namespace mlir {
+class AffineMap;
+class MemRefType;
class OperationStmt;
class VectorType;
-// TODO(ntv): Drop this once we have proper Ops.
-static constexpr auto kVectorTransferReadOpName = "vector_transfer_read";
-static constexpr auto kVectorTransferWriteOpName = "vector_transfer_write";
-bool isaVectorTransferRead(const OperationStmt &stmt);
-bool isaVectorTransferWrite(const OperationStmt &stmt);
-
/// Computes and returns the multi-dimensional ratio of `superShape` to
/// `subShape`. This is calculated by performing a traversal from minor to major
/// dimensions (i.e. in reverse shape order). If integral division is not
llvm::Optional<llvm::SmallVector<unsigned, 4>>
shapeRatio(VectorType superVectorType, VectorType subVectorType);
+/// Creates a permutation map to be used as an attribute in VectorTransfer ops.
+/// Currently only returns the minor vectorType.rank identity submatrix.
+///
+/// For example, assume memrefType is of rank 5 and vectorType is of rank 3,
+/// returns the affine map:
+/// (d0, d1, d2, d3, d4) -> (d2, d3, d4)
+///
+/// TODO(ntv): support real permutations.
+AffineMap makePermutationMap(MemRefType memrefType, VectorType vectorType);
+
namespace matcher {
/// Matches vector_transfer_read, vector_transfer_write and ops that return a
#include "mlir/IR/OpDefinition.h"
namespace mlir {
+class AffineMap;
class Builder;
class MLValue;
explicit TensorCastOp(const Operation *state) : CastOp(state) {}
};
+/// VectorTransferReadOp performs a blocking read from a scalar memref
+/// location into a super-vector of the same elemental type. This operation is
+/// called 'read' by opposition to 'load' because the super-vector granularity
+/// is generally not representable with a single hardware register. As a
+/// consequence, memory transfers will generally be required when lowering
+/// VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction
+/// that supports super-vectorization with non-effecting padding for full-tile
+/// only code.
+//
+/// A vector transfer read has semantics similar to a vector load, with
+/// additional support for:
+/// 1. an optional value of the elemental type of the MemRef. This value
+/// supports non-effecting padding and is inserted in places where the
+/// vector read exceeds the MemRef bounds. If the value is not specified,
+/// the access is statically guaranteed to be within bounds;
+/// 2. an attribute of type AffineMap to specify a slice of the original
+/// MemRef access and its transposition into the super-vector shape. The
+/// permutation_map is an unbounded AffineMap that must represent a
+/// permutation from the MemRef dim space projected onto the vector dim
+/// space.
+//
+/// Example:
+/// ```mlir
+/// %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>
+/// ...
+/// %val = `ssa-value` : f32
+/// // let %i, %j, %k, %l be ssa-values of type index
+/// %v0 = vector_transfer_read %src, %i, %j, %k, %l
+/// {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
+/// (memref<?x?x?x?xf32>, index, index, index, index) ->
+/// vector<16x32x64xf32>
+/// %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val
+/// {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
+/// (memref<?x?x?x?xf32>, index, index, index, index, f32) ->
+/// vector<16x32x64xf32>
+/// ```
+class VectorTransferReadOp
+ : public Op<VectorTransferReadOp, OpTrait::VariadicOperands,
+ OpTrait::OneResult> {
+ enum Offsets : unsigned { MemRefOffset = 0, FirstIndexOffset = 1 };
+
+public:
+ static StringRef getOperationName() { return "vector_transfer_read"; }
+ static StringRef getPermutationMapAttrName() { return "permutation_map"; }
+ static void build(Builder *builder, OperationState *result,
+ VectorType vectorType, SSAValue *srcMemRef,
+ ArrayRef<SSAValue *> srcIndices, AffineMap permutationMap,
+ Optional<SSAValue *> paddingValue = None);
+ VectorType getResultType() const {
+ return getResult()->getType().cast<VectorType>();
+ }
+ SSAValue *getMemRef() { return getOperand(Offsets::MemRefOffset); }
+ const SSAValue *getMemRef() const {
+ return getOperand(Offsets::MemRefOffset);
+ }
+ MemRefType getMemRefType() const {
+ return getMemRef()->getType().cast<MemRefType>();
+ }
+ llvm::iterator_range<Operation::operand_iterator> getIndices();
+ llvm::iterator_range<Operation::const_operand_iterator> getIndices() const;
+ Optional<SSAValue *> getPaddingValue();
+ Optional<const SSAValue *> getPaddingValue() const;
+ AffineMap getPermutationMap() const;
+
+ static bool parse(OpAsmParser *parser, OperationState *result);
+ void print(OpAsmPrinter *p) const;
+ bool verify() const;
+
+private:
+ friend class Operation;
+ explicit VectorTransferReadOp(const Operation *state) : Op(state) {}
+};
+
+/// VectorTransferWriteOp performs a blocking write from a super-vector to
+/// a scalar memref of the same elemental type. This operation is
+/// called 'write' by opposition to 'store' because the super-vector granularity
+/// is generally not representable with a single hardware register. As a
+/// consequence, memory transfers will generally be required when lowering
+/// VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level
+/// abstraction that supports super-vectorization with non-effecting padding for
+/// full-tile only code.
+///
+/// A vector transfer write has semantics similar to a vector store, with
+/// additional support for handling out-of-bounds situations. It is the
+/// responsibility of vector_transfer_write's implementation to ensure the
+/// memory writes are valid. Different implementations may be pertinent
+/// depending on the hardware support including:
+/// 1. predication;
+/// 2. explicit control-flow;
+/// 3. Read-Modify-Write;
+/// 4. writing out of bounds of the memref when the allocation allows it.
+///
+/// Example:
+/// ```mlir
+/// %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>.
+/// %val = `ssa-value` : vector<16x32x64xf32>
+/// // let %i, %j, %k, %l be ssa-values of type index
+/// vector_transfer_write %val, %src, %i, %j, %k, %l
+/// {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
+/// vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index
+/// ```
+class VectorTransferWriteOp
+ : public Op<VectorTransferWriteOp, OpTrait::VariadicOperands,
+ OpTrait::ZeroResult> {
+ enum Offsets : unsigned {
+ VectorOffset = 0,
+ MemRefOffset = 1,
+ FirstIndexOffset = 2
+ };
+
+public:
+ static StringRef getOperationName() { return "vector_transfer_write"; }
+ static StringRef getPermutationMapAttrName() { return "permutation_map"; }
+ static void build(Builder *builder, OperationState *result,
+ SSAValue *srcVector, SSAValue *dstMemRef,
+ ArrayRef<SSAValue *> dstIndices, AffineMap permutationMap);
+ SSAValue *getVector() { return getOperand(Offsets::VectorOffset); }
+ const SSAValue *getVector() const {
+ return getOperand(Offsets::VectorOffset);
+ }
+ VectorType getVectorType() const {
+ return getVector()->getType().cast<VectorType>();
+ }
+ SSAValue *getMemRef() { return getOperand(Offsets::MemRefOffset); }
+ const SSAValue *getMemRef() const {
+ return getOperand(Offsets::MemRefOffset);
+ }
+ MemRefType getMemRefType() const {
+ return getMemRef()->getType().cast<MemRefType>();
+ }
+ llvm::iterator_range<Operation::operand_iterator> getIndices();
+ llvm::iterator_range<Operation::const_operand_iterator> getIndices() const;
+ AffineMap getPermutationMap() const;
+
+ static bool parse(OpAsmParser *parser, OperationState *result);
+ void print(OpAsmPrinter *p) const;
+ bool verify() const;
+
+private:
+ friend class Operation;
+ explicit VectorTransferWriteOp(const Operation *state) : Op(state) {}
+};
+
} // end namespace mlir
#endif
#define MLIR_SUPPORT_FUNCTIONAL_H_
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Casting.h"
/// This file provides some simple template functional-style sugar to operate
/// on **value** types. Make sure when using that the stored type is cheap to
}
}
+/// Unwraps a pointer type to another type (possibly the same).
+/// Used in particular to allow easier compositions of
+/// llvm::iterator_range<ForStmt::operand_iterator> types.
+template <typename T, typename ToType = T>
+inline std::function<ToType *(T *)> makePtrDynCaster() {
+ return [](T *val) { return llvm::dyn_cast<ToType>(val); };
+}
+
/// Simple ScopeGuard.
struct ScopeGuard {
explicit ScopeGuard(std::function<void(void)> destruct)
// TODO(ntv): make the following into MLIR instructions, then use isa<>.
static bool isVectorTransferReadOrWrite(const Statement &stmt) {
const auto *opStmt = cast<OperationStmt>(&stmt);
- return isaVectorTransferRead(*opStmt) || isaVectorTransferWrite(*opStmt);
+ return opStmt->isa<VectorTransferReadOp>() ||
+ opStmt->isa<VectorTransferWriteOp>();
}
using VectorizableStmtFun =
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Statements.h"
+#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/STLExtras.h"
using namespace mlir;
-bool mlir::isaVectorTransferRead(const OperationStmt &stmt) {
- return stmt.getName().getStringRef().str() == kVectorTransferReadOpName;
-}
-
-bool mlir::isaVectorTransferWrite(const OperationStmt &stmt) {
- return stmt.getName().getStringRef().str() == kVectorTransferWriteOpName;
-}
-
Optional<SmallVector<unsigned, 4>> mlir::shapeRatio(ArrayRef<int> superShape,
ArrayRef<int> subShape) {
if (superShape.size() < subShape.size()) {
return shapeRatio(superVectorType.getShape(), subVectorType.getShape());
}
+AffineMap mlir::makePermutationMap(MemRefType memrefType,
+ VectorType vectorType) {
+ unsigned memRefRank = memrefType.getRank();
+ unsigned vectorRank = vectorType.getRank();
+ assert(memRefRank >= vectorRank && "Broadcast not supported");
+ unsigned offset = memRefRank - vectorRank;
+ SmallVector<AffineExpr, 4> perm;
+ perm.reserve(memRefRank);
+ for (unsigned i = 0; i < vectorRank; ++i) {
+ perm.push_back(getAffineDimExpr(offset + i, memrefType.getContext()));
+ }
+ return AffineMap::get(memRefRank, 0, perm, {});
+}
+
bool mlir::matcher::operatesOnStrictSuperVectors(const OperationStmt &opStmt,
VectorType subVectorType) {
// First, extract the vector type and ditinguish between:
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
bool mustDivide = false;
VectorType superVectorType;
- if (isaVectorTransferRead(opStmt)) {
- superVectorType = opStmt.getResult(0)->getType().cast<VectorType>();
+ if (auto read = opStmt.dyn_cast<VectorTransferReadOp>()) {
+ superVectorType = read->getResultType();
mustDivide = true;
- } else if (isaVectorTransferWrite(opStmt)) {
- // TODO(ntv): if vector_transfer_write had store-like semantics we could
- // have written something similar to:
- // auto store = storeOp->cast<StoreOp>();
- // auto *value = store->getValueToStore();
- superVectorType = opStmt.getOperand(0)->getType().cast<VectorType>();
+ } else if (auto write = opStmt.dyn_cast<VectorTransferWriteOp>()) {
+ superVectorType = write->getVectorType();
mustDivide = true;
} else if (opStmt.getNumResults() == 0) {
assert(opStmt.isa<ReturnOp>() &&
addOperations<AddFOp, AddIOp, AllocOp, CallOp, CallIndirectOp, CmpIOp,
DeallocOp, DimOp, DmaStartOp, DmaWaitOp, ExtractElementOp,
LoadOp, MemRefCastOp, MulFOp, MulIOp, SelectOp, StoreOp, SubFOp,
- SubIOp, TensorCastOp>();
+ SubIOp, TensorCastOp, VectorTransferReadOp,
+ VectorTransferWriteOp>();
}
//===----------------------------------------------------------------------===//
return false;
}
+
+//===----------------------------------------------------------------------===//
+// VectorTransferReadOp
+//===----------------------------------------------------------------------===//
+template <typename EmitFun>
+static bool verifyPermutationMap(AffineMap permutationMap,
+ EmitFun emitOpError) {
+ SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
+ for (auto expr : permutationMap.getResults()) {
+ auto dim = expr.dyn_cast<AffineDimExpr>();
+ if (!dim) {
+ return emitOpError(
+ "requires a permutation_map that is an actual permutation");
+ }
+ if (seen[dim.getPosition()]) {
+ return emitOpError(
+ "requires a permutation_map that is a full column-rank "
+ "permutation (i.e. a permutation composed with an "
+ "orthogonal projection)");
+ }
+ seen[dim.getPosition()] = true;
+ }
+ return false;
+}
+
+void VectorTransferReadOp::build(Builder *builder, OperationState *result,
+ VectorType vectorType, SSAValue *srcMemRef,
+ ArrayRef<SSAValue *> srcIndices,
+ AffineMap permutationMap,
+ Optional<SSAValue *> paddingValue) {
+ result->addOperands(srcMemRef);
+ result->addOperands(srcIndices);
+ if (paddingValue) {
+ result->addOperands({*paddingValue});
+ }
+ result->addAttribute(getPermutationMapAttrName(),
+ builder->getAffineMapAttr(permutationMap));
+ result->addTypes(vectorType);
+}
+
+llvm::iterator_range<Operation::operand_iterator>
+VectorTransferReadOp::getIndices() {
+ auto begin = getOperation()->operand_begin() + Offsets::FirstIndexOffset;
+ auto end = begin + getMemRefType().getRank();
+ return {begin, end};
+}
+
+llvm::iterator_range<Operation::const_operand_iterator>
+VectorTransferReadOp::getIndices() const {
+ auto begin = getOperation()->operand_begin() + Offsets::FirstIndexOffset;
+ auto end = begin + getMemRefType().getRank();
+ return {begin, end};
+}
+
+Optional<SSAValue *> VectorTransferReadOp::getPaddingValue() {
+ auto memRefRank = getMemRefType().getRank();
+ if (getNumOperands() <= Offsets::FirstIndexOffset + memRefRank) {
+ return None;
+ }
+ return Optional<SSAValue *>(
+ getOperand(Offsets::FirstIndexOffset + memRefRank));
+}
+
+Optional<const SSAValue *> VectorTransferReadOp::getPaddingValue() const {
+ auto memRefRank = getMemRefType().getRank();
+ if (getNumOperands() <= Offsets::FirstIndexOffset + memRefRank) {
+ return None;
+ }
+ return Optional<const SSAValue *>(
+ getOperand(Offsets::FirstIndexOffset + memRefRank));
+}
+
+AffineMap VectorTransferReadOp::getPermutationMap() const {
+ return getAttrOfType<AffineMapAttr>(getPermutationMapAttrName()).getValue();
+}
+
+void VectorTransferReadOp::print(OpAsmPrinter *p) const {
+ *p << getOperationName() << " ";
+ p->printOperand(getMemRef());
+ *p << ", ";
+ p->printOperands(getIndices());
+ auto optionalPaddingValue = getPaddingValue();
+ if (optionalPaddingValue) {
+ *p << ", ";
+ p->printOperand(*optionalPaddingValue);
+ }
+ p->printOptionalAttrDict(getAttrs());
+ // Construct the FunctionType and print it.
+ llvm::SmallVector<Type, 8> inputs{getMemRefType()};
+ // Must have at least one actual index, see verify.
+ const SSAValue *firstIndex = *(getIndices().begin());
+ Type indexType = firstIndex->getType();
+ inputs.append(getMemRefType().getRank(), indexType);
+ if (optionalPaddingValue) {
+ inputs.push_back((*optionalPaddingValue)->getType());
+ }
+ *p << " : "
+ << FunctionType::get(inputs, {getResultType()}, indexType.getContext());
+}
+
+bool VectorTransferReadOp::parse(OpAsmParser *parser, OperationState *result) {
+ SmallVector<OpAsmParser::OperandType, 8> parsedOperands;
+ Type type;
+
+ // Parsing with support for optional paddingValue.
+ auto fail = parser->parseOperandList(parsedOperands) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonType(type);
+ if (fail) {
+ return true;
+ }
+
+ // Resolution.
+ auto funType = type.dyn_cast<FunctionType>();
+ if (!funType) {
+ parser->emitError(parser->getNameLoc(), "Function type expected");
+ return true;
+ }
+ if (funType.getNumInputs() < 1) {
+ parser->emitError(parser->getNameLoc(),
+ "Function type expects at least one input");
+ return true;
+ }
+ MemRefType memrefType =
+ funType.getInput(Offsets::MemRefOffset).dyn_cast<MemRefType>();
+ if (!memrefType) {
+ parser->emitError(parser->getNameLoc(),
+ "MemRef type expected for first input");
+ return true;
+ }
+ if (funType.getNumResults() < 1) {
+ parser->emitError(parser->getNameLoc(),
+ "Function type expects exactly one vector result");
+ return true;
+ }
+ VectorType vectorType = funType.getResult(0).dyn_cast<VectorType>();
+ if (!vectorType) {
+ parser->emitError(parser->getNameLoc(),
+ "Vector type expected for first result");
+ return true;
+ }
+ if (parsedOperands.size() != funType.getNumInputs()) {
+ parser->emitError(parser->getNameLoc(), "requires " +
+ Twine(funType.getNumInputs()) +
+ " operands");
+ return true;
+ }
+
+ // Extract optional paddingValue.
+ OpAsmParser::OperandType memrefInfo = parsedOperands[0];
+ // At this point, indexInfo may contain the optional paddingValue, pop it out.
+ SmallVector<OpAsmParser::OperandType, 8> indexInfo{
+ parsedOperands.begin() + Offsets::FirstIndexOffset, parsedOperands.end()};
+ Type paddingType;
+ OpAsmParser::OperandType paddingValue;
+ bool hasPaddingValue = indexInfo.size() > memrefType.getRank();
+ unsigned expectedNumOperands = Offsets::FirstIndexOffset +
+ memrefType.getRank() +
+ (hasPaddingValue ? 1 : 0);
+ if (hasPaddingValue) {
+ paddingType = funType.getInputs().back();
+ paddingValue = indexInfo.pop_back_val();
+ }
+ if (funType.getNumInputs() != expectedNumOperands) {
+ parser->emitError(
+ parser->getNameLoc(),
+ "requires actual number of operands to match function type");
+ return true;
+ }
+
+ auto indexType = parser->getBuilder().getIndexType();
+ return parser->resolveOperand(memrefInfo, memrefType, result->operands) ||
+ parser->resolveOperands(indexInfo, indexType, result->operands) ||
+ (hasPaddingValue && parser->resolveOperand(paddingValue, paddingType,
+ result->operands)) ||
+ parser->addTypeToList(vectorType, result->types);
+}
+
+bool VectorTransferReadOp::verify() const {
+ // Consistency of memref type in function type.
+ if (llvm::empty(getOperands())) {
+ return emitOpError(
+ "requires at least a memref operand followed by 'rank' indices");
+ }
+ if (!getMemRef()->getType().isa<MemRefType>()) {
+ return emitOpError("requires a memref as first operand");
+ }
+ // Consistency of vector type in function type.
+ if (!getResult()->getType().isa<VectorType>()) {
+ return emitOpError("should have a vector result type in function type: "
+ "(memref_type [, elemental_type]) -> vector_type");
+ }
+ // Consistency of elemental types in memref and vector.
+ MemRefType memrefType = getMemRefType();
+ VectorType vectorType = getResultType();
+ if (memrefType.getElementType() != vectorType.getElementType())
+ return emitOpError(
+ "requires memref and vector types of the same elemental type");
+ // Consistency of number of input types.
+ auto optionalPaddingValue = getPaddingValue();
+ unsigned expectedNumOperands = Offsets::FirstIndexOffset +
+ memrefType.getRank() +
+ (optionalPaddingValue ? 1 : 0);
+ // Checks on the actual operands and their types.
+ if (getNumOperands() != expectedNumOperands) {
+ return emitOpError("expects " + Twine(expectedNumOperands) +
+ " operands to match the types");
+ }
+ // Consistency of padding value with vector type.
+ if (optionalPaddingValue) {
+ auto paddingValue = *optionalPaddingValue;
+ auto elementalType = paddingValue->getType();
+ if (!VectorType::isValidElementType(elementalType)) {
+ return emitOpError("requires valid padding vector elemental type");
+ }
+ if (elementalType != vectorType.getElementType()) {
+ return emitOpError(
+ "requires formal padding and vector of the same elemental type");
+ }
+ }
+ // Consistency of indices types.
+ unsigned numIndices = 0;
+ for (auto *idx : getIndices()) {
+ if (!idx->getType().isIndex()) {
+ return emitOpError(
+ "index to vector_transfer_read must have 'index' type");
+ }
+ ++numIndices;
+ }
+ if (numIndices != memrefType.getRank()) {
+ return emitOpError("requires at least a memref operand followed by " +
+ Twine(memrefType.getRank()) + " indices");
+ }
+
+ // Consistency of AffineMap attribute.
+ if (!getAttrOfType<AffineMapAttr>(getPermutationMapAttrName())) {
+ return emitOpError("requires an AffineMapAttr named 'permutation_map'");
+ }
+ auto permutationMap = getPermutationMap();
+ if (!permutationMap.getRangeSizes().empty()) {
+ return emitOpError("requires an unbounded permutation_map");
+ }
+ if (permutationMap.getNumSymbols() != 0) {
+ return emitOpError("requires a permutation_map without symbols");
+ }
+ if (permutationMap.getNumInputs() != memrefType.getRank()) {
+ return emitOpError("requires a permutation_map with input dims of the "
+ "same rank as the memref type");
+ }
+ if (permutationMap.getNumResults() != vectorType.getRank()) {
+ return emitOpError("requires a permutation_map with result dims of the "
+ "same rank as the vector type");
+ }
+ return verifyPermutationMap(permutationMap,
+ [this](Twine t) { return emitOpError(t); });
+}
+
+//===----------------------------------------------------------------------===//
+// VectorTransferWriteOp
+//===----------------------------------------------------------------------===//
+void VectorTransferWriteOp::build(Builder *builder, OperationState *result,
+ SSAValue *srcVector, SSAValue *dstMemRef,
+ ArrayRef<SSAValue *> dstIndices,
+ AffineMap permutationMap) {
+ result->addOperands({srcVector, dstMemRef});
+ result->addOperands(dstIndices);
+ result->addAttribute(getPermutationMapAttrName(),
+ builder->getAffineMapAttr(permutationMap));
+}
+
+llvm::iterator_range<Operation::operand_iterator>
+VectorTransferWriteOp::getIndices() {
+ auto begin = getOperation()->operand_begin() + Offsets::FirstIndexOffset;
+ auto end = begin + getMemRefType().getRank();
+ return {begin, end};
+}
+
+llvm::iterator_range<Operation::const_operand_iterator>
+VectorTransferWriteOp::getIndices() const {
+ auto begin = getOperation()->operand_begin() + Offsets::FirstIndexOffset;
+ auto end = begin + getMemRefType().getRank();
+ return {begin, end};
+}
+
+AffineMap VectorTransferWriteOp::getPermutationMap() const {
+ return getAttrOfType<AffineMapAttr>(getPermutationMapAttrName()).getValue();
+}
+
+void VectorTransferWriteOp::print(OpAsmPrinter *p) const {
+ *p << getOperationName();
+ *p << " " << *getVector();
+ *p << ", " << *getMemRef();
+ *p << ", ";
+ p->printOperands(getIndices());
+ p->printOptionalAttrDict(getAttrs());
+ Type indexType = (*getIndices().begin())->getType();
+ *p << " : ";
+ p->printType(getVectorType());
+ *p << ", ";
+ p->printType(getMemRefType());
+ for (unsigned r = 0, n = getMemRefType().getRank(); r < n; ++r) {
+ *p << ", ";
+ p->printType(indexType);
+ }
+}
+
+bool VectorTransferWriteOp::parse(OpAsmParser *parser, OperationState *result) {
+ SmallVector<OpAsmParser::OperandType, 8> parsedOperands;
+ SmallVector<Type, 8> types;
+
+ // Parsing with support for optional paddingValue.
+ auto fail = parser->parseOperandList(parsedOperands) ||
+ parser->parseOptionalAttributeDict(result->attributes) ||
+ parser->parseColonTypeList(types);
+ if (fail) {
+ return true;
+ }
+
+ // Resolution.
+ if (parsedOperands.size() != types.size()) {
+ parser->emitError(parser->getNameLoc(),
+ "requires number of operands and input types to match");
+ return true;
+ }
+ if (parsedOperands.size() < Offsets::FirstIndexOffset) {
+ parser->emitError(parser->getNameLoc(),
+ "requires at least vector and memref operands");
+ return true;
+ }
+ VectorType vectorType = types[Offsets::VectorOffset].dyn_cast<VectorType>();
+ if (!vectorType) {
+ parser->emitError(parser->getNameLoc(),
+ "Vector type expected for first input type");
+ return true;
+ }
+ MemRefType memrefType = types[Offsets::MemRefOffset].dyn_cast<MemRefType>();
+ if (!memrefType) {
+ parser->emitError(parser->getNameLoc(),
+ "MemRef type expected for second input type");
+ return true;
+ }
+
+ unsigned expectedNumOperands =
+ Offsets::FirstIndexOffset + memrefType.getRank();
+ if (parsedOperands.size() != expectedNumOperands) {
+ parser->emitError(parser->getNameLoc(),
+ "requires " + Twine(expectedNumOperands) + " operands");
+ return true;
+ }
+
+ OpAsmParser::OperandType vectorInfo = parsedOperands[Offsets::VectorOffset];
+ OpAsmParser::OperandType memrefInfo = parsedOperands[Offsets::MemRefOffset];
+ SmallVector<OpAsmParser::OperandType, 8> indexInfo{
+ parsedOperands.begin() + Offsets::FirstIndexOffset, parsedOperands.end()};
+ auto indexType = parser->getBuilder().getIndexType();
+ return parser->resolveOperand(vectorInfo, vectorType, result->operands) ||
+ parser->resolveOperand(memrefInfo, memrefType, result->operands) ||
+ parser->resolveOperands(indexInfo, indexType, result->operands);
+}
+
+bool VectorTransferWriteOp::verify() const {
+ // Consistency of memref type in function type.
+ if (llvm::empty(getOperands())) {
+ return emitOpError(
+ "requires at least a memref operand followed by 'rank' indices");
+ }
+ if (!getMemRef()->getType().isa<MemRefType>()) {
+ return emitOpError("requires a memref first operand");
+ }
+ // Consistency of vector type in function type.
+ if (!getVector()->getType().isa<VectorType>()) {
+ return emitOpError("should have a vector input type in function type: "
+ "(vector_type, memref_type [, elemental_type]) -> ()");
+ }
+ // Consistency of elemental types in memref and vector.
+ MemRefType memrefType = getMemRefType();
+ VectorType vectorType = getVectorType();
+ if (memrefType.getElementType() != vectorType.getElementType())
+ return emitOpError(
+ "requires memref and vector types of the same elemental type");
+ // Consistency of number of input types.
+ unsigned expectedNumOperands =
+ Offsets::FirstIndexOffset + memrefType.getRank();
+ // Checks on the actual operands and their types.
+ if (getNumOperands() != expectedNumOperands) {
+ return emitOpError("expects " + Twine(expectedNumOperands) +
+ " operands to match the types");
+ }
+ // Consistency of indices types.
+ unsigned numIndices = 0;
+ for (auto *idx : getIndices()) {
+ if (!idx->getType().isIndex()) {
+ return emitOpError(
+ "index to vector_transfer_write must have 'index' type");
+ }
+ numIndices++;
+ }
+ if (numIndices != memrefType.getRank()) {
+ return emitOpError("requires at least a memref operand followed by " +
+ Twine(memrefType.getRank()) + " indices");
+ }
+
+ // Consistency of AffineMap attribute.
+ if (!getAttrOfType<AffineMapAttr>(getPermutationMapAttrName())) {
+ return emitOpError("requires an AffineMapAttr named 'permutation_map'");
+ }
+ auto permutationMap = getPermutationMap();
+ if (!permutationMap.getRangeSizes().empty()) {
+ return emitOpError("requires an unbounded permutation_map");
+ }
+ if (permutationMap.getNumSymbols() != 0) {
+ return emitOpError("requires a permutation_map without symbols");
+ }
+ if (permutationMap.getNumInputs() != memrefType.getRank()) {
+ return emitOpError("requires a permutation_map with input dims of the "
+ "same rank as the memref type");
+ }
+ if (permutationMap.getNumResults() != vectorType.getRank()) {
+ return emitOpError("requires a permutation_map with result dims of the "
+ "same rank as the vector type");
+ }
+ return verifyPermutationMap(permutationMap,
+ [this](Twine t) { return emitOpError(t); });
+}
using namespace mlir;
+using functional::makePtrDynCaster;
using functional::map;
static llvm::cl::list<int>
/// TODO(ntv): support a concrete AffineMap and compose with it.
/// TODO(ntv): these implementation details should be captured in a
/// vectorization trait at the op level directly.
-static SmallVector<MLValue *, 8>
-reindexAffineIndices(MLFuncBuilder *b, Type hwVectorType,
+static SmallVector<SSAValue *, 8>
+reindexAffineIndices(MLFuncBuilder *b, VectorType hwVectorType,
ArrayRef<unsigned> hwVectorInstance,
ArrayRef<SSAValue *> memrefIndices) {
- auto vectorShape = hwVectorType.cast<VectorType>().getShape();
+ auto vectorShape = hwVectorType.getShape();
assert(hwVectorInstance.size() >= vectorShape.size());
unsigned numIndices = memrefIndices.size();
// TODO(ntv): support a concrete map and composition.
auto app = b->create<AffineApplyOp>(b->getInsertionPoint()->getLoc(),
affineMap, memrefIndices);
- unsigned numResults = app->getNumResults();
- SmallVector<MLValue *, 8> res;
- for (unsigned i = 0; i < numResults; ++i) {
- res.push_back(cast<MLValue>(app->getResult(i)));
- }
- return res;
+ return SmallVector<SSAValue *, 8>{app->getResults()};
}
-/// Returns the cloned operands of `opStmt` for the instance of
-/// `hwVectorInstance` when lowering from a super-vector type to
-/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
-/// `hwVectorType` int the covering of the super-vector type. For a more
-/// detailed description of the problem, see the description of
-/// reindexAffineIndices.
-static SmallVector<MLValue *, 8>
-cloneAndUnrollOperands(OperationStmt *opStmt, Type hwVectorType,
- ArrayRef<unsigned> hwVectorInstance,
- DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
- using functional::map;
-
- // For Ops that are not vector_transfer_read/vector_transfer_write we can just
- // substitute and be done.
- if (!isaVectorTransferRead(*opStmt) && !isaVectorTransferWrite(*opStmt)) {
- return map([substitutionsMap](
- SSAValue *v) { return substitute(v, *substitutionsMap); },
- opStmt->getOperands());
- }
-
- // TODO(ntv): this error-prone boilerplate can be removed once we have a
- // proper Op for vectr_transfer.
- unsigned offset = 0;
- unsigned numIndices = 0;
- SmallVector<MLValue *, 8> res;
- auto operands = opStmt->getOperands();
- if (isaVectorTransferRead(*opStmt)) {
- offset = 1;
- numIndices = opStmt->getNumOperands() - 1;
- } else if (isaVectorTransferWrite(*opStmt)) {
- offset = 2;
- numIndices = opStmt->getNumOperands() - 2;
- }
- // Copy as-is the [optional valueToStore], memref.
- for (unsigned i = 0; i < offset; ++i) {
- res.push_back(substitute(*(operands.begin() + i), *substitutionsMap));
- }
-
- MLFuncBuilder b(opStmt);
- // TODO(ntv): indices extraction is brittle and unsafe before we have an Op.
- SmallVector<SSAValue *, 8> indices;
- for (auto it = operands.begin() + offset; it != operands.end(); ++it) {
- indices.push_back(*it);
- }
- auto affineValues =
- reindexAffineIndices(&b, hwVectorType, hwVectorInstance, indices);
- res.append(affineValues.begin(), affineValues.end());
-
- return res;
-}
-
-// Returns attributes with the following substitutions applied:
-// - splat of `superVectorType` is replaced by splat of `hwVectorType`.
-// TODO(ntv): add more substitutions on a per-need basis.
-static SmallVector<NamedAttribute, 2>
+/// Returns attributes with the following substitutions applied:
+/// - splat of `superVectorType` is replaced by splat of `hwVectorType`.
+/// TODO(ntv): add more substitutions on a per-need basis.
+static SmallVector<NamedAttribute, 1>
materializeAttributes(OperationStmt *opStmt, VectorType superVectorType,
VectorType hwVectorType) {
- SmallVector<NamedAttribute, 2> res;
+ SmallVector<NamedAttribute, 1> res;
for (auto a : opStmt->getAttrs()) {
auto splat = a.second.dyn_cast<SplatElementsAttr>();
bool splatOfSuperVectorType = splat && (splat.getType() == superVectorType);
if (splatOfSuperVectorType) {
- auto attr = SplatElementsAttr::get(hwVectorType.cast<VectorType>(),
- splat.getValue());
+ auto attr = SplatElementsAttr::get(hwVectorType, splat.getValue());
res.push_back(NamedAttribute(a.first, attr));
} else {
res.push_back(a);
return res;
}
+/// Creates an instantiated version of `opStmt`.
+/// Ops other than VectorTransferReadOp/VectorTransferWriteOp require no
+/// affine reindexing. Just substitute their SSAValue* operands and be done. For
+/// this case the actual instance is irrelevant. Just use the SSA values in
+/// substitutionsMap.
+static OperationStmt *
+instantiate(MLFuncBuilder *b, OperationStmt *opStmt, VectorType superVectorType,
+ VectorType hwVectorType,
+ DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
+ assert(!opStmt->isa<VectorTransferReadOp>() &&
+ "Should call the function specialized for VectorTransferReadOp");
+ assert(!opStmt->isa<VectorTransferWriteOp>() &&
+ "Should call the function specialized for VectorTransferWriteOp");
+ auto operands =
+ map([substitutionsMap](
+ SSAValue *v) { return substitute(v, *substitutionsMap); },
+ opStmt->getOperands());
+ return b->createOperation(
+ opStmt->getLoc(), opStmt->getName(), operands, {hwVectorType},
+ materializeAttributes(opStmt, superVectorType, hwVectorType));
+}
+
+/// Creates an instantiated version of `read` for the instance of
+/// `hwVectorInstance` when lowering from a super-vector type to
+/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
+/// `hwVectorType` int the covering of the super-vector type. For a more
+/// detailed description of the problem, see the description of
+/// reindexAffineIndices.
+static OperationStmt *
+instantiate(MLFuncBuilder *b, VectorTransferReadOp *read,
+ VectorType hwVectorType, ArrayRef<unsigned> hwVectorInstance,
+ DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
+ SmallVector<SSAValue *, 8> indices =
+ map(makePtrDynCaster<SSAValue>(), read->getIndices());
+ auto affineIndices =
+ reindexAffineIndices(b, hwVectorType, hwVectorInstance, indices);
+ auto cloned = b->create<VectorTransferReadOp>(
+ read->getLoc(), hwVectorType, read->getMemRef(), affineIndices,
+ makePermutationMap(read->getMemRefType(), hwVectorType),
+ read->getPaddingValue());
+ return cast<OperationStmt>(cloned->getOperation());
+}
+
+/// Creates an instantiated version of `write` for the instance of
+/// `hwVectorInstance` when lowering from a super-vector type to
+/// `hwVectorType`. `hwVectorInstance` represents one particular instance of
+/// `hwVectorType` int the covering of th3e super-vector type. For a more
+/// detailed description of the problem, see the description of
+/// reindexAffineIndices.
+static OperationStmt *
+instantiate(MLFuncBuilder *b, VectorTransferWriteOp *write,
+ VectorType hwVectorType, ArrayRef<unsigned> hwVectorInstance,
+ DenseMap<const MLValue *, MLValue *> *substitutionsMap) {
+ SmallVector<SSAValue *, 8> indices =
+ map(makePtrDynCaster<SSAValue>(), write->getIndices());
+ auto affineIndices =
+ reindexAffineIndices(b, hwVectorType, hwVectorInstance, indices);
+ auto cloned = b->create<VectorTransferWriteOp>(
+ write->getLoc(), substitute(write->getVector(), *substitutionsMap),
+ write->getMemRef(), affineIndices,
+ makePermutationMap(write->getMemRefType(), hwVectorType));
+ return cast<OperationStmt>(cloned->getOperation());
+}
+
/// Returns `true` if stmt instance is properly cloned and inserted, false
/// otherwise.
/// The multi-dimensional `hwVectorInstance` belongs to the shapeRatio of
/// type, all operands are substituted according to `substitutions`. Thanks
/// to the topological order of a slice, the substitution is always
/// possible.
-static bool cloneAndInsertHardwareVectorInstance(Statement *stmt,
- MaterializationState *state) {
- LLVM_DEBUG(dbgs() << "\nclone" << *stmt);
- if (auto *opStmt = dyn_cast<OperationStmt>(stmt)) {
- // TODO(ntv): Is it worth considering an OperationStmt.clone operation
- // which changes the type so we can promote an OperationStmt with less
- // boilerplate?
- assert(opStmt->getNumResults() <= 1 && "NYI: opStmt has > 1 results");
- auto operands = cloneAndUnrollOperands(opStmt, state->hwVectorType,
- state->hwVectorInstance,
- state->substitutionsMap);
- MLFuncBuilder b(stmt);
- if (opStmt->getNumResults() == 0) {
- // vector_transfer_write
- b.createOperation(stmt->getLoc(), opStmt->getName(), operands, {},
- materializeAttributes(opStmt, state->superVectorType,
- state->hwVectorType));
- } else {
- // vector_transfer_read
- auto *cloned = b.createOperation(
- stmt->getLoc(), opStmt->getName(), operands, {state->hwVectorType},
- materializeAttributes(opStmt, state->superVectorType,
- state->hwVectorType));
- state->substitutionsMap->insert(std::make_pair(
- cast<MLValue>(opStmt->getResult(0)),
- cast<MLValue>(cast<OperationStmt>(cloned)->getResult(0))));
- }
- return false;
- }
+static bool instantiateMaterialization(Statement *stmt,
+ MaterializationState *state) {
+ LLVM_DEBUG(dbgs() << "\ninstantiate: " << *stmt);
+ // Fail hard and wake up when needed.
if (isa<ForStmt>(stmt)) {
- // Fail hard and wake up when needed.
stmt->emitError("NYI path ForStmt");
return true;
}
// Fail hard and wake up when needed.
- stmt->emitError("NYI path IfStmt");
- return true;
+ if (isa<IfStmt>(stmt)) {
+ stmt->emitError("NYI path IfStmt");
+ return true;
+ }
+
+ // Create a builder here for unroll-and-jam effects.
+ MLFuncBuilder b(stmt);
+ auto *opStmt = cast<OperationStmt>(stmt);
+ if (auto write = opStmt->dyn_cast<VectorTransferWriteOp>()) {
+ instantiate(&b, &*write, state->hwVectorType, state->hwVectorInstance,
+ state->substitutionsMap);
+ return false;
+ } else if (auto read = opStmt->dyn_cast<VectorTransferReadOp>()) {
+ auto *clone = instantiate(&b, &*read, state->hwVectorType,
+ state->hwVectorInstance, state->substitutionsMap);
+ state->substitutionsMap->insert(std::make_pair(
+ cast<MLValue>(read->getResult()), cast<MLValue>(clone->getResult(0))));
+ return false;
+ }
+ // The only op with 0 results reaching this point must, by construction, be
+ // VectorTransferWriteOps and have been caught above. Ops with >= 2 results
+ // are not yet supported. So just support 1 result.
+ if (opStmt->getNumResults() != 1) {
+ stmt->emitError("NYI: ops with != 1 results");
+ return true;
+ }
+ if (opStmt->getResult(0)->getType() != state->superVectorType) {
+ stmt->emitError("Op does not return a supervector.");
+ return true;
+ }
+ auto *clone = instantiate(&b, opStmt, state->superVectorType,
+ state->hwVectorType, state->substitutionsMap);
+ state->substitutionsMap->insert(std::make_pair(
+ cast<MLValue>(opStmt->getResult(0)), cast<MLValue>(clone->getResult(0))));
+ return false;
}
/// Takes a slice and rewrites the operations in it so that occurrences
scopedState.substitutionsMap = &substitutionMap;
// slice are topologically sorted, we can just clone them in order.
for (auto *stmt : *slice) {
- auto fail = cloneAndInsertHardwareVectorInstance(stmt, &scopedState);
+ auto fail = instantiateMaterialization(stmt, &scopedState);
(void)fail;
assert(!fail && "Unhandled super-vector materialization failure");
}
}
+
+ LLVM_DEBUG(dbgs() << "\nMLFunction is now\n");
+ LLVM_DEBUG(
+ cast<OperationStmt>((*slice)[0])->getOperationFunction()->print(dbgs()));
+
// slice are topologically sorted, we can just erase them in reverse
// order. Reverse iterator does not just work simply with an operator*
// dereference.
for (int idx = slice->size() - 1; idx >= 0; --idx) {
+ LLVM_DEBUG(dbgs() << "\nErase: ");
+ LLVM_DEBUG((*slice)[idx]->print(dbgs()));
(*slice)[idx]->erase();
}
}
const SetVector<OperationStmt *> &terminators,
MaterializationState *state) {
DenseSet<Statement *> seen;
- for (auto terminator : terminators) {
- LLVM_DEBUG(dbgs() << "\nFrom terminator:" << *terminator);
-
+ for (auto *term : terminators) {
// Short-circuit test, a given terminator may have been reached by some
// other previous transitive use-def chains.
- if (seen.count(terminator) > 0) {
+ if (seen.count(term) > 0) {
continue;
}
- // Terminators are vector_transfer_write with 0 results by construction atm.
- assert(isaVectorTransferWrite(*terminator) && "");
- assert(terminator->getNumResults() == 0 &&
- "NYI: terminators must have 0 results");
+ auto terminator = term->cast<VectorTransferWriteOp>();
+ LLVM_DEBUG(dbgs() << "\nFrom terminator:" << *term);
// Get the transitive use-defs starting from terminator, limited to the
// current enclosing scope of the terminator. See the top of the function
// Note for the justification of this restriction.
// TODO(ntv): relax scoping constraints.
- auto *enclosingScope = terminator->getParentStmt();
+ auto *enclosingScope = term->getParentStmt();
auto keepIfInSameScope = [enclosingScope](Statement *stmt) {
assert(stmt && "NULL stmt");
if (!enclosingScope) {
return properlyDominates(*enclosingScope, *stmt);
};
SetVector<Statement *> slice =
- getSlice(terminator, keepIfInSameScope, keepIfInSameScope);
+ getSlice(term, keepIfInSameScope, keepIfInSameScope);
assert(!slice.empty());
// Sanity checks: transitive slice must be completely disjoint from
// Emit the current slice.
// Set scoped super-vector and corresponding hw vector types.
- state->superVectorType =
- terminator->getOperand(0)->getType().cast<VectorType>();
+ state->superVectorType = terminator->getVectorType();
assert((state->superVectorType.getElementType() ==
- Type::getF32(terminator->getContext())) &&
+ Type::getF32(term->getContext())) &&
"Only f32 supported for now");
state->hwVectorType = VectorType::get(
state->hwVectorSize, state->superVectorType.getElementType());
// super-vector of subVectorType.
auto filter = [subVectorType](const Statement &stmt) {
const auto &opStmt = cast<OperationStmt>(stmt);
- if (!isaVectorTransferWrite(opStmt)) {
+ if (!opStmt.isa<VectorTransferWriteOp>()) {
return false;
}
return matcher::operatesOnStrictSuperVectors(opStmt, subVectorType);
#define DEBUG_TYPE "early-vect"
using functional::apply;
+using functional::makePtrDynCaster;
using functional::map;
using functional::ScopeGuard;
using llvm::dbgs;
/// TODO(andydavis,bondhugula,ntv):
/// 1. generalize to support padding semantics and offsets within vector type.
static OperationStmt *
-createVectorTransferRead(MLFuncBuilder *b, Location loc, VectorType vectorType,
+createVectorTransferRead(OperationStmt *loadOp, VectorType vectorType,
SSAValue *srcMemRef, ArrayRef<SSAValue *> srcIndices) {
- SmallVector<SSAValue *, 8> operands;
- operands.reserve(1 + srcIndices.size());
- operands.insert(operands.end(), srcMemRef);
- operands.insert(operands.end(), srcIndices.begin(), srcIndices.end());
- OperationState opState(b->getContext(), loc, kVectorTransferReadOpName,
- operands, vectorType);
- return b->createOperation(opState);
-}
-
-/// Unwraps a pointer type to another type (possibly the same).
-/// Used in particular to allow easier compositions of
-/// llvm::iterator_range<ForStmt::operand_iterator> types.
-template <typename T, typename ToType = T>
-static std::function<ToType *(T *)> unwrapPtr() {
- return [](T *val) { return dyn_cast<ToType>(val); };
+ auto memRefType = srcMemRef->getType().cast<MemRefType>();
+ MLFuncBuilder b(loadOp);
+ // TODO(ntv): neutral for noneffective padding.
+ auto transfer = b.create<VectorTransferReadOp>(
+ loadOp->getLoc(), vectorType, srcMemRef, srcIndices,
+ makePermutationMap(memRefType, vectorType));
+ return cast<OperationStmt>(transfer->getOperation());
}
/// Handles the vectorization of load and store MLIR operations.
// Materialize a MemRef with 1 vector.
auto *opStmt = cast<OperationStmt>(memoryOp->getOperation());
- MLFuncBuilder b(opStmt);
// For now, vector_transfers must be aligned, operate only on indices with an
// identity subset of AffineMap and do not change layout.
// TODO(ntv): increase the expressiveness power of vector_transfer operations
// as needed by various targets.
if (opStmt->template isa<LoadOp>()) {
auto *transfer = createVectorTransferRead(
- &b, opStmt->getLoc(), vectorType, memoryOp->getMemRef(),
- map(unwrapPtr<SSAValue>(), memoryOp->getIndices()));
+ opStmt, vectorType, memoryOp->getMemRef(),
+ map(makePtrDynCaster<SSAValue>(), memoryOp->getIndices()));
state->registerReplacement(opStmt, transfer);
} else {
state->registerTerminator(opStmt);
auto *splat = cast<OperationStmt>(b.createOperation(
loc, constantOpStmt->getName(), {}, {vectorType},
{make_pair(Identifier::get("value", b.getContext()), attr)}));
- return cast<MLValue>(cast<OperationStmt>(splat)->getResult(0));
+ return cast<MLValue>(splat->getResult(0));
}
/// Returns a uniqu'ed VectorType.
static OperationStmt *createVectorTransferWrite(OperationStmt *storeOp,
VectorizationState *state) {
auto store = storeOp->cast<StoreOp>();
+ auto *memRef = store->getMemRef();
+ auto memRefType = memRef->getType().cast<MemRefType>();
auto *value = store->getValueToStore();
- auto indices = map(unwrapPtr<SSAValue>(), store->getIndices());
- SmallVector<SSAValue *, 8> operands;
- operands.reserve(1 + 1 + indices.size());
- operands.insert(operands.end(), vectorizeOperand(value, storeOp, state));
- operands.insert(operands.end(), store->getMemRef());
- operands.insert(operands.end(), indices.begin(), indices.end());
+ auto *vectorValue = vectorizeOperand(value, storeOp, state);
+ auto vectorType = vectorValue->getType().cast<VectorType>();
+ auto indices = map(makePtrDynCaster<SSAValue>(), store->getIndices());
MLFuncBuilder b(storeOp);
- OperationState opState(b.getContext(), storeOp->getLoc(),
- kVectorTransferWriteOpName, operands, {});
- return b.createOperation(opState);
+ auto transfer = b.create<VectorTransferWriteOp>(
+ storeOp->getLoc(), vectorValue, memRef, indices,
+ makePermutationMap(memRefType, vectorType));
+ return cast<OperationStmt>(transfer->getOperation());
}
/// Encodes OperationStmt-specific behavior for vectorization. In general we
// Sanity checks.
assert(!stmt->isa<LoadOp>() &&
"all loads must have already been fully vectorized independently");
- assert(!isaVectorTransferRead(*stmt) &&
+ assert(!stmt->isa<VectorTransferReadOp>() &&
"vector_transfer_read cannot be further vectorized");
- assert(!isaVectorTransferWrite(*stmt) &&
+ assert(!stmt->isa<VectorTransferWriteOp>() &&
"vector_transfer_write cannot be further vectorized");
if (stmt->isa<StoreOp>()) {
// CHECK: #map2 = (d0, d1)[s0, s1] -> (d0 + s1, d1 + s0)
// CHECK: #map3 = ()[s0] -> (s0 + 1)
+// CHECK-DAG: #[[map_proj_d0d1_d0:map[0-9]+]] = (d0, d1) -> (d0)
+// CHECK-DAG: #[[map_proj_d0d1_d1:map[0-9]+]] = (d0, d1) -> (d1)
+// CHECK-DAG: #[[map_proj_d0d1_d1d0:map[0-9]+]] = (d0, d1) -> (d1, d0)
// CHECK-LABEL: cfgfunc @cfgfunc_with_ops(f32) {
cfgfunc @cfgfunc_with_ops(f32) {
return
}
+
+// CHECK-LABEL: mlfunc @test_vector_transfer_ops(%arg0
+mlfunc @test_vector_transfer_ops(%arg0 : memref<?x?xf32>) {
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // CHECK: %0 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: #[[map_proj_d0d1_d0]]} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+ %0 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0)} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+ // CHECK: %1 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: #[[map_proj_d0d1_d1d0]]} : (memref<?x?xf32>, index, index) -> vector<3x7xf32>
+ %1 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d1, d0)} : (memref<?x?xf32>, index, index) -> vector<3x7xf32>
+ // CHECK: %2 = vector_transfer_read %arg0, %c3, %c3, %cst {permutation_map: #[[map_proj_d0d1_d0]]} : (memref<?x?xf32>, index, index, f32) -> vector<128xf32>
+ %2 = vector_transfer_read %arg0, %c3, %c3, %cst {permutation_map: (d0, d1)->(d0)} : (memref<?x?xf32>, index, index, f32) -> vector<128xf32>
+ // CHECK: %3 = vector_transfer_read %arg0, %c3, %c3, %cst {permutation_map: #[[map_proj_d0d1_d1]]} : (memref<?x?xf32>, index, index, f32) -> vector<128xf32>
+ %3 = vector_transfer_read %arg0, %c3, %c3, %cst {permutation_map: (d0, d1)->(d1)} : (memref<?x?xf32>, index, index, f32) -> vector<128xf32>
+ //
+ // CHECK: vector_transfer_write %0, %arg0, %c3, %c3 {permutation_map: #[[map_proj_d0d1_d0]]} : vector<128xf32>, memref<?x?xf32>, index, index
+ vector_transfer_write %0, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0)} : vector<128xf32>, memref<?x?xf32>, index, index
+ // CHECK: vector_transfer_write %1, %arg0, %c3, %c3 {permutation_map: #[[map_proj_d0d1_d1d0]]} : vector<3x7xf32>, memref<?x?xf32>, index, index
+ vector_transfer_write %1, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d1, d0)} : vector<3x7xf32>, memref<?x?xf32>, index, index
+ return
+}
// expected-error@+1 {{requires the condition to have the same shape as arguments}}
%r = "select"(%cond, %t, %f) : (tensor<?xi1>, tensor<42xi32>, tensor<42xi32>) -> tensor<42xi32>
}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{expected 4 operand types but had 3}}
+ %0 = "vector_transfer_read"(%arg0, %c3, %c3, %c3) : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires 3 operands}}
+ %0 = vector_transfer_read %arg0, %c3, %c3, %c3 : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires an AffineMapAttr named 'permutation_map'}}
+ %0 = vector_transfer_read %arg0, %c3, %c3 : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires an AffineMapAttr named 'permutation_map'}}
+ %0 = vector_transfer_read %arg0, %c3, %c3 {perm: (d0)->(d0)} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires a permutation_map with input dims of the same rank as the memref type}}
+ %0 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: (d0)->(d0)} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires a permutation_map with result dims of the same rank as the vector type}}
+ %0 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0, d1)} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires a permutation_map that is an actual permutation}}
+ %0 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0 + d1)} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires a permutation_map that is an actual permutation}}
+ %0 = vector_transfer_read %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0 + 1)} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+}
+// -----
+
+cfgfunc @test_vector_transfer_read(memref<?x?x?xf32>) {
+bb0(%arg0 : memref<?x?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant 3.0 : f32
+ // expected-error@+1 {{requires a permutation_map that is a full column-rank permutation}}
+ %0 = vector_transfer_read %arg0, %c3, %c3, %c3 {permutation_map: (d0, d1, d2)->(d0, d0)} : (memref<?x?x?xf32>, index, index, index) -> vector<3x7xf32>
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{expected 5 operand types but had 4}}
+ %0 = "vector_transfer_write"(%cst, %arg0, %c3, %c3, %c3) : (vector<128xf32>, memref<?x?xf32>, index, index) -> ()
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires number of operands and input types to match}}
+ vector_transfer_write %cst, %arg0, %c3, %c3, %c3 : vector<128xf32>, memref<?x?xf32>, index, index
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires an AffineMapAttr named 'permutation_map'}}
+ vector_transfer_write %cst, %arg0, %c3, %c3 : vector<128xf32>, memref<?x?xf32>, index, index
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires an AffineMapAttr named 'permutation_map'}}
+ vector_transfer_write %cst, %arg0, %c3, %c3 {perm: (d0)->(d0)} : vector<128xf32>, memref<?x?xf32>, index, index
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires a permutation_map with input dims of the same rank as the memref type}}
+ vector_transfer_write %cst, %arg0, %c3, %c3 {permutation_map: (d0)->(d0)} : vector<128xf32>, memref<?x?xf32>, index, index
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires a permutation_map with result dims of the same rank as the vector type}}
+ vector_transfer_write %cst, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0, d1)} : vector<128xf32>, memref<?x?xf32>, index, index
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires a permutation_map that is an actual permutation}}
+ vector_transfer_write %cst, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0 + d1)} : vector<128xf32>, memref<?x?xf32>, index, index
+}
+
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?xf32>) {
+bb0(%arg0 : memref<?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<128 x f32>, 3.0> : vector<128 x f32>
+ // expected-error@+1 {{requires a permutation_map that is an actual permutation}}
+ vector_transfer_write %cst, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0 + 1)} : vector<128xf32>, memref<?x?xf32>, index, index
+}
+// -----
+
+cfgfunc @test_vector_transfer_write(memref<?x?x?xf32>) {
+bb0(%arg0 : memref<?x?x?xf32>):
+ %c3 = constant 3 : index
+ %cst = constant splat<vector<3 x 7 x f32>, 3.0> : vector<3 x 7 x f32>
+ // expected-error@+1 {{requires a permutation_map that is a full column-rank permutation}}
+ vector_transfer_write %cst, %arg0, %c3, %c3, %c3 {permutation_map: (d0, d1, d2)->(d0, d0)} : vector<3x7xf32>, memref<?x?x?xf32>, index, index, index
+}
+
+
+
// RUN: mlir-opt %s -vectorize -virtual-vector-size 3 -virtual-vector-size 16 --test-fastest-varying=1 --test-fastest-varying=0 -materialize-vectors -vector-size=8 | FileCheck %s -check-prefix=VEC2DTO1D
// RUN: mlir-opt %s -vectorize -virtual-vector-size 3 -virtual-vector-size 32 --test-fastest-varying=1 --test-fastest-varying=0 -materialize-vectors -vector-size=3 -vector-size=16 | FileCheck %s -check-prefix=VEC2DTO2D
+// Capture permutation maps used in vectorization.
+// VEC1DTO1D-DAG: #[[map_proj_d0d1_d1:map[0-9]+]] = (d0, d1) -> (d1)
+// VEC2DTO1D-DAG: #[[map_proj_d0d1_d1:map[0-9]+]] = (d0, d1) -> (d1)
+// VEC2DTO2D-DAG: #[[map_proj_d0d1_d0d1:map[0-9]+]] = (d0, d1) -> (d0, d1)
+
// vector<32xf32> -> vector<8xf32>
-// VEC1DTO1D: [[MAP0:#.*]] = (d0, d1) -> (d0, d1)
-// VEC1DTO1D: [[MAP1:#.*]] = (d0, d1) -> (d0, d1 + 8)
-// VEC1DTO1D: [[MAP2:#.*]] = (d0, d1) -> (d0, d1 + 16)
-// VEC1DTO1D: [[MAP3:#.*]] = (d0, d1) -> (d0, d1 + 24)
+// VEC1DTO1D-DAG: [[MAP0:#.*]] = (d0, d1) -> (d0, d1)
+// VEC1DTO1D-DAG: [[MAP1:#.*]] = (d0, d1) -> (d0, d1 + 8)
+// VEC1DTO1D-DAG: [[MAP2:#.*]] = (d0, d1) -> (d0, d1 + 16)
+// VEC1DTO1D-DAG: [[MAP3:#.*]] = (d0, d1) -> (d0, d1 + 24)
// vector<3x16xf32> -> vector<8xf32>
-// VEC2DTO1D: [[MAP0:#.*]] = (d0, d1) -> (d0, d1)
-// VEC2DTO1D: [[MAP1:#.*]] = (d0, d1) -> (d0, d1 + 8)
-// VEC2DTO1D: [[MAP2:#.*]] = (d0, d1) -> (d0 + 1, d1)
-// VEC2DTO1D: [[MAP3:#.*]] = (d0, d1) -> (d0 + 1, d1 + 8)
-// VEC2DTO1D: [[MAP4:#.*]] = (d0, d1) -> (d0 + 2, d1)
-// VEC2DTO1D: [[MAP5:#.*]] = (d0, d1) -> (d0 + 2, d1 + 8)
+// VEC2DTO1D-DAG: [[MAP0:#.*]] = (d0, d1) -> (d0, d1)
+// VEC2DTO1D-DAG: [[MAP1:#.*]] = (d0, d1) -> (d0, d1 + 8)
+// VEC2DTO1D-DAG: [[MAP2:#.*]] = (d0, d1) -> (d0 + 1, d1)
+// VEC2DTO1D-DAG: [[MAP3:#.*]] = (d0, d1) -> (d0 + 1, d1 + 8)
+// VEC2DTO1D-DAG: [[MAP4:#.*]] = (d0, d1) -> (d0 + 2, d1)
+// VEC2DTO1D-DAG: [[MAP5:#.*]] = (d0, d1) -> (d0 + 2, d1 + 8)
// vector<3x32xf32> -> vector<3x16xf32>
-// VEC2DTO2D: [[MAP0:#.*]] = (d0, d1) -> (d0, d1)
-// VEC2DTO2D: [[MAP1:#.*]] = (d0, d1) -> (d0, d1 + 16)
+// VEC2DTO2D-DAG: [[MAP1:#.*]] = (d0, d1) -> (d0, d1 + 16)
mlfunc @vector_add_2d(%M : index, %N : index) -> f32 {
%A = alloc (%M, %N) : memref<?x?xf32, 0>
%B = alloc (%M, %N) : memref<?x?xf32, 0>
// VEC1DTO1D: [[CST2:%.*]] = constant splat<vector<8xf32>, 1.000000e+00> : vector<8xf32>
// VEC1DTO1D: [[CST3:%.*]] = constant splat<vector<8xf32>, 1.000000e+00> : vector<8xf32>
// VEC1DTO1D: [[VAL0:%.*]] = affine_apply [[MAP0]]{{.*}}
- // VEC1DTO1D: "vector_transfer_write"([[CST0]], {{.*}}, [[VAL0]]#0, [[VAL0]]#1) : (vector<8xf32>
+ // VEC1DTO1D: vector_transfer_write [[CST0]], {{.*}}, [[VAL0]]#0, [[VAL0]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : vector<8xf32>
// VEC1DTO1D: [[VAL1:%.*]] = affine_apply [[MAP1]]{{.*}}
- // VEC1DTO1D: "vector_transfer_write"([[CST1]], {{.*}}, [[VAL1]]#0, [[VAL1]]#1) : (vector<8xf32>
+ // VEC1DTO1D: vector_transfer_write [[CST1]], {{.*}}, [[VAL1]]#0, [[VAL1]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : vector<8xf32>
// VEC1DTO1D: [[VAL2:%.*]] = affine_apply [[MAP2]]{{.*}}
- // VEC1DTO1D:"vector_transfer_write"([[CST2]], {{.*}}, [[VAL2]]#0, [[VAL2]]#1) : (vector<8xf32>
+ // VEC1DTO1D:vector_transfer_write [[CST2]], {{.*}}, [[VAL2]]#0, [[VAL2]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : vector<8xf32>
// VEC1DTO1D: [[VAL3:%.*]] = affine_apply [[MAP3]]{{.*}}
- // VEC1DTO1D:"vector_transfer_write"([[CST3]], {{.*}}, [[VAL3]]#0, [[VAL3]]#1) : (vector<8xf32>
+ // VEC1DTO1D:vector_transfer_write [[CST3]], {{.*}}, [[VAL3]]#0, [[VAL3]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : vector<8xf32>
//
store %f1, %A[%i0, %i1] : memref<?x?xf32, 0>
}
// VEC2DTO1D does (3x4)x unrolling.
// VEC2DTO1D-COUNT-6: {{.*}} = constant splat<vector<8xf32>, 1.000000e+00> : vector<8xf32>
// VEC2DTO1D: [[VAL0:%.*]] = affine_apply [[MAP0]]{{.*}}
- // VEC2DTO1D: "vector_transfer_write"({{.*}}, [[VAL0]]#0, [[VAL0]]#1) : (vector<8xf32>
+ // VEC2DTO1D: vector_transfer_write {{.*}}, [[VAL0]]#0, [[VAL0]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : vector<8xf32>
// ... 4 other interleaved affine_apply, vector_transfer_write
// VEC2DTO1D: [[VAL5:%.*]] = affine_apply [[MAP5]]{{.*}}
- // VEC2DTO1D: "vector_transfer_write"({{.*}}, [[VAL5]]#0, [[VAL5]]#1) : (vector<8xf32>
+ // VEC2DTO1D: vector_transfer_write {{.*}}, [[VAL5]]#0, [[VAL5]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : vector<8xf32>
//
store %f2, %B[%i2, %i3] : memref<?x?xf32, 0>
}
for %i4 = 0 to %M {
for %i5 = 0 to %N {
// VEC2DTO2D: %7 = affine_apply #map0(%i4, %i5)
- // VEC2DTO2D: %8 = "vector_transfer_read"(%0, %7#0, %7#1) : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
+ // VEC2DTO2D: %8 = vector_transfer_read %0, %7#0, %7#1 {permutation_map: #[[map_proj_d0d1_d0d1]]} : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
// VEC2DTO2D: %9 = affine_apply #map1(%i4, %i5)
- // VEC2DTO2D: %10 = "vector_transfer_read"(%0, %9#0, %9#1) : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
+ // VEC2DTO2D: %10 = vector_transfer_read %0, %9#0, %9#1 {permutation_map: #[[map_proj_d0d1_d0d1]]} : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
// VEC2DTO2D: %11 = affine_apply #map0(%i4, %i5)
- // VEC2DTO2D: %12 = "vector_transfer_read"(%1, %11#0, %11#1) : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
+ // VEC2DTO2D: %12 = vector_transfer_read %1, %11#0, %11#1 {permutation_map: #[[map_proj_d0d1_d0d1]]} : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
// VEC2DTO2D: %13 = affine_apply #map1(%i4, %i5)
- // VEC2DTO2D: %14 = "vector_transfer_read"(%1, %13#0, %13#1) : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
+ // VEC2DTO2D: %14 = vector_transfer_read %1, %13#0, %13#1 {permutation_map: #[[map_proj_d0d1_d0d1]]} : (memref<?x?xf32>, index, index) -> vector<3x16xf32>
// VEC2DTO2D: %15 = addf %8, %12 : vector<3x16xf32>
// VEC2DTO2D: %16 = addf %10, %14 : vector<3x16xf32>
// VEC2DTO2D: %17 = affine_apply #map0(%i4, %i5)
- // VEC2DTO2D: "vector_transfer_write"(%15, %2, %17#0, %17#1) : (vector<3x16xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC2DTO2D: vector_transfer_write %15, %2, %17#0, %17#1 {permutation_map: #[[map_proj_d0d1_d0d1]]} : vector<3x16xf32>, memref<?x?xf32>, index, index
// VEC2DTO2D: %18 = affine_apply #map1(%i4, %i5)
- // VEC2DTO2D: "vector_transfer_write"(%16, %2, %18#0, %18#1) : (vector<3x16xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC2DTO2D: vector_transfer_write %16, %2, %18#0, %18#1 {permutation_map: #[[map_proj_d0d1_d0d1]]} : vector<3x16xf32>, memref<?x?xf32>, index, index
//
%a5 = load %A[%i4, %i5] : memref<?x?xf32, 0>
%b5 = load %B[%i4, %i5] : memref<?x?xf32, 0>
// RUN: mlir-opt %s -vectorize -virtual-vector-size 32 -virtual-vector-size 256 --test-fastest-varying=0 --test-fastest-varying=2 | FileCheck %s -check-prefix=VEC2D_OT
// RUN: mlir-opt %s -vectorize -virtual-vector-size 32 -virtual-vector-size 64 -virtual-vector-size 256 --test-fastest-varying=2 --test-fastest-varying=1 --test-fastest-varying=0 | FileCheck %s -check-prefix=VEC3D
+// Permutation maps used in vectorization.
+// VEC1D: #[[map_proj_d0d1_d1:map[0-9]+]] = (d0, d1) -> (d1)
+// VEC2D: #[[map_proj_d0d1_d0d1:map[0-9]+]] = (d0, d1) -> (d0, d1)
+// VEC2D_T: #[[map_proj_d0d1d2_d1d2:map[0-9]+]] = (d0, d1, d2) -> (d1, d2)
+// VEC2D_O: #[[map_proj_d0d1d2_d1d2:map[0-9]+]] = (d0, d1, d2) -> (d1, d2)
+// VEC2D_OT: #[[map_proj_d0d1d2_d1d2:map[0-9]+]] = (d0, d1, d2) -> (d1, d2)
+// VEC3D: #[[map_proj_d0d1d2_d0d1d2:map[0-9]+]] = (d0, d1, d2) -> (d0, d1, d2)
+
#map0 = (d0) -> (d0)
#map1 = (d0, d1) -> (d0, d1)
#map1_t = (d0, d1) -> (d1, d0)
#mapadd2 = (d0) -> (d0 + 2)
#mapadd3 = (d0) -> (d0 + 3)
#set0 = (i) : (i >= 0)
+
// Maps introduced to vectorize fastest varying memory index.
mlfunc @vec1d(%A : memref<?x?xf32>, %B : memref<?x?x?xf32>) {
// VEC1D-DAG: [[C0:%[a-z0-9_]+]] = constant 0 : index
%P = dim %B, 2 : memref<?x?x?xf32>
%cst0 = constant 0 : index
// VEC1D:for [[IV0:%[a-zA-Z0-9]+]] = 0 to [[ARG_M]] step 128
-// VEC1D-NEXT: {{.*}} = "vector_transfer_read"(%arg0, [[C0]], [[C0]]) : (memref<?x?xf32>, index, index) -> vector<128xf32>
+// VEC1D-NEXT: {{.*}} = vector_transfer_read %arg0, [[C0]], [[C0]] {permutation_map: #[[map_proj_d0d1_d1]]} : (memref<?x?xf32>, index, index) -> vector<128xf32>
// For this simple loop, the current transformation generates:
// for %i0 = 0 to %0 step 128 {
-// %3 = "vector_transfer_read"(%arg0, %c0_0, %c0_0) : (memref<?x?xf32>, index, index) -> vector<128xf32>
+// %3 = vector_transfer_read %arg0, %c0_0, %c0_0 : (memref<?x?xf32>, index, index) -> vector<128xf32>
// }
- for %i0 = 0 to %M { // vectorized due to scalar -> vector
+ for %i0 = 0 to %M { // vectorized due to scalar -> vector
%a0 = load %A[%cst0, %cst0] : memref<?x?xf32>
}
// VEC1D:for {{.*}} [[ARG_M]] {
- for %i1 = 0 to %M { // not vectorized
+ for %i1 = 0 to %M { // not vectorized
%a1 = load %A[%i1, %i1] : memref<?x?xf32>
}
// VEC1D: for %i{{[0-9]*}} = 0 to [[ARG_M]] {
- for %i2 = 0 to %M { // not vectorized, would vectorize with --test-fastest-varying=1
+ for %i2 = 0 to %M { // not vectorized, would vectorize with --test-fastest-varying=1
%r2 = affine_apply (d0) -> (d0) (%i2)
%a2 = load %A[%r2#0, %cst0] : memref<?x?xf32>
}
// VEC1D:for [[IV3:%[a-zA-Z0-9]+]] = 0 to [[ARG_M]] step 128
// VEC1D-NEXT: [[APP3:%[a-zA-Z0-9]+]] = affine_apply {{.*}}[[IV3]]
-// VEC1D-NEXT: {{.*}} = "vector_transfer_read"(%arg0, [[C0]], [[APP3]]) : {{.*}} -> vector<128xf32>
+// VEC1D-NEXT: {{.*}} = vector_transfer_read %arg0, [[C0]], [[APP3]] {permutation_map: #[[map_proj_d0d1_d1]]} : {{.*}} -> vector<128xf32>
for %i3 = 0 to %M { // vectorized
%r3 = affine_apply (d0) -> (d0) (%i3)
%a3 = load %A[%cst0, %r3#0] : memref<?x?xf32>
// VEC1D:for [[IV4:%[i0-9]+]] = 0 to [[ARG_M]] step 128 {
// VEC1D-NEXT: for [[IV5:%[i0-9]*]] = 0 to [[ARG_N]] {
// VEC1D-NEXT: [[APP5:%[0-9]+]] = affine_apply {{.*}}([[IV4]], [[IV5]])
-// VEC1D-NEXT: {{.*}} = "vector_transfer_read"(%arg0, [[APP5]]#0, [[APP5]]#1) : {{.*}} -> vector<128xf32>
- for %i4 = 0 to %M { // vectorized
+// VEC1D-NEXT: {{.*}} = vector_transfer_read %arg0, [[APP5]]#0, [[APP5]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : {{.*}} -> vector<128xf32>
+ for %i4 = 0 to %M { // vectorized
for %i5 = 0 to %N { // not vectorized, would vectorize with --test-fastest-varying=1
%r5 = affine_apply #map1_t (%i4, %i5)
%a5 = load %A[%r5#0, %r5#1] : memref<?x?xf32>
// VEC1D:for [[IV8:%[i0-9]+]] = 0 to [[ARG_M]] step 128
// VEC1D-NEXT: for [[IV9:%[i0-9]*]] = 0 to [[ARG_N]] {
// VEC1D-NEXT: [[APP9:%[0-9]+]] = affine_apply {{.*}}([[IV8]], [[IV9]])
-// VEC1D-NEXT: {{.*}} = "vector_transfer_read"(%arg0, [[APP9]]#0, [[APP9]]#1) : {{.*}} -> vector<128xf32>
+// VEC1D-NEXT: {{.*}} = vector_transfer_read %arg0, [[APP9]]#0, [[APP9]]#1 {permutation_map: #[[map_proj_d0d1_d1]]} : {{.*}} -> vector<128xf32>
for %i8 = 0 to %M { // vectorized
for %i9 = 0 to %N {
%r9 = affine_apply #map3 (%i8, %i9)
}
// VEC1D: for [[IV10:%[i0-9]*]] = 0 to %{{[0-9]*}} {
// VEC1D: for [[IV11:%[i0-9]*]] = 0 to %{{[0-9]*}} {
- for %i10 = 0 to %M { // not vectorized, need per load transposes
- for %i11 = 0 to %N { // not vectorized, need per load transposes
+ for %i10 = 0 to %M { // not vectorized, need per load transposes
+ for %i11 = 0 to %N { // not vectorized, need per load transposes
%r11 = affine_apply #map1 (%i10, %i11)
%a11 = load %A[%r11#0, %r11#1] : memref<?x?xf32>
%r12 = affine_apply #map1_t (%i10, %i11)
}
// VEC1D: for %i{{[0-9]*}} = 0 to %{{[0-9]*}} {
// VEC1D: for [[IV18:%[a-zA-Z0-9]+]] = 0 to [[ARG_M]] step 128
-// VEC1D: {{.*}} = "vector_transfer_read"(%arg0, [[C0]], [[C0]]) : {{.*}} -> vector<128xf32>
+// VEC1D: {{.*}} = vector_transfer_read %arg0, [[C0]], [[C0]] {permutation_map: #[[map_proj_d0d1_d1]]} : {{.*}} -> vector<128xf32>
for %i17 = 0 to %M { // not vectorized, the 1-D pattern that matched %i18 in DFS post-order prevents vectorizing %i17
for %i18 = 0 to %M { // vectorized due to scalar -> vector
%a18 = load %A[%cst0, %cst0] : memref<?x?xf32>
// VEC2D_T: for %i0 = 0 to %0 step 32 {
// VEC2D_T: for %i1 = 0 to %1 step 256 {
// VEC2D_T: for %i2 = 0 to %2 {
- // VEC2D_T: %3 = "vector_transfer_read"(%arg0, %i2, %i1, %i0) : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
+ // VEC2D_T: %3 = vector_transfer_read %arg0, %i2, %i1, %i0 {permutation_map: #[[map_proj_d0d1d2_d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
// VEC2D_T: for %i3 = 0 to %1 {
// VEC2D_T: for %i4 = 0 to %2 step 256 {
- // VEC2D_T: %4 = "vector_transfer_read"(%arg0, %i3, %i4, %i0) : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
+ // VEC2D_T: %4 = vector_transfer_read %arg0, %i3, %i4, %i0 {permutation_map: #[[map_proj_d0d1d2_d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
// VEC2D_T: for %i5 = 0 to %2 step 256 {
- // VEC2D_T: %5 = "vector_transfer_read"(%arg0, %i3, %i5, %i0) : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
+ // VEC2D_T: %5 = vector_transfer_read %arg0, %i3, %i5, %i0 {permutation_map: #[[map_proj_d0d1d2_d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
//
// VEC2D_OT: for %i0 = 0 to %0 step 32 {
// VEC2D_OT: for %i1 = 0 to %1 {
// VEC2D_OT: for %i2 = 0 to %2 step 256 {
- // VEC2D_OT: %3 = "vector_transfer_read"(%arg0, %i2, %i1, %i0) : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
+ // VEC2D_OT: %3 = vector_transfer_read %arg0, %i2, %i1, %i0 {permutation_map: #[[map_proj_d0d1d2_d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
// VEC2D_OT: for %i3 = 0 to %1 step 256 {
// VEC2D_OT: for %i4 = 0 to %2 {
- // VEC2D_OT: %4 = "vector_transfer_read"(%arg0, %i3, %i4, %i0) : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
+ // VEC2D_OT: %4 = vector_transfer_read %arg0, %i3, %i4, %i0 {permutation_map: #[[map_proj_d0d1d2_d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
// VEC2D_OT: for %i5 = 0 to %2 {
- // VEC2D_OT: %5 = "vector_transfer_read"(%arg0, %i3, %i5, %i0) : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
+ // VEC2D_OT: %5 = vector_transfer_read %arg0, %i3, %i5, %i0 {permutation_map: #[[map_proj_d0d1d2_d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
for %i0 = 0 to %0 {
for %i1 = 0 to %1 {
for %i2 = 0 to %2 {
// VEC3D: for %i2 = 0 to %0 step 32 {
// VEC3D: for %i3 = 0 to %1 step 64 {
// VEC3D: for %i4 = 0 to %2 step 256 {
- // VEC3D: %3 = "vector_transfer_read"(%arg0, %i2, %i3, %i4) : (memref<?x?x?xf32>, index, index, index) -> vector<32x64x256xf32>
+ // VEC3D: %3 = vector_transfer_read %arg0, %i2, %i3, %i4 {permutation_map: #[[map_proj_d0d1d2_d0d1d2]]} : (memref<?x?x?xf32>, index, index, index) -> vector<32x64x256xf32>
for %t0 = 0 to %0 {
for %t1 = 0 to %0 {
for %i0 = 0 to %0 {
for %i0 = 0 to %M {
for %i1 = 0 to %N {
// VEC1D: [[C1:%.*]] = constant splat<vector<128xf32>, 1.000000e+00> : vector<128xf32>
- // VEC1D: "vector_transfer_write"([[C1]], {{.*}}) : (vector<128xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC1D: vector_transfer_write [[C1]], {{.*}} {permutation_map: #[[map_proj_d0d1_d1]]} : vector<128xf32>, memref<?x?xf32>, index, index
// VEC2D: [[C1:%.*]] = constant splat<vector<32x256xf32>, 1.000000e+00> : vector<32x256xf32>
- // VEC2D: "vector_transfer_write"([[C1]], {{.*}}) : (vector<32x256xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC2D: vector_transfer_write [[C1]], {{.*}} {permutation_map: #[[map_proj_d0d1_d0d1]]} : vector<32x256xf32>, memref<?x?xf32>, index, index
// non-scoped %f1
store %f1, %A[%i0, %i1] : memref<?x?xf32, 0>
}
for %i2 = 0 to %M {
for %i3 = 0 to %N {
// VEC1D: [[C3:%.*]] = constant splat<vector<128xf32>, 2.000000e+00> : vector<128xf32>
- // VEC1D: "vector_transfer_write"([[C3]], {{.*}}) : (vector<128xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC1D: vector_transfer_write [[C3]], {{.*}} {permutation_map: #[[map_proj_d0d1_d1]]} : vector<128xf32>, memref<?x?xf32>, index, index
// VEC2D: [[C3:%.*]] = constant splat<vector<32x256xf32>, 2.000000e+00> : vector<32x256xf32>
- // VEC2D: "vector_transfer_write"([[C3]], {{.*}}) : (vector<32x256xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC2D: vector_transfer_write [[C3]], {{.*}} {permutation_map: #[[map_proj_d0d1_d0d1]]} : vector<32x256xf32>, memref<?x?xf32>, index, index
// non-scoped %f2
store %f2, %B[%i2, %i3] : memref<?x?xf32, 0>
}
for %i4 = 0 to %M {
for %i5 = 0 to %N {
//
- // VEC1D: [[A5:%.*]] = "vector_transfer_read"(%0, {{.*}}) : (memref<?x?xf32>, index, index) -> vector<128xf32>
- // VEC1D: [[B5:%.*]] = "vector_transfer_read"(%1, {{.*}}) : (memref<?x?xf32>, index, index) -> vector<128xf32>
+ // VEC1D: [[A5:%.*]] = vector_transfer_read %0, {{.*}} {permutation_map: #[[map_proj_d0d1_d1]]} : (memref<?x?xf32>, index, index) -> vector<128xf32>
+ // VEC1D: [[B5:%.*]] = vector_transfer_read %1, {{.*}} {permutation_map: #[[map_proj_d0d1_d1]]} : (memref<?x?xf32>, index, index) -> vector<128xf32>
// VEC1D: [[S5:%.*]] = addf [[A5]], [[B5]] : vector<128xf32>
// VEC1D: [[SPLAT1:%.*]] = constant splat<vector<128xf32>, 1.000000e+00> : vector<128xf32>
// VEC1D: [[S6:%.*]] = addf [[S5]], [[SPLAT1]] : vector<128xf32>
// VEC1D: [[SPLAT2:%.*]] = constant splat<vector<128xf32>, 2.000000e+00> : vector<128xf32>
// VEC1D: [[S7:%.*]] = addf [[S5]], [[SPLAT2]] : vector<128xf32>
// VEC1D: [[S8:%.*]] = addf [[S7]], [[S6]] : vector<128xf32>
- // VEC1D: "vector_transfer_write"([[S8]], {{.*}}) : (vector<128xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC1D: vector_transfer_write [[S8]], {{.*}} {permutation_map: #[[map_proj_d0d1_d1]]} : vector<128xf32>, memref<?x?xf32>, index, index
//
- // VEC2D: [[A5:%.*]] = "vector_transfer_read"(%0, {{.*}}) : (memref<?x?xf32>, index, index) -> vector<32x256xf32>
- // VEC2D: [[B5:%.*]] = "vector_transfer_read"(%1, {{.*}}) : (memref<?x?xf32>, index, index) -> vector<32x256xf32>
+ // VEC2D: [[A5:%.*]] = vector_transfer_read %0, {{.*}} {permutation_map: #[[map_proj_d0d1_d0d1]]} : (memref<?x?xf32>, index, index) -> vector<32x256xf32>
+ // VEC2D: [[B5:%.*]] = vector_transfer_read %1, {{.*}} {permutation_map: #[[map_proj_d0d1_d0d1]]} : (memref<?x?xf32>, index, index) -> vector<32x256xf32>
// VEC2D: [[S5:%.*]] = addf [[A5]], [[B5]] : vector<32x256xf32>
// VEC2D: [[SPLAT1:%.*]] = constant splat<vector<32x256xf32>, 1.000000e+00> : vector<32x256xf32>
// VEC2D: [[S6:%.*]] = addf [[S5]], [[SPLAT1]] : vector<32x256xf32>
// VEC2D: [[SPLAT2:%.*]] = constant splat<vector<32x256xf32>, 2.000000e+00> : vector<32x256xf32>
// VEC2D: [[S7:%.*]] = addf [[S5]], [[SPLAT2]] : vector<32x256xf32>
// VEC2D: [[S8:%.*]] = addf [[S7]], [[S6]] : vector<32x256xf32>
- // VEC2D: "vector_transfer_write"([[S8]], {{.*}}) : (vector<32x256xf32>, memref<?x?xf32>, index, index) -> ()
+ // VEC2D: vector_transfer_write [[S8]], {{.*}} {permutation_map: #[[map_proj_d0d1_d0d1]]} : vector<32x256xf32>, memref<?x?xf32>, index, index
//
%a5 = load %A[%i4, %i5] : memref<?x?xf32, 0>
%b5 = load %B[%i4, %i5] : memref<?x?xf32, 0>