - 1
+ q = IZAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = D( p )
+ D( p ) = D( q )
+ D( q ) = AAPQ
+ CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
+ END IF
+ 5991 CONTINUE
+*
+ RETURN
+* ..
+* .. END OF ZGSVJ0
+* ..
+ END
--- /dev/null
+*> \brief \b ZGSVJ1 pre-processor for the routine sgesvj, applies Jacobi rotations targeting only particular pivots.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZGSVJ1 + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj1.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj1.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj1.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
+* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* .. Scalar Arguments ..
+* DOUBLE PRECISION EPS, SFMIN, TOL
+* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
+* CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+* COMPLEX*16 A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+* DOUBLE PRECISION SVA( N )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZGSVJ1 is called from ZGESVJ as a pre-processor and that is its main
+*> purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but
+*> it targets only particular pivots and it does not check convergence
+*> (stopping criterion). Few tunning parameters (marked by [TP]) are
+*> available for the implementer.
+*>
+*> Further Details
+*> ~~~~~~~~~~~~~~~
+*> ZGSVJ1 applies few sweeps of Jacobi rotations in the column space of
+*> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
+*> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
+*> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
+*> [x]'s in the following scheme:
+*>
+*> | * * * [x] [x] [x]|
+*> | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
+*> | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
+*> |[x] [x] [x] * * * |
+*> |[x] [x] [x] * * * |
+*> |[x] [x] [x] * * * |
+*>
+*> In terms of the columns of A, the first N1 columns are rotated 'against'
+*> the remaining N-N1 columns, trying to increase the angle between the
+*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
+*> tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
+*> The number of sweeps is given in NSWEEP and the orthogonality threshold
+*> is given in TOL.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBV
+*> \verbatim
+*> JOBV is CHARACTER*1
+*> Specifies whether the output from this procedure is used
+*> to compute the matrix V:
+*> = 'V': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the N-by-N array V.
+*> (See the description of V.)
+*> = 'A': the product of the Jacobi rotations is accumulated
+*> by postmulyiplying the MV-by-N array V.
+*> (See the descriptions of MV and V.)
+*> = 'N': the Jacobi rotations are not accumulated.
+*> \endverbatim
+*>
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the input matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the input matrix A.
+*> M >= N >= 0.
+*> \endverbatim
+*>
+*> \param[in] N1
+*> \verbatim
+*> N1 is INTEGER
+*> N1 specifies the 2 x 2 block partition, the first N1 columns are
+*> rotated 'against' the remaining N-N1 columns of A.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, M-by-N matrix A, such that A*diag(D) represents
+*> the input matrix.
+*> On exit,
+*> A_onexit * D_onexit represents the input matrix A*diag(D)
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of N1, D, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension (N)
+*> The array D accumulates the scaling factors from the fast scaled
+*> Jacobi rotations.
+*> On entry, A*diag(D) represents the input matrix.
+*> On exit, A_onexit*diag(D_onexit) represents the input matrix
+*> post-multiplied by a sequence of Jacobi rotations, where the
+*> rotation threshold and the total number of sweeps are given in
+*> TOL and NSWEEP, respectively.
+*> (See the descriptions of N1, A, TOL and NSWEEP.)
+*> \endverbatim
+*>
+*> \param[in,out] SVA
+*> \verbatim
+*> SVA is DOUBLE PRECISION array, dimension (N)
+*> On entry, SVA contains the Euclidean norms of the columns of
+*> the matrix A*diag(D).
+*> On exit, SVA contains the Euclidean norms of the columns of
+*> the matrix onexit*diag(D_onexit).
+*> \endverbatim
+*>
+*> \param[in] MV
+*> \verbatim
+*> MV is INTEGER
+*> If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then MV is not referenced.
+*> \endverbatim
+*>
+*> \param[in,out] V
+*> \verbatim
+*> V is DOUBLE PRECISION array, dimension (LDV,N)
+*> If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+*> sequence of Jacobi rotations.
+*> If JOBV = 'N', then V is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDV
+*> \verbatim
+*> LDV is INTEGER
+*> The leading dimension of the array V, LDV >= 1.
+*> If JOBV = 'V', LDV .GE. N.
+*> If JOBV = 'A', LDV .GE. MV.
+*> \endverbatim
+*>
+*> \param[in] EPS
+*> \verbatim
+*> EPS is DOUBLE PRECISION
+*> EPS = DLAMCH('Epsilon')
+*> \endverbatim
+*>
+*> \param[in] SFMIN
+*> \verbatim
+*> SFMIN is DOUBLE PRECISION
+*> SFMIN = DLAMCH('Safe Minimum')
+*> \endverbatim
+*>
+*> \param[in] TOL
+*> \verbatim
+*> TOL is DOUBLE PRECISION
+*> TOL is the threshold for Jacobi rotations. For a pair
+*> A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+*> applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*> \endverbatim
+*>
+*> \param[in] NSWEEP
+*> \verbatim
+*> NSWEEP is INTEGER
+*> NSWEEP is the number of sweeps of Jacobi rotations to be
+*> performed.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is DOUBLE PRECISION array, dimension (LWORK)
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> LWORK is the dimension of WORK. LWORK .GE. M.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0 : successful exit.
+*> < 0 : if INFO = -i, then the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2015
+*
+*> \ingroup complex16OTHERcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*
+* =====================================================================
+ SUBROUTINE ZGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
+ $ EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* -- LAPACK computational routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2015
+*
+* .. Scalar Arguments ..
+ DOUBLE PRECISION EPS, SFMIN, TOL
+ INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
+ CHARACTER*1 JOBV
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
+ DOUBLE PRECISION SVA( N )
+* ..
+*
+* =====================================================================
+*
+* .. Local Parameters ..
+ DOUBLE PRECISION ZERO, HALF, ONE
+ PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
+* ..
+* .. Local Scalars ..
+ COMPLEX*16 AAPQ, OMPQ
+ DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
+ $ BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG,
+ $ ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
+ $ TEMP1, THETA, THSIGN
+ INTEGER BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
+ $ ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
+ $ p, PSKIPPED, q, ROWSKIP, SWBAND
+ LOGICAL APPLV, ROTOK, RSVEC
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION FASTR( 5 )
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, AMAX1, DBLE, MIN0, SIGN, SQRT
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DZNRM2
+ COMPLEX*16 ZDOTC
+ INTEGER IZAMAX
+ LOGICAL LSAME
+ EXTERNAL IZAMAX, LSAME, ZDOTC, DZNRM2
+* ..
+* .. External Subroutines ..
+* .. from BLAS
+ EXTERNAL ZCOPY, ZDROT, ZDSCAL, ZSWAP
+* .. from LAPACK
+ EXTERNAL ZLASCL, ZLASSQ, XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ APPLV = LSAME( JOBV, 'A' )
+ RSVEC = LSAME( JOBV, 'V' )
+ IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
+ INFO = -3
+ ELSE IF( N1.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.M ) THEN
+ INFO = -6
+ ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
+ INFO = -9
+ ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
+ $ ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
+ INFO = -11
+ ELSE IF( TOL.LE.EPS ) THEN
+ INFO = -14
+ ELSE IF( NSWEEP.LT.0 ) THEN
+ INFO = -15
+ ELSE IF( LWORK.LT.M ) THEN
+ INFO = -17
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGSVJ1', -INFO )
+ RETURN
+ END IF
+*
+ IF( RSVEC ) THEN
+ MVL = N
+ ELSE IF( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+
+ ROOTEPS = SQRT( EPS )
+ ROOTSFMIN = SQRT( SFMIN )
+ SMALL = SFMIN / EPS
+ BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ LARGE = BIG / SQRT( DBLE( M*N ) )
+ BIGTHETA = ONE / ROOTEPS
+ ROOTTOL = SQRT( TOL )
+*
+* .. Initialize the right singular vector matrix ..
+*
+* RSVEC = LSAME( JOBV, 'Y' )
+*
+ EMPTSW = N1*( N-N1 )
+ NOTROT = 0
+ FASTR( 1 ) = ZERO
+*
+* .. Row-cyclic pivot strategy with de Rijk's pivoting ..
+*
+ KBL = MIN0( 8, N )
+ NBLR = N1 / KBL
+ IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1
+
+* .. the tiling is nblr-by-nblc [tiles]
+
+ NBLC = ( N-N1 ) / KBL
+ IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
+ BLSKIP = ( KBL**2 ) + 1
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+ SWBAND = 0
+*[TP] SWBAND is a tuning parameter. It is meaningful and effective
+* if ZGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm ZGEJSV.
+*
+*
+* | * * * [x] [x] [x]|
+* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
+* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+*
+*
+ DO 1993 i = 1, NSWEEP
+*
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
+* 1 <= p < q <= N. This is the first step toward a blocked implementation
+* of the rotations. New implementation, based on block transformations,
+* is under development.
+*
+ DO 2000 ibr = 1, NBLR
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+
+*
+* ... go to the off diagonal blocks
+*
+ igl = ( ibr-1 )*KBL + 1
+*
+* DO 2010 jbc = ibr + 1, NBL
+ DO 2010 jbc = 1, NBLC
+*
+ jgl = ( jbc-1 )*KBL + N1 + 1
+*
+* doing the block at ( ibr, jbc )
+*
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl+KBL-1, N1 )
+*
+ AAPP = SVA( p )
+ IF( AAPP.GT.ZERO ) THEN
+*
+ PSKIPPED = 0
+*
+ DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
+*
+ AAQQ = SVA( q )
+ IF( AAQQ.GT.ZERO ) THEN
+ AAPP0 = AAPP
+*
+* .. M x 2 Jacobi SVD ..
+*
+* Safe Gram matrix computation
+*
+ IF( AAQQ.GE.ONE ) THEN
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ).LE.AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ).LE.AAPP
+ END IF
+ IF( AAPP.LT.( BIG / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = ZDOTC( M, WORK, 1,
+ $ A( 1, q ), 1 ) / AAQQ
+ END IF
+ ELSE
+ IF( AAPP.GE.AAQQ ) THEN
+ ROTOK = AAPP.LE.( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ.LE.( AAPP / SMALL )
+ END IF
+ IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
+ AAPQ = ( ZDOTC( M, A( 1, p ), 1,
+ $ A( 1, q ), 1 ) / AAQQ ) / AAPP
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ,
+ $ ONE, M, 1,
+ $ WORK, LDA, IERR )
+ AAPQ = ZDOTC( M, A( 1, p ), 1,
+ $ WORK, 1 ) / AAPP
+ END IF
+ END IF
+*
+ OMPQ = AAPQ / ABS(AAPQ)
+* AAPQ = AAPQ * DCONJG(CWORK(p))*CWORK(q)
+ AAPQ1 = -ABS(AAPQ)
+ MXAAPQ = AMAX1( MXAAPQ, -AAPQ1 )
+*
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF( ABS( AAPQ1 ).GT.TOL ) THEN
+ NOTROT = 0
+*[RTD] ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
+ IF( AAQQ.GT.AAPP0 )THETA = -THETA
+*
+ IF( ABS( THETA ).GT.BIGTHETA ) THEN
+ T = HALF / THETA
+ CS = ONE
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*T )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*T )
+ END IF
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, ABS( T ) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = -SIGN( ONE, AAPQ1 )
+ IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
+ T = ONE / ( THETA+THSIGN*
+ $ SQRT( ONE+THETA*THETA ) )
+ CS = SQRT( ONE / ( ONE+T*T ) )
+ SN = T*CS
+ MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE+T*APOAQ*AAPQ1 ) )
+ AAPP = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-T*AQOAP*AAPQ1 ) )
+*
+ CALL CROT( M, A(1,p), 1, A(1,q), 1,
+ $ CS, DCONJG(OMPQ)*SN )
+ IF( RSVEC ) THEN
+ CALL CROT( MVL, V(1,p), 1,
+ $ V(1,q), 1, CS, DCONJG(OMPQ)*SN )
+ END IF
+ END IF
+ D(p) = -D(q) * OMPQ
+*
+ ELSE
+* .. have to use modified Gram-Schmidt like transformation
+ IF( AAPP.GT.AAQQ ) THEN
+ CALL ZCOPY( M, A( 1, p ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -AAPQ, WORK,
+ $ 1, A( 1, q ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAQQ,
+ $ M, 1, A( 1, q ), LDA,
+ $ IERR )
+ SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL ZCOPY( M, A( 1, q ), 1,
+ $ WORK, 1 )
+ CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
+ $ M, 1, WORK,LDA,
+ $ IERR )
+ CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ CALL CAXPY( M, -DCONJG(AAPQ),
+ $ WORK, 1, A( 1, p ), 1 )
+ CALL ZLASCL( 'G', 0, 0, ONE, AAPP,
+ $ M, 1, A( 1, p ), LDA,
+ $ IERR )
+ SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
+ $ ONE-AAPQ1*AAPQ1 ) )
+ MXSINJ = AMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q), SVA(p)
+* .. recompute SVA(q), SVA(p)
+ IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
+ $ THEN
+ IF( ( AAQQ.LT.ROOTBIG ) .AND.
+ $ ( AAQQ.GT.ROOTSFMIN ) ) THEN
+ SVA( q ) = DZNRM2( M, A( 1, q ), 1)
+ ELSE
+ T = ZERO
+ AAQQ = ONE
+ CALL ZLASSQ( M, A( 1, q ), 1, T,
+ $ AAQQ )
+ SVA( q ) = T*SQRT( AAQQ )
+ END IF
+ END IF
+ IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
+ IF( ( AAPP.LT.ROOTBIG ) .AND.
+ $ ( AAPP.GT.ROOTSFMIN ) ) THEN
+ AAPP = DZNRM2( M, A( 1, p ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, p ), 1, T,
+ $ AAPP )
+ AAPP = T*SQRT( AAPP )
+ END IF
+ SVA( p ) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+*[RTD] SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+*
+ IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
+ $ THEN
+ SVA( p ) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF( ( i.LE.SWBAND ) .AND.
+ $ ( PSKIPPED.GT.ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+*
+ SVA( p ) = AAPP
+*
+ ELSE
+*
+ IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
+ $ MIN0( jgl+KBL-1, N ) - jgl + 1
+ IF( AAPP.LT.ZERO )NOTROT = 0
+*
+ END IF
+*
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl+KBL-1, N )
+ SVA( p ) = ABS( SVA( p ) )
+ 2012 CONTINUE
+***
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
+ $ THEN
+ SVA( N ) = DZNRM2( M, A( 1, N ), 1 )
+ ELSE
+ T = ZERO
+ AAPP = ONE
+ CALL ZLASSQ( M, A( 1, N ), 1, T, AAPP )
+ SVA( N ) = T*SQRT( AAPP )
+ END IF
+*
+* Additional steering devices
+*
+ IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ $ ( ISWROT.LE.N ) ) )SWBAND = i
+*
+ IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( DBLE( N ) )*
+ $ TOL ) .AND. ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
+ GO TO 1994
+ END IF
+*
+ IF( NOTROT.GE.EMPTSW )GO TO 1994
+*
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+*
+* #:( Reaching this point means that the procedure has not converged.
+ INFO = NSWEEP - 1
+ GO TO 1995
+*
+ 1994 CONTINUE
+* #:) Reaching this point means numerical convergence after the i-th
+* sweep.
+*
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the vector SVA() of column norms.
+ DO 5991 p = 1, N - 1
+ q = IZAMAX( N-p+1, SVA( p ), 1 ) + p - 1
+ IF( p.NE.q ) THEN
+ TEMP1 = SVA( p )
+ SVA( p ) = SVA( q )
+ SVA( q ) = TEMP1
+ AAPQ = D( p )
+ D( p ) = D( q )
+ D( q ) = AAPQ
+ CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
+ IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
+ END IF
+ 5991 CONTINUE
+*
+*
+ RETURN
+* ..
+* .. END OF ZGSVJ1
+* ..
+ END