[X86][LWP] Add llvm support for LWP instructions.
authorSimon Pilgrim <llvm-dev@redking.me.uk>
Wed, 3 May 2017 15:18:34 +0000 (15:18 +0000)
committerSimon Pilgrim <llvm-dev@redking.me.uk>
Wed, 3 May 2017 15:18:34 +0000 (15:18 +0000)
This patch adds support for the the LightWeight Profiling (LWP) instructions which are available on all AMD Bulldozer class CPUs (bdver1 to bdver4).

Differential Revision: https://reviews.llvm.org/D32769

llvm-svn: 302028

15 files changed:
llvm/include/llvm/IR/IntrinsicsX86.td
llvm/lib/Support/Host.cpp
llvm/lib/Target/X86/X86.td
llvm/lib/Target/X86/X86ISelLowering.cpp
llvm/lib/Target/X86/X86ISelLowering.h
llvm/lib/Target/X86/X86InstrInfo.td
llvm/lib/Target/X86/X86Schedule.td
llvm/lib/Target/X86/X86Subtarget.cpp
llvm/lib/Target/X86/X86Subtarget.h
llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll [new file with mode: 0644]
llvm/test/CodeGen/X86/lwp-intrinsics.ll [new file with mode: 0644]
llvm/test/MC/Disassembler/X86/x86-32.txt
llvm/test/MC/Disassembler/X86/x86-64.txt
llvm/test/MC/X86/lwp-x86_64.s [new file with mode: 0644]
llvm/test/MC/X86/lwp.s [new file with mode: 0644]

index 97c756c..1c466e7 100644 (file)
@@ -3221,6 +3221,29 @@ let TargetPrefix = "x86" in {  // All intrinsics start with "llvm.x86.".
 }
 
 //===----------------------------------------------------------------------===//
+// LWP
+let TargetPrefix = "x86" in {  // All intrinsics start with "llvm.x86.".
+  def int_x86_llwpcb :
+              GCCBuiltin<"__builtin_ia32_llwpcb">,
+              Intrinsic<[], [llvm_ptr_ty], []>;
+  def int_x86_slwpcb :
+              GCCBuiltin<"__builtin_ia32_slwpcb">,
+              Intrinsic<[llvm_ptr_ty], [], []>;
+  def int_x86_lwpins32 :
+              GCCBuiltin<"__builtin_ia32_lwpins32">,
+              Intrinsic<[llvm_i8_ty], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], []>;
+  def int_x86_lwpins64 :
+              GCCBuiltin<"__builtin_ia32_lwpins64">,
+              Intrinsic<[llvm_i8_ty], [llvm_i64_ty, llvm_i32_ty, llvm_i32_ty], []>;
+  def int_x86_lwpval32 :
+              GCCBuiltin<"__builtin_ia32_lwpval32">,
+              Intrinsic<[], [llvm_i32_ty, llvm_i32_ty, llvm_i32_ty], []>;
+  def int_x86_lwpval64 :
+              GCCBuiltin<"__builtin_ia32_lwpval64">,
+              Intrinsic<[], [llvm_i64_ty, llvm_i32_ty, llvm_i32_ty], []>;
+}
+
+//===----------------------------------------------------------------------===//
 // MMX
 
 // Empty MMX state op.
index 970ecfd..2477a02 100644 (file)
-//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-//  This file implements the operating system Host concept.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/Host.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Config/config.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/MemoryBuffer.h"
-#include "llvm/Support/raw_ostream.h"
-#include <assert.h>
-#include <string.h>
-
-// Include the platform-specific parts of this class.
-#ifdef LLVM_ON_UNIX
-#include "Unix/Host.inc"
-#endif
-#ifdef LLVM_ON_WIN32
-#include "Windows/Host.inc"
-#endif
-#ifdef _MSC_VER
-#include <intrin.h>
-#endif
-#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
-#include <mach/host_info.h>
-#include <mach/mach.h>
-#include <mach/mach_host.h>
-#include <mach/machine.h>
-#endif
-
-#define DEBUG_TYPE "host-detection"
-
-//===----------------------------------------------------------------------===//
-//
-//  Implementations of the CPU detection routines
-//
-//===----------------------------------------------------------------------===//
-
-using namespace llvm;
-
-static std::unique_ptr<llvm::MemoryBuffer>
-    LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
-  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
-      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
-  if (std::error_code EC = Text.getError()) {
-    llvm::errs() << "Can't read "
-                 << "/proc/cpuinfo: " << EC.message() << "\n";
-    return nullptr;
-  }
-  return std::move(*Text);
-}
-
-StringRef sys::detail::getHostCPUNameForPowerPC(
-    const StringRef &ProcCpuinfoContent) {
-  // Access to the Processor Version Register (PVR) on PowerPC is privileged,
-  // and so we must use an operating-system interface to determine the current
-  // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
-  const char *generic = "generic";
-
-  // The cpu line is second (after the 'processor: 0' line), so if this
-  // buffer is too small then something has changed (or is wrong).
-  StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
-  StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
-
-  StringRef::const_iterator CIP = CPUInfoStart;
-
-  StringRef::const_iterator CPUStart = 0;
-  size_t CPULen = 0;
-
-  // We need to find the first line which starts with cpu, spaces, and a colon.
-  // After the colon, there may be some additional spaces and then the cpu type.
-  while (CIP < CPUInfoEnd && CPUStart == 0) {
-    if (CIP < CPUInfoEnd && *CIP == '\n')
-      ++CIP;
-
-    if (CIP < CPUInfoEnd && *CIP == 'c') {
-      ++CIP;
-      if (CIP < CPUInfoEnd && *CIP == 'p') {
-        ++CIP;
-        if (CIP < CPUInfoEnd && *CIP == 'u') {
-          ++CIP;
-          while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
-            ++CIP;
-
-          if (CIP < CPUInfoEnd && *CIP == ':') {
-            ++CIP;
-            while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
-              ++CIP;
-
-            if (CIP < CPUInfoEnd) {
-              CPUStart = CIP;
-              while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
-                                          *CIP != ',' && *CIP != '\n'))
-                ++CIP;
-              CPULen = CIP - CPUStart;
-            }
-          }
-        }
-      }
-    }
-
-    if (CPUStart == 0)
-      while (CIP < CPUInfoEnd && *CIP != '\n')
-        ++CIP;
-  }
-
-  if (CPUStart == 0)
-    return generic;
-
-  return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
-      .Case("604e", "604e")
-      .Case("604", "604")
-      .Case("7400", "7400")
-      .Case("7410", "7400")
-      .Case("7447", "7400")
-      .Case("7455", "7450")
-      .Case("G4", "g4")
-      .Case("POWER4", "970")
-      .Case("PPC970FX", "970")
-      .Case("PPC970MP", "970")
-      .Case("G5", "g5")
-      .Case("POWER5", "g5")
-      .Case("A2", "a2")
-      .Case("POWER6", "pwr6")
-      .Case("POWER7", "pwr7")
-      .Case("POWER8", "pwr8")
-      .Case("POWER8E", "pwr8")
-      .Case("POWER8NVL", "pwr8")
-      .Case("POWER9", "pwr9")
-      .Default(generic);
-}
-
-StringRef sys::detail::getHostCPUNameForARM(
-    const StringRef &ProcCpuinfoContent) {
-  // The cpuid register on arm is not accessible from user space. On Linux,
-  // it is exposed through the /proc/cpuinfo file.
-
-  // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
-  // in all cases.
-  SmallVector<StringRef, 32> Lines;
-  ProcCpuinfoContent.split(Lines, "\n");
-
-  // Look for the CPU implementer line.
-  StringRef Implementer;
-  StringRef Hardware;
-  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
-    if (Lines[I].startswith("CPU implementer"))
-      Implementer = Lines[I].substr(15).ltrim("\t :");
-    if (Lines[I].startswith("Hardware"))
-      Hardware = Lines[I].substr(8).ltrim("\t :");
-  }
-
-  if (Implementer == "0x41") { // ARM Ltd.
-    // MSM8992/8994 may give cpu part for the core that the kernel is running on,
-    // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
-    if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
-      return "cortex-a53";
-
-
-    // Look for the CPU part line.
-    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
-      if (Lines[I].startswith("CPU part"))
-        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
-        // values correspond to the "Part number" in the CP15/c0 register. The
-        // contents are specified in the various processor manuals.
-        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
-            .Case("0x926", "arm926ej-s")
-            .Case("0xb02", "mpcore")
-            .Case("0xb36", "arm1136j-s")
-            .Case("0xb56", "arm1156t2-s")
-            .Case("0xb76", "arm1176jz-s")
-            .Case("0xc08", "cortex-a8")
-            .Case("0xc09", "cortex-a9")
-            .Case("0xc0f", "cortex-a15")
-            .Case("0xc20", "cortex-m0")
-            .Case("0xc23", "cortex-m3")
-            .Case("0xc24", "cortex-m4")
-            .Case("0xd04", "cortex-a35")
-            .Case("0xd03", "cortex-a53")
-            .Case("0xd07", "cortex-a57")
-            .Case("0xd08", "cortex-a72")
-            .Case("0xd09", "cortex-a73")
-            .Default("generic");
-  }
-
-  if (Implementer == "0x51") // Qualcomm Technologies, Inc.
-    // Look for the CPU part line.
-    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
-      if (Lines[I].startswith("CPU part"))
-        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
-        // values correspond to the "Part number" in the CP15/c0 register. The
-        // contents are specified in the various processor manuals.
-        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
-            .Case("0x06f", "krait") // APQ8064
-            .Case("0x201", "kryo")
-            .Case("0x205", "kryo")
-            .Default("generic");
-
-  return "generic";
-}
-
-StringRef sys::detail::getHostCPUNameForS390x(
-    const StringRef &ProcCpuinfoContent) {
-  // STIDP is a privileged operation, so use /proc/cpuinfo instead.
-
-  // The "processor 0:" line comes after a fair amount of other information,
-  // including a cache breakdown, but this should be plenty.
-  SmallVector<StringRef, 32> Lines;
-  ProcCpuinfoContent.split(Lines, "\n");
-
-  // Look for the CPU features.
-  SmallVector<StringRef, 32> CPUFeatures;
-  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
-    if (Lines[I].startswith("features")) {
-      size_t Pos = Lines[I].find(":");
-      if (Pos != StringRef::npos) {
-        Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
-        break;
-      }
-    }
-
-  // We need to check for the presence of vector support independently of
-  // the machine type, since we may only use the vector register set when
-  // supported by the kernel (and hypervisor).
-  bool HaveVectorSupport = false;
-  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
-    if (CPUFeatures[I] == "vx")
-      HaveVectorSupport = true;
-  }
-
-  // Now check the processor machine type.
-  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
-    if (Lines[I].startswith("processor ")) {
-      size_t Pos = Lines[I].find("machine = ");
-      if (Pos != StringRef::npos) {
-        Pos += sizeof("machine = ") - 1;
-        unsigned int Id;
-        if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
-          if (Id >= 2964 && HaveVectorSupport)
-            return "z13";
-          if (Id >= 2827)
-            return "zEC12";
-          if (Id >= 2817)
-            return "z196";
-        }
-      }
-      break;
-    }
-  }
-
-  return "generic";
-}
-
-#if defined(__i386__) || defined(_M_IX86) || \
-    defined(__x86_64__) || defined(_M_X64)
-
-enum VendorSignatures {
-  SIG_INTEL = 0x756e6547 /* Genu */,
-  SIG_AMD = 0x68747541 /* Auth */
-};
-
-enum ProcessorVendors {
-  VENDOR_INTEL = 1,
-  VENDOR_AMD,
-  VENDOR_OTHER,
-  VENDOR_MAX
-};
-
-enum ProcessorTypes {
-  INTEL_ATOM = 1,
-  INTEL_CORE2,
-  INTEL_COREI7,
-  AMDFAM10H,
-  AMDFAM15H,
-  INTEL_i386,
-  INTEL_i486,
-  INTEL_PENTIUM,
-  INTEL_PENTIUM_PRO,
-  INTEL_PENTIUM_II,
-  INTEL_PENTIUM_III,
-  INTEL_PENTIUM_IV,
-  INTEL_PENTIUM_M,
-  INTEL_CORE_DUO,
-  INTEL_XEONPHI,
-  INTEL_X86_64,
-  INTEL_NOCONA,
-  INTEL_PRESCOTT,
-  AMD_i486,
-  AMDPENTIUM,
-  AMDATHLON,
-  AMDFAM14H,
-  AMDFAM16H,
-  AMDFAM17H,
-  CPU_TYPE_MAX
-};
-
-enum ProcessorSubtypes {
-  INTEL_COREI7_NEHALEM = 1,
-  INTEL_COREI7_WESTMERE,
-  INTEL_COREI7_SANDYBRIDGE,
-  AMDFAM10H_BARCELONA,
-  AMDFAM10H_SHANGHAI,
-  AMDFAM10H_ISTANBUL,
-  AMDFAM15H_BDVER1,
-  AMDFAM15H_BDVER2,
-  INTEL_PENTIUM_MMX,
-  INTEL_CORE2_65,
-  INTEL_CORE2_45,
-  INTEL_COREI7_IVYBRIDGE,
-  INTEL_COREI7_HASWELL,
-  INTEL_COREI7_BROADWELL,
-  INTEL_COREI7_SKYLAKE,
-  INTEL_COREI7_SKYLAKE_AVX512,
-  INTEL_ATOM_BONNELL,
-  INTEL_ATOM_SILVERMONT,
-  INTEL_KNIGHTS_LANDING,
-  AMDPENTIUM_K6,
-  AMDPENTIUM_K62,
-  AMDPENTIUM_K63,
-  AMDPENTIUM_GEODE,
-  AMDATHLON_TBIRD,
-  AMDATHLON_MP,
-  AMDATHLON_XP,
-  AMDATHLON_K8SSE3,
-  AMDATHLON_OPTERON,
-  AMDATHLON_FX,
-  AMDATHLON_64,
-  AMD_BTVER1,
-  AMD_BTVER2,
-  AMDFAM15H_BDVER3,
-  AMDFAM15H_BDVER4,
-  AMDFAM17H_ZNVER1,
-  CPU_SUBTYPE_MAX
-};
-
-enum ProcessorFeatures {
-  FEATURE_CMOV = 0,
-  FEATURE_MMX,
-  FEATURE_POPCNT,
-  FEATURE_SSE,
-  FEATURE_SSE2,
-  FEATURE_SSE3,
-  FEATURE_SSSE3,
-  FEATURE_SSE4_1,
-  FEATURE_SSE4_2,
-  FEATURE_AVX,
-  FEATURE_AVX2,
-  FEATURE_AVX512,
-  FEATURE_AVX512SAVE,
-  FEATURE_MOVBE,
-  FEATURE_ADX,
-  FEATURE_EM64T
-};
-
-// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
-// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
-// support. Consequently, for i386, the presence of CPUID is checked first
-// via the corresponding eflags bit.
-// Removal of cpuid.h header motivated by PR30384
-// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
-// or test-suite, but are used in external projects e.g. libstdcxx
-static bool isCpuIdSupported() {
-#if defined(__GNUC__) || defined(__clang__)
-#if defined(__i386__)
-  int __cpuid_supported;
-  __asm__("  pushfl\n"
-          "  popl   %%eax\n"
-          "  movl   %%eax,%%ecx\n"
-          "  xorl   $0x00200000,%%eax\n"
-          "  pushl  %%eax\n"
-          "  popfl\n"
-          "  pushfl\n"
-          "  popl   %%eax\n"
-          "  movl   $0,%0\n"
-          "  cmpl   %%eax,%%ecx\n"
-          "  je     1f\n"
-          "  movl   $1,%0\n"
-          "1:"
-          : "=r"(__cpuid_supported)
-          :
-          : "eax", "ecx");
-  if (!__cpuid_supported)
-    return false;
-#endif
-  return true;
-#endif
-  return true;
-}
-
-/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
-/// the specified arguments.  If we can't run cpuid on the host, return true.
-static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
-                               unsigned *rECX, unsigned *rEDX) {
-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
-#if defined(__GNUC__) || defined(__clang__)
-#if defined(__x86_64__)
-  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
-  // FIXME: should we save this for Clang?
-  __asm__("movq\t%%rbx, %%rsi\n\t"
-          "cpuid\n\t"
-          "xchgq\t%%rbx, %%rsi\n\t"
-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
-          : "a"(value));
-#elif defined(__i386__)
-  __asm__("movl\t%%ebx, %%esi\n\t"
-          "cpuid\n\t"
-          "xchgl\t%%ebx, %%esi\n\t"
-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
-          : "a"(value));
-#else
-  assert(0 && "This method is defined only for x86.");
-#endif
-#elif defined(_MSC_VER)
-  // The MSVC intrinsic is portable across x86 and x64.
-  int registers[4];
-  __cpuid(registers, value);
-  *rEAX = registers[0];
-  *rEBX = registers[1];
-  *rECX = registers[2];
-  *rEDX = registers[3];
-#endif
-  return false;
-#else
-  return true;
-#endif
-}
-
-/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
-/// the 4 values in the specified arguments.  If we can't run cpuid on the host,
-/// return true.
-static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
-                                 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
-                                 unsigned *rEDX) {
-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
-#if defined(__x86_64__) || defined(_M_X64)
-#if defined(__GNUC__) || defined(__clang__)
-  // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
-  // FIXME: should we save this for Clang?
-  __asm__("movq\t%%rbx, %%rsi\n\t"
-          "cpuid\n\t"
-          "xchgq\t%%rbx, %%rsi\n\t"
-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
-          : "a"(value), "c"(subleaf));
-#elif defined(_MSC_VER)
-  int registers[4];
-  __cpuidex(registers, value, subleaf);
-  *rEAX = registers[0];
-  *rEBX = registers[1];
-  *rECX = registers[2];
-  *rEDX = registers[3];
-#endif
-#elif defined(__i386__) || defined(_M_IX86)
-#if defined(__GNUC__) || defined(__clang__)
-  __asm__("movl\t%%ebx, %%esi\n\t"
-          "cpuid\n\t"
-          "xchgl\t%%ebx, %%esi\n\t"
-          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
-          : "a"(value), "c"(subleaf));
-#elif defined(_MSC_VER)
-  __asm {
-      mov   eax,value
-      mov   ecx,subleaf
-      cpuid
-      mov   esi,rEAX
-      mov   dword ptr [esi],eax
-      mov   esi,rEBX
-      mov   dword ptr [esi],ebx
-      mov   esi,rECX
-      mov   dword ptr [esi],ecx
-      mov   esi,rEDX
-      mov   dword ptr [esi],edx
-  }
-#endif
-#else
-  assert(0 && "This method is defined only for x86.");
-#endif
-  return false;
-#else
-  return true;
-#endif
-}
-
-static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
-#if defined(__GNUC__) || defined(__clang__)
-  // Check xgetbv; this uses a .byte sequence instead of the instruction
-  // directly because older assemblers do not include support for xgetbv and
-  // there is no easy way to conditionally compile based on the assembler used.
-  __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
-  return false;
-#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
-  unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
-  *rEAX = Result;
-  *rEDX = Result >> 32;
-  return false;
-#else
-  return true;
-#endif
-}
-
-static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
-                                 unsigned *Model) {
-  *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
-  *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
-  if (*Family == 6 || *Family == 0xf) {
-    if (*Family == 0xf)
-      // Examine extended family ID if family ID is F.
-      *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
-    // Examine extended model ID if family ID is 6 or F.
-    *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
-  }
-}
-
-static void
-getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
-                                unsigned int Brand_id, unsigned int Features,
-                                unsigned *Type, unsigned *Subtype) {
-  if (Brand_id != 0)
-    return;
-  switch (Family) {
-  case 3:
-    *Type = INTEL_i386;
-    break;
-  case 4:
-    switch (Model) {
-    case 0: // Intel486 DX processors
-    case 1: // Intel486 DX processors
-    case 2: // Intel486 SX processors
-    case 3: // Intel487 processors, IntelDX2 OverDrive processors,
-            // IntelDX2 processors
-    case 4: // Intel486 SL processor
-    case 5: // IntelSX2 processors
-    case 7: // Write-Back Enhanced IntelDX2 processors
-    case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
-    default:
-      *Type = INTEL_i486;
-      break;
-    }
-    break;
-  case 5:
-    switch (Model) {
-    case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
-            // Pentium processors (60, 66)
-    case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
-            // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
-            // 150, 166, 200)
-    case 3: // Pentium OverDrive processors for Intel486 processor-based
-            // systems
-      *Type = INTEL_PENTIUM;
-      break;
-    case 4: // Pentium OverDrive processor with MMX technology for Pentium
-            // processor (75, 90, 100, 120, 133), Pentium processor with
-            // MMX technology (166, 200)
-      *Type = INTEL_PENTIUM;
-      *Subtype = INTEL_PENTIUM_MMX;
-      break;
-    default:
-      *Type = INTEL_PENTIUM;
-      break;
-    }
-    break;
-  case 6:
-    switch (Model) {
-    case 0x01: // Pentium Pro processor
-      *Type = INTEL_PENTIUM_PRO;
-      break;
-    case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
-               // model 03
-    case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
-               // model 05, and Intel Celeron processor, model 05
-    case 0x06: // Celeron processor, model 06
-      *Type = INTEL_PENTIUM_II;
-      break;
-    case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
-               // processor, model 07
-    case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
-               // model 08, and Celeron processor, model 08
-    case 0x0a: // Pentium III Xeon processor, model 0Ah
-    case 0x0b: // Pentium III processor, model 0Bh
-      *Type = INTEL_PENTIUM_III;
-      break;
-    case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
-    case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
-               // 0Dh. All processors are manufactured using the 90 nm process.
-    case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
-               // Integrated Processor with Intel QuickAssist Technology
-      *Type = INTEL_PENTIUM_M;
-      break;
-    case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
-               // 0Eh. All processors are manufactured using the 65 nm process.
-      *Type = INTEL_CORE_DUO;
-      break;   // yonah
-    case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
-               // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
-               // mobile processor, Intel Core 2 Extreme processor, Intel
-               // Pentium Dual-Core processor, Intel Xeon processor, model
-               // 0Fh. All processors are manufactured using the 65 nm process.
-    case 0x16: // Intel Celeron processor model 16h. All processors are
-               // manufactured using the 65 nm process
-      *Type = INTEL_CORE2; // "core2"
-      *Subtype = INTEL_CORE2_65;
-      break;
-    case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
-               // 17h. All processors are manufactured using the 45 nm process.
-               //
-               // 45nm: Penryn , Wolfdale, Yorkfield (XE)
-    case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
-               // the 45 nm process.
-      *Type = INTEL_CORE2; // "penryn"
-      *Subtype = INTEL_CORE2_45;
-      break;
-    case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
-               // processors are manufactured using the 45 nm process.
-    case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
-               // As found in a Summer 2010 model iMac.
-    case 0x1f:
-    case 0x2e:             // Nehalem EX
-      *Type = INTEL_COREI7; // "nehalem"
-      *Subtype = INTEL_COREI7_NEHALEM;
-      break;
-    case 0x25: // Intel Core i7, laptop version.
-    case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
-               // processors are manufactured using the 32 nm process.
-    case 0x2f: // Westmere EX
-      *Type = INTEL_COREI7; // "westmere"
-      *Subtype = INTEL_COREI7_WESTMERE;
-      break;
-    case 0x2a: // Intel Core i7 processor. All processors are manufactured
-               // using the 32 nm process.
-    case 0x2d:
-      *Type = INTEL_COREI7; //"sandybridge"
-      *Subtype = INTEL_COREI7_SANDYBRIDGE;
-      break;
-    case 0x3a:
-    case 0x3e:             // Ivy Bridge EP
-      *Type = INTEL_COREI7; // "ivybridge"
-      *Subtype = INTEL_COREI7_IVYBRIDGE;
-      break;
-
-    // Haswell:
-    case 0x3c:
-    case 0x3f:
-    case 0x45:
-    case 0x46:
-      *Type = INTEL_COREI7; // "haswell"
-      *Subtype = INTEL_COREI7_HASWELL;
-      break;
-
-    // Broadwell:
-    case 0x3d:
-    case 0x47:
-    case 0x4f:
-    case 0x56:
-      *Type = INTEL_COREI7; // "broadwell"
-      *Subtype = INTEL_COREI7_BROADWELL;
-      break;
-
-    // Skylake:
-    case 0x4e: // Skylake mobile
-    case 0x5e: // Skylake desktop
-    case 0x8e: // Kaby Lake mobile
-    case 0x9e: // Kaby Lake desktop
-      *Type = INTEL_COREI7; // "skylake"
-      *Subtype = INTEL_COREI7_SKYLAKE;
-      break;
-
-    // Skylake Xeon:
-    case 0x55:
-      *Type = INTEL_COREI7;
-      // Check that we really have AVX512
-      if (Features & (1 << FEATURE_AVX512)) {
-        *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
-      } else {
-        *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
-      }
-      break;
-
-    case 0x1c: // Most 45 nm Intel Atom processors
-    case 0x26: // 45 nm Atom Lincroft
-    case 0x27: // 32 nm Atom Medfield
-    case 0x35: // 32 nm Atom Midview
-    case 0x36: // 32 nm Atom Midview
-      *Type = INTEL_ATOM;
-      *Subtype = INTEL_ATOM_BONNELL;
-      break; // "bonnell"
-
-    // Atom Silvermont codes from the Intel software optimization guide.
-    case 0x37:
-    case 0x4a:
-    case 0x4d:
-    case 0x5a:
-    case 0x5d:
-    case 0x4c: // really airmont
-      *Type = INTEL_ATOM;
-      *Subtype = INTEL_ATOM_SILVERMONT;
-      break; // "silvermont"
-
-    case 0x57:
-      *Type = INTEL_XEONPHI; // knl
-      *Subtype = INTEL_KNIGHTS_LANDING;
-      break;
-
-    default: // Unknown family 6 CPU, try to guess.
-      if (Features & (1 << FEATURE_AVX512)) {
-        *Type = INTEL_XEONPHI; // knl
-        *Subtype = INTEL_KNIGHTS_LANDING;
-        break;
-      }
-      if (Features & (1 << FEATURE_ADX)) {
-        *Type = INTEL_COREI7;
-        *Subtype = INTEL_COREI7_BROADWELL;
-        break;
-      }
-      if (Features & (1 << FEATURE_AVX2)) {
-        *Type = INTEL_COREI7;
-        *Subtype = INTEL_COREI7_HASWELL;
-        break;
-      }
-      if (Features & (1 << FEATURE_AVX)) {
-        *Type = INTEL_COREI7;
-        *Subtype = INTEL_COREI7_SANDYBRIDGE;
-        break;
-      }
-      if (Features & (1 << FEATURE_SSE4_2)) {
-        if (Features & (1 << FEATURE_MOVBE)) {
-          *Type = INTEL_ATOM;
-          *Subtype = INTEL_ATOM_SILVERMONT;
-        } else {
-          *Type = INTEL_COREI7;
-          *Subtype = INTEL_COREI7_NEHALEM;
-        }
-        break;
-      }
-      if (Features & (1 << FEATURE_SSE4_1)) {
-        *Type = INTEL_CORE2; // "penryn"
-        *Subtype = INTEL_CORE2_45;
-        break;
-      }
-      if (Features & (1 << FEATURE_SSSE3)) {
-        if (Features & (1 << FEATURE_MOVBE)) {
-          *Type = INTEL_ATOM;
-          *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
-        } else {
-          *Type = INTEL_CORE2; // "core2"
-          *Subtype = INTEL_CORE2_65;
-        }
-        break;
-      }
-      if (Features & (1 << FEATURE_EM64T)) {
-        *Type = INTEL_X86_64;
-        break; // x86-64
-      }
-      if (Features & (1 << FEATURE_SSE2)) {
-        *Type = INTEL_PENTIUM_M;
-        break;
-      }
-      if (Features & (1 << FEATURE_SSE)) {
-        *Type = INTEL_PENTIUM_III;
-        break;
-      }
-      if (Features & (1 << FEATURE_MMX)) {
-        *Type = INTEL_PENTIUM_II;
-        break;
-      }
-      *Type = INTEL_PENTIUM_PRO;
-      break;
-    }
-    break;
-  case 15: {
-    switch (Model) {
-    case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
-            // model 00h and manufactured using the 0.18 micron process.
-    case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
-            // processor MP, and Intel Celeron processor. All processors are
-            // model 01h and manufactured using the 0.18 micron process.
-    case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
-            // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
-            // processor, and Mobile Intel Celeron processor. All processors
-            // are model 02h and manufactured using the 0.13 micron process.
-      *Type =
-          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
-      break;
-
-    case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
-            // processor. All processors are model 03h and manufactured using
-            // the 90 nm process.
-    case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
-            // Pentium D processor, Intel Xeon processor, Intel Xeon
-            // processor MP, Intel Celeron D processor. All processors are
-            // model 04h and manufactured using the 90 nm process.
-    case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
-            // Extreme Edition, Intel Xeon processor, Intel Xeon processor
-            // MP, Intel Celeron D processor. All processors are model 06h
-            // and manufactured using the 65 nm process.
-      *Type =
-          ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
-      break;
-
-    default:
-      *Type =
-          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
-      break;
-    }
-    break;
-  }
-  default:
-    break; /*"generic"*/
-  }
-}
-
-static void getAMDProcessorTypeAndSubtype(unsigned int Family,
-                                          unsigned int Model,
-                                          unsigned int Features,
-                                          unsigned *Type,
-                                          unsigned *Subtype) {
-  // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
-  // appears to be no way to generate the wide variety of AMD-specific targets
-  // from the information returned from CPUID.
-  switch (Family) {
-  case 4:
-    *Type = AMD_i486;
-    break;
-  case 5:
-    *Type = AMDPENTIUM;
-    switch (Model) {
-    case 6:
-    case 7:
-      *Subtype = AMDPENTIUM_K6;
-      break; // "k6"
-    case 8:
-      *Subtype = AMDPENTIUM_K62;
-      break; // "k6-2"
-    case 9:
-    case 13:
-      *Subtype = AMDPENTIUM_K63;
-      break; // "k6-3"
-    case 10:
-      *Subtype = AMDPENTIUM_GEODE;
-      break; // "geode"
-    }
-    break;
-  case 6:
-    *Type = AMDATHLON;
-    switch (Model) {
-    case 4:
-      *Subtype = AMDATHLON_TBIRD;
-      break; // "athlon-tbird"
-    case 6:
-    case 7:
-    case 8:
-      *Subtype = AMDATHLON_MP;
-      break; // "athlon-mp"
-    case 10:
-      *Subtype = AMDATHLON_XP;
-      break; // "athlon-xp"
-    }
-    break;
-  case 15:
-    *Type = AMDATHLON;
-    if (Features & (1 << FEATURE_SSE3)) {
-      *Subtype = AMDATHLON_K8SSE3;
-      break; // "k8-sse3"
-    }
-    switch (Model) {
-    case 1:
-      *Subtype = AMDATHLON_OPTERON;
-      break; // "opteron"
-    case 5:
-      *Subtype = AMDATHLON_FX;
-      break; // "athlon-fx"; also opteron
-    default:
-      *Subtype = AMDATHLON_64;
-      break; // "athlon64"
-    }
-    break;
-  case 16:
-    *Type = AMDFAM10H; // "amdfam10"
-    switch (Model) {
-    case 2:
-      *Subtype = AMDFAM10H_BARCELONA;
-      break;
-    case 4:
-      *Subtype = AMDFAM10H_SHANGHAI;
-      break;
-    case 8:
-      *Subtype = AMDFAM10H_ISTANBUL;
-      break;
-    }
-    break;
-  case 20:
-    *Type = AMDFAM14H;
-    *Subtype = AMD_BTVER1;
-    break; // "btver1";
-  case 21:
-    *Type = AMDFAM15H;
-    if (!(Features &
-          (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
-      *Subtype = AMD_BTVER1;
-      break; // "btver1"
-    }
-    if (Model >= 0x50 && Model <= 0x6f) {
-      *Subtype = AMDFAM15H_BDVER4;
-      break; // "bdver4"; 50h-6Fh: Excavator
-    }
-    if (Model >= 0x30 && Model <= 0x3f) {
-      *Subtype = AMDFAM15H_BDVER3;
-      break; // "bdver3"; 30h-3Fh: Steamroller
-    }
-    if (Model >= 0x10 && Model <= 0x1f) {
-      *Subtype = AMDFAM15H_BDVER2;
-      break; // "bdver2"; 10h-1Fh: Piledriver
-    }
-    if (Model <= 0x0f) {
-      *Subtype = AMDFAM15H_BDVER1;
-      break; // "bdver1"; 00h-0Fh: Bulldozer
-    }
-    break;
-  case 22:
-    *Type = AMDFAM16H;
-    if (!(Features &
-          (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
-      *Subtype = AMD_BTVER1;
-      break; // "btver1";
-    }
-    *Subtype = AMD_BTVER2;
-    break; // "btver2"
-  case 23:
-    *Type = AMDFAM17H;
-    if (Features & (1 << FEATURE_ADX)) {
-      *Subtype = AMDFAM17H_ZNVER1;
-      break; // "znver1"
-    }
-    *Subtype =  AMD_BTVER1;
-    break;
-  default:
-    break; // "generic"
-  }
-}
-
-static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
-                                     unsigned MaxLeaf) {
-  unsigned Features = 0;
-  unsigned int EAX, EBX;
-  Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
-  Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
-  Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
-  Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
-  Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
-  Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
-  Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
-  Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
-
-  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
-  // indicates that the AVX registers will be saved and restored on context
-  // switch, then we have full AVX support.
-  const unsigned AVXBits = (1 << 27) | (1 << 28);
-  bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
-                ((EAX & 0x6) == 0x6);
-  bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
-  bool HasLeaf7 =
-      MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
-  bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
-  bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
-  bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
-  Features |= (HasAVX << FEATURE_AVX);
-  Features |= (HasAVX2 << FEATURE_AVX2);
-  Features |= (HasAVX512 << FEATURE_AVX512);
-  Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
-  Features |= (HasADX << FEATURE_ADX);
-
-  getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
-  Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
-  return Features;
-}
-
-StringRef sys::getHostCPUName() {
-  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
-  unsigned MaxLeaf, Vendor;
-
-#if defined(__GNUC__) || defined(__clang__)
-  //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
-  // and simplify it to not invoke __cpuid (like cpu_model.c in
-  // compiler-rt/lib/builtins/cpu_model.c?
-  // Opting for the second option.
-  if(!isCpuIdSupported())
-    return "generic";
-#endif
-  if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
-    return "generic";
-  if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
-    return "generic";
-
-  unsigned Brand_id = EBX & 0xff;
-  unsigned Family = 0, Model = 0;
-  unsigned Features = 0;
-  detectX86FamilyModel(EAX, &Family, &Model);
-  Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
-
-  unsigned Type;
-  unsigned Subtype;
-
-  if (Vendor == SIG_INTEL) {
-    getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
-                                    &Subtype);
-    switch (Type) {
-    case INTEL_i386:
-      return "i386";
-    case INTEL_i486:
-      return "i486";
-    case INTEL_PENTIUM:
-      if (Subtype == INTEL_PENTIUM_MMX)
-        return "pentium-mmx";
-      return "pentium";
-    case INTEL_PENTIUM_PRO:
-      return "pentiumpro";
-    case INTEL_PENTIUM_II:
-      return "pentium2";
-    case INTEL_PENTIUM_III:
-      return "pentium3";
-    case INTEL_PENTIUM_IV:
-      return "pentium4";
-    case INTEL_PENTIUM_M:
-      return "pentium-m";
-    case INTEL_CORE_DUO:
-      return "yonah";
-    case INTEL_CORE2:
-      switch (Subtype) {
-      case INTEL_CORE2_65:
-        return "core2";
-      case INTEL_CORE2_45:
-        return "penryn";
-      default:
-        return "core2";
-      }
-    case INTEL_COREI7:
-      switch (Subtype) {
-      case INTEL_COREI7_NEHALEM:
-        return "nehalem";
-      case INTEL_COREI7_WESTMERE:
-        return "westmere";
-      case INTEL_COREI7_SANDYBRIDGE:
-        return "sandybridge";
-      case INTEL_COREI7_IVYBRIDGE:
-        return "ivybridge";
-      case INTEL_COREI7_HASWELL:
-        return "haswell";
-      case INTEL_COREI7_BROADWELL:
-        return "broadwell";
-      case INTEL_COREI7_SKYLAKE:
-        return "skylake";
-      case INTEL_COREI7_SKYLAKE_AVX512:
-        return "skylake-avx512";
-      default:
-        return "corei7";
-      }
-    case INTEL_ATOM:
-      switch (Subtype) {
-      case INTEL_ATOM_BONNELL:
-        return "bonnell";
-      case INTEL_ATOM_SILVERMONT:
-        return "silvermont";
-      default:
-        return "atom";
-      }
-    case INTEL_XEONPHI:
-      return "knl"; /*update for more variants added*/
-    case INTEL_X86_64:
-      return "x86-64";
-    case INTEL_NOCONA:
-      return "nocona";
-    case INTEL_PRESCOTT:
-      return "prescott";
-    default:
-      return "generic";
-    }
-  } else if (Vendor == SIG_AMD) {
-    getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
-    switch (Type) {
-    case AMD_i486:
-      return "i486";
-    case AMDPENTIUM:
-      switch (Subtype) {
-      case AMDPENTIUM_K6:
-        return "k6";
-      case AMDPENTIUM_K62:
-        return "k6-2";
-      case AMDPENTIUM_K63:
-        return "k6-3";
-      case AMDPENTIUM_GEODE:
-        return "geode";
-      default:
-        return "pentium";
-      }
-    case AMDATHLON:
-      switch (Subtype) {
-      case AMDATHLON_TBIRD:
-        return "athlon-tbird";
-      case AMDATHLON_MP:
-        return "athlon-mp";
-      case AMDATHLON_XP:
-        return "athlon-xp";
-      case AMDATHLON_K8SSE3:
-        return "k8-sse3";
-      case AMDATHLON_OPTERON:
-        return "opteron";
-      case AMDATHLON_FX:
-        return "athlon-fx";
-      case AMDATHLON_64:
-        return "athlon64";
-      default:
-        return "athlon";
-      }
-    case AMDFAM10H:
-      if(Subtype == AMDFAM10H_BARCELONA)
-        return "barcelona";
-      return "amdfam10";
-    case AMDFAM14H:
-      return "btver1";
-    case AMDFAM15H:
-      switch (Subtype) {
-      case AMDFAM15H_BDVER1:
-        return "bdver1";
-      case AMDFAM15H_BDVER2:
-        return "bdver2";
-      case AMDFAM15H_BDVER3:
-        return "bdver3";
-      case AMDFAM15H_BDVER4:
-        return "bdver4";
-      case AMD_BTVER1:
-        return "btver1";
-      default:
-        return "amdfam15";
-      }
-    case AMDFAM16H:
-      switch (Subtype) {
-      case AMD_BTVER1:
-        return "btver1";
-      case AMD_BTVER2:
-        return "btver2";
-      default:
-        return "amdfam16";
-      }
-    case AMDFAM17H:
-      switch (Subtype) {
-      case AMD_BTVER1:
-        return "btver1";
-      case AMDFAM17H_ZNVER1:
-        return "znver1";
-      default:
-        return "amdfam17";
-      }
-    default:
-      return "generic";
-    }
-  }
-  return "generic";
-}
-
-#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
-StringRef sys::getHostCPUName() {
-  host_basic_info_data_t hostInfo;
-  mach_msg_type_number_t infoCount;
-
-  infoCount = HOST_BASIC_INFO_COUNT;
-  host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
-            &infoCount);
-
-  if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
-    return "generic";
-
-  switch (hostInfo.cpu_subtype) {
-  case CPU_SUBTYPE_POWERPC_601:
-    return "601";
-  case CPU_SUBTYPE_POWERPC_602:
-    return "602";
-  case CPU_SUBTYPE_POWERPC_603:
-    return "603";
-  case CPU_SUBTYPE_POWERPC_603e:
-    return "603e";
-  case CPU_SUBTYPE_POWERPC_603ev:
-    return "603ev";
-  case CPU_SUBTYPE_POWERPC_604:
-    return "604";
-  case CPU_SUBTYPE_POWERPC_604e:
-    return "604e";
-  case CPU_SUBTYPE_POWERPC_620:
-    return "620";
-  case CPU_SUBTYPE_POWERPC_750:
-    return "750";
-  case CPU_SUBTYPE_POWERPC_7400:
-    return "7400";
-  case CPU_SUBTYPE_POWERPC_7450:
-    return "7450";
-  case CPU_SUBTYPE_POWERPC_970:
-    return "970";
-  default:;
-  }
-
-  return "generic";
-}
-#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
-StringRef sys::getHostCPUName() {
-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
-  const StringRef& Content = P ? P->getBuffer() : "";
-  return detail::getHostCPUNameForPowerPC(Content);
-}
-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
-StringRef sys::getHostCPUName() {
-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
-  const StringRef& Content = P ? P->getBuffer() : "";
-  return detail::getHostCPUNameForARM(Content);
-}
-#elif defined(__linux__) && defined(__s390x__)
-StringRef sys::getHostCPUName() {
-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
-  const StringRef& Content = P ? P->getBuffer() : "";
-  return detail::getHostCPUNameForS390x(Content);
-}
-#else
-StringRef sys::getHostCPUName() { return "generic"; }
-#endif
-
-#if defined(__linux__) && defined(__x86_64__)
-// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
-// using the number of unique physical/core id pairs. The following
-// implementation reads the /proc/cpuinfo format on an x86_64 system.
-static int computeHostNumPhysicalCores() {
-  // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
-  // mmapped because it appears to have 0 size.
-  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
-      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
-  if (std::error_code EC = Text.getError()) {
-    llvm::errs() << "Can't read "
-                 << "/proc/cpuinfo: " << EC.message() << "\n";
-    return -1;
-  }
-  SmallVector<StringRef, 8> strs;
-  (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
-                             /*KeepEmpty=*/false);
-  int CurPhysicalId = -1;
-  int CurCoreId = -1;
-  SmallSet<std::pair<int, int>, 32> UniqueItems;
-  for (auto &Line : strs) {
-    Line = Line.trim();
-    if (!Line.startswith("physical id") && !Line.startswith("core id"))
-      continue;
-    std::pair<StringRef, StringRef> Data = Line.split(':');
-    auto Name = Data.first.trim();
-    auto Val = Data.second.trim();
-    if (Name == "physical id") {
-      assert(CurPhysicalId == -1 &&
-             "Expected a core id before seeing another physical id");
-      Val.getAsInteger(10, CurPhysicalId);
-    }
-    if (Name == "core id") {
-      assert(CurCoreId == -1 &&
-             "Expected a physical id before seeing another core id");
-      Val.getAsInteger(10, CurCoreId);
-    }
-    if (CurPhysicalId != -1 && CurCoreId != -1) {
-      UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
-      CurPhysicalId = -1;
-      CurCoreId = -1;
-    }
-  }
-  return UniqueItems.size();
-}
-#elif defined(__APPLE__) && defined(__x86_64__)
-#include <sys/param.h>
-#include <sys/sysctl.h>
-
-// Gets the number of *physical cores* on the machine.
-static int computeHostNumPhysicalCores() {
-  uint32_t count;
-  size_t len = sizeof(count);
-  sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
-  if (count < 1) {
-    int nm[2];
-    nm[0] = CTL_HW;
-    nm[1] = HW_AVAILCPU;
-    sysctl(nm, 2, &count, &len, NULL, 0);
-    if (count < 1)
-      return -1;
-  }
-  return count;
-}
-#else
-// On other systems, return -1 to indicate unknown.
-static int computeHostNumPhysicalCores() { return -1; }
-#endif
-
-int sys::getHostNumPhysicalCores() {
-  static int NumCores = computeHostNumPhysicalCores();
-  return NumCores;
-}
-
-#if defined(__i386__) || defined(_M_IX86) || \
-    defined(__x86_64__) || defined(_M_X64)
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
-  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
-  unsigned MaxLevel;
-  union {
-    unsigned u[3];
-    char c[12];
-  } text;
-
-  if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
-      MaxLevel < 1)
-    return false;
-
-  getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
-
-  Features["cmov"] = (EDX >> 15) & 1;
-  Features["mmx"] = (EDX >> 23) & 1;
-  Features["sse"] = (EDX >> 25) & 1;
-  Features["sse2"] = (EDX >> 26) & 1;
-  Features["sse3"] = (ECX >> 0) & 1;
-  Features["ssse3"] = (ECX >> 9) & 1;
-  Features["sse4.1"] = (ECX >> 19) & 1;
-  Features["sse4.2"] = (ECX >> 20) & 1;
-
-  Features["pclmul"] = (ECX >> 1) & 1;
-  Features["cx16"] = (ECX >> 13) & 1;
-  Features["movbe"] = (ECX >> 22) & 1;
-  Features["popcnt"] = (ECX >> 23) & 1;
-  Features["aes"] = (ECX >> 25) & 1;
-  Features["rdrnd"] = (ECX >> 30) & 1;
-
-  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
-  // indicates that the AVX registers will be saved and restored on context
-  // switch, then we have full AVX support.
-  bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
-                    !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
-  Features["avx"] = HasAVXSave;
-  Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
-  Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
-
-  // Only enable XSAVE if OS has enabled support for saving YMM state.
-  Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
-
-  // AVX512 requires additional context to be saved by the OS.
-  bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
-
-  unsigned MaxExtLevel;
-  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
-
-  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
-                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
-  Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
-  Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
-  Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
-  Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
-  Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
-  Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
-  Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
-
-  bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
-                     !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
-  Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
-
-  bool HasLeaf7 =
-      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
-
-  // AVX2 is only supported if we have the OS save support from AVX.
-  Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
-
-  Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
-  Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
-  Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
-  Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
-  Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
-  Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
-  Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
-  Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
-  Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
-  Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
-
-  // AVX512 is only supported if the OS supports the context save for it.
-  Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
-  Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
-  Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
-  Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
-  Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
-  Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
-  Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
-  Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
-
-  Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
-  Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
-  // Enable protection keys
-  Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
-
-  bool HasLeafD = MaxLevel >= 0xd &&
-                  !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
-
-  // Only enable XSAVE if OS has enabled support for saving YMM state.
-  Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
-  Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
-  Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
-
-  return true;
-}
-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
-  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
-  if (!P)
-    return false;
-
-  SmallVector<StringRef, 32> Lines;
-  P->getBuffer().split(Lines, "\n");
-
-  SmallVector<StringRef, 32> CPUFeatures;
-
-  // Look for the CPU features.
-  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
-    if (Lines[I].startswith("Features")) {
-      Lines[I].split(CPUFeatures, ' ');
-      break;
-    }
-
-#if defined(__aarch64__)
-  // Keep track of which crypto features we have seen
-  enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
-  uint32_t crypto = 0;
-#endif
-
-  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
-    StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
-#if defined(__aarch64__)
-                                   .Case("asimd", "neon")
-                                   .Case("fp", "fp-armv8")
-                                   .Case("crc32", "crc")
-#else
-                                   .Case("half", "fp16")
-                                   .Case("neon", "neon")
-                                   .Case("vfpv3", "vfp3")
-                                   .Case("vfpv3d16", "d16")
-                                   .Case("vfpv4", "vfp4")
-                                   .Case("idiva", "hwdiv-arm")
-                                   .Case("idivt", "hwdiv")
-#endif
-                                   .Default("");
-
-#if defined(__aarch64__)
-    // We need to check crypto separately since we need all of the crypto
-    // extensions to enable the subtarget feature
-    if (CPUFeatures[I] == "aes")
-      crypto |= CAP_AES;
-    else if (CPUFeatures[I] == "pmull")
-      crypto |= CAP_PMULL;
-    else if (CPUFeatures[I] == "sha1")
-      crypto |= CAP_SHA1;
-    else if (CPUFeatures[I] == "sha2")
-      crypto |= CAP_SHA2;
-#endif
-
-    if (LLVMFeatureStr != "")
-      Features[LLVMFeatureStr] = true;
-  }
-
-#if defined(__aarch64__)
-  // If we have all crypto bits we can add the feature
-  if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
-    Features["crypto"] = true;
-#endif
-
-  return true;
-}
-#else
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
-#endif
-
-std::string sys::getProcessTriple() {
-  Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
-
-  if (sizeof(void *) == 8 && PT.isArch32Bit())
-    PT = PT.get64BitArchVariant();
-  if (sizeof(void *) == 4 && PT.isArch64Bit())
-    PT = PT.get32BitArchVariant();
-
-  return PT.str();
-}
+//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//\r
+//\r
+//                     The LLVM Compiler Infrastructure\r
+//\r
+// This file is distributed under the University of Illinois Open Source\r
+// License. See LICENSE.TXT for details.\r
+//\r
+//===----------------------------------------------------------------------===//\r
+//\r
+//  This file implements the operating system Host concept.\r
+//\r
+//===----------------------------------------------------------------------===//\r
+\r
+#include "llvm/Support/Host.h"\r
+#include "llvm/ADT/SmallSet.h"\r
+#include "llvm/ADT/SmallVector.h"\r
+#include "llvm/ADT/StringRef.h"\r
+#include "llvm/ADT/StringSwitch.h"\r
+#include "llvm/ADT/Triple.h"\r
+#include "llvm/Config/config.h"\r
+#include "llvm/Support/Debug.h"\r
+#include "llvm/Support/FileSystem.h"\r
+#include "llvm/Support/MemoryBuffer.h"\r
+#include "llvm/Support/raw_ostream.h"\r
+#include <assert.h>\r
+#include <string.h>\r
+\r
+// Include the platform-specific parts of this class.\r
+#ifdef LLVM_ON_UNIX\r
+#include "Unix/Host.inc"\r
+#endif\r
+#ifdef LLVM_ON_WIN32\r
+#include "Windows/Host.inc"\r
+#endif\r
+#ifdef _MSC_VER\r
+#include <intrin.h>\r
+#endif\r
+#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))\r
+#include <mach/host_info.h>\r
+#include <mach/mach.h>\r
+#include <mach/mach_host.h>\r
+#include <mach/machine.h>\r
+#endif\r
+\r
+#define DEBUG_TYPE "host-detection"\r
+\r
+//===----------------------------------------------------------------------===//\r
+//\r
+//  Implementations of the CPU detection routines\r
+//\r
+//===----------------------------------------------------------------------===//\r
+\r
+using namespace llvm;\r
+\r
+static std::unique_ptr<llvm::MemoryBuffer>\r
+    LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {\r
+  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =\r
+      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");\r
+  if (std::error_code EC = Text.getError()) {\r
+    llvm::errs() << "Can't read "\r
+                 << "/proc/cpuinfo: " << EC.message() << "\n";\r
+    return nullptr;\r
+  }\r
+  return std::move(*Text);\r
+}\r
+\r
+StringRef sys::detail::getHostCPUNameForPowerPC(\r
+    const StringRef &ProcCpuinfoContent) {\r
+  // Access to the Processor Version Register (PVR) on PowerPC is privileged,\r
+  // and so we must use an operating-system interface to determine the current\r
+  // processor type. On Linux, this is exposed through the /proc/cpuinfo file.\r
+  const char *generic = "generic";\r
+\r
+  // The cpu line is second (after the 'processor: 0' line), so if this\r
+  // buffer is too small then something has changed (or is wrong).\r
+  StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();\r
+  StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();\r
+\r
+  StringRef::const_iterator CIP = CPUInfoStart;\r
+\r
+  StringRef::const_iterator CPUStart = 0;\r
+  size_t CPULen = 0;\r
+\r
+  // We need to find the first line which starts with cpu, spaces, and a colon.\r
+  // After the colon, there may be some additional spaces and then the cpu type.\r
+  while (CIP < CPUInfoEnd && CPUStart == 0) {\r
+    if (CIP < CPUInfoEnd && *CIP == '\n')\r
+      ++CIP;\r
+\r
+    if (CIP < CPUInfoEnd && *CIP == 'c') {\r
+      ++CIP;\r
+      if (CIP < CPUInfoEnd && *CIP == 'p') {\r
+        ++CIP;\r
+        if (CIP < CPUInfoEnd && *CIP == 'u') {\r
+          ++CIP;\r
+          while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))\r
+            ++CIP;\r
+\r
+          if (CIP < CPUInfoEnd && *CIP == ':') {\r
+            ++CIP;\r
+            while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))\r
+              ++CIP;\r
+\r
+            if (CIP < CPUInfoEnd) {\r
+              CPUStart = CIP;\r
+              while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&\r
+                                          *CIP != ',' && *CIP != '\n'))\r
+                ++CIP;\r
+              CPULen = CIP - CPUStart;\r
+            }\r
+          }\r
+        }\r
+      }\r
+    }\r
+\r
+    if (CPUStart == 0)\r
+      while (CIP < CPUInfoEnd && *CIP != '\n')\r
+        ++CIP;\r
+  }\r
+\r
+  if (CPUStart == 0)\r
+    return generic;\r
+\r
+  return StringSwitch<const char *>(StringRef(CPUStart, CPULen))\r
+      .Case("604e", "604e")\r
+      .Case("604", "604")\r
+      .Case("7400", "7400")\r
+      .Case("7410", "7400")\r
+      .Case("7447", "7400")\r
+      .Case("7455", "7450")\r
+      .Case("G4", "g4")\r
+      .Case("POWER4", "970")\r
+      .Case("PPC970FX", "970")\r
+      .Case("PPC970MP", "970")\r
+      .Case("G5", "g5")\r
+      .Case("POWER5", "g5")\r
+      .Case("A2", "a2")\r
+      .Case("POWER6", "pwr6")\r
+      .Case("POWER7", "pwr7")\r
+      .Case("POWER8", "pwr8")\r
+      .Case("POWER8E", "pwr8")\r
+      .Case("POWER8NVL", "pwr8")\r
+      .Case("POWER9", "pwr9")\r
+      .Default(generic);\r
+}\r
+\r
+StringRef sys::detail::getHostCPUNameForARM(\r
+    const StringRef &ProcCpuinfoContent) {\r
+  // The cpuid register on arm is not accessible from user space. On Linux,\r
+  // it is exposed through the /proc/cpuinfo file.\r
+\r
+  // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line\r
+  // in all cases.\r
+  SmallVector<StringRef, 32> Lines;\r
+  ProcCpuinfoContent.split(Lines, "\n");\r
+\r
+  // Look for the CPU implementer line.\r
+  StringRef Implementer;\r
+  StringRef Hardware;\r
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {\r
+    if (Lines[I].startswith("CPU implementer"))\r
+      Implementer = Lines[I].substr(15).ltrim("\t :");\r
+    if (Lines[I].startswith("Hardware"))\r
+      Hardware = Lines[I].substr(8).ltrim("\t :");\r
+  }\r
+\r
+  if (Implementer == "0x41") { // ARM Ltd.\r
+    // MSM8992/8994 may give cpu part for the core that the kernel is running on,\r
+    // which is undeterministic and wrong. Always return cortex-a53 for these SoC.\r
+    if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))\r
+      return "cortex-a53";\r
+\r
+\r
+    // Look for the CPU part line.\r
+    for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
+      if (Lines[I].startswith("CPU part"))\r
+        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The\r
+        // values correspond to the "Part number" in the CP15/c0 register. The\r
+        // contents are specified in the various processor manuals.\r
+        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))\r
+            .Case("0x926", "arm926ej-s")\r
+            .Case("0xb02", "mpcore")\r
+            .Case("0xb36", "arm1136j-s")\r
+            .Case("0xb56", "arm1156t2-s")\r
+            .Case("0xb76", "arm1176jz-s")\r
+            .Case("0xc08", "cortex-a8")\r
+            .Case("0xc09", "cortex-a9")\r
+            .Case("0xc0f", "cortex-a15")\r
+            .Case("0xc20", "cortex-m0")\r
+            .Case("0xc23", "cortex-m3")\r
+            .Case("0xc24", "cortex-m4")\r
+            .Case("0xd04", "cortex-a35")\r
+            .Case("0xd03", "cortex-a53")\r
+            .Case("0xd07", "cortex-a57")\r
+            .Case("0xd08", "cortex-a72")\r
+            .Case("0xd09", "cortex-a73")\r
+            .Default("generic");\r
+  }\r
+\r
+  if (Implementer == "0x51") // Qualcomm Technologies, Inc.\r
+    // Look for the CPU part line.\r
+    for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
+      if (Lines[I].startswith("CPU part"))\r
+        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The\r
+        // values correspond to the "Part number" in the CP15/c0 register. The\r
+        // contents are specified in the various processor manuals.\r
+        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))\r
+            .Case("0x06f", "krait") // APQ8064\r
+            .Case("0x201", "kryo")\r
+            .Case("0x205", "kryo")\r
+            .Default("generic");\r
+\r
+  return "generic";\r
+}\r
+\r
+StringRef sys::detail::getHostCPUNameForS390x(\r
+    const StringRef &ProcCpuinfoContent) {\r
+  // STIDP is a privileged operation, so use /proc/cpuinfo instead.\r
+\r
+  // The "processor 0:" line comes after a fair amount of other information,\r
+  // including a cache breakdown, but this should be plenty.\r
+  SmallVector<StringRef, 32> Lines;\r
+  ProcCpuinfoContent.split(Lines, "\n");\r
+\r
+  // Look for the CPU features.\r
+  SmallVector<StringRef, 32> CPUFeatures;\r
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
+    if (Lines[I].startswith("features")) {\r
+      size_t Pos = Lines[I].find(":");\r
+      if (Pos != StringRef::npos) {\r
+        Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');\r
+        break;\r
+      }\r
+    }\r
+\r
+  // We need to check for the presence of vector support independently of\r
+  // the machine type, since we may only use the vector register set when\r
+  // supported by the kernel (and hypervisor).\r
+  bool HaveVectorSupport = false;\r
+  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {\r
+    if (CPUFeatures[I] == "vx")\r
+      HaveVectorSupport = true;\r
+  }\r
+\r
+  // Now check the processor machine type.\r
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {\r
+    if (Lines[I].startswith("processor ")) {\r
+      size_t Pos = Lines[I].find("machine = ");\r
+      if (Pos != StringRef::npos) {\r
+        Pos += sizeof("machine = ") - 1;\r
+        unsigned int Id;\r
+        if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {\r
+          if (Id >= 2964 && HaveVectorSupport)\r
+            return "z13";\r
+          if (Id >= 2827)\r
+            return "zEC12";\r
+          if (Id >= 2817)\r
+            return "z196";\r
+        }\r
+      }\r
+      break;\r
+    }\r
+  }\r
+\r
+  return "generic";\r
+}\r
+\r
+#if defined(__i386__) || defined(_M_IX86) || \\r
+    defined(__x86_64__) || defined(_M_X64)\r
+\r
+enum VendorSignatures {\r
+  SIG_INTEL = 0x756e6547 /* Genu */,\r
+  SIG_AMD = 0x68747541 /* Auth */\r
+};\r
+\r
+enum ProcessorVendors {\r
+  VENDOR_INTEL = 1,\r
+  VENDOR_AMD,\r
+  VENDOR_OTHER,\r
+  VENDOR_MAX\r
+};\r
+\r
+enum ProcessorTypes {\r
+  INTEL_ATOM = 1,\r
+  INTEL_CORE2,\r
+  INTEL_COREI7,\r
+  AMDFAM10H,\r
+  AMDFAM15H,\r
+  INTEL_i386,\r
+  INTEL_i486,\r
+  INTEL_PENTIUM,\r
+  INTEL_PENTIUM_PRO,\r
+  INTEL_PENTIUM_II,\r
+  INTEL_PENTIUM_III,\r
+  INTEL_PENTIUM_IV,\r
+  INTEL_PENTIUM_M,\r
+  INTEL_CORE_DUO,\r
+  INTEL_XEONPHI,\r
+  INTEL_X86_64,\r
+  INTEL_NOCONA,\r
+  INTEL_PRESCOTT,\r
+  AMD_i486,\r
+  AMDPENTIUM,\r
+  AMDATHLON,\r
+  AMDFAM14H,\r
+  AMDFAM16H,\r
+  AMDFAM17H,\r
+  CPU_TYPE_MAX\r
+};\r
+\r
+enum ProcessorSubtypes {\r
+  INTEL_COREI7_NEHALEM = 1,\r
+  INTEL_COREI7_WESTMERE,\r
+  INTEL_COREI7_SANDYBRIDGE,\r
+  AMDFAM10H_BARCELONA,\r
+  AMDFAM10H_SHANGHAI,\r
+  AMDFAM10H_ISTANBUL,\r
+  AMDFAM15H_BDVER1,\r
+  AMDFAM15H_BDVER2,\r
+  INTEL_PENTIUM_MMX,\r
+  INTEL_CORE2_65,\r
+  INTEL_CORE2_45,\r
+  INTEL_COREI7_IVYBRIDGE,\r
+  INTEL_COREI7_HASWELL,\r
+  INTEL_COREI7_BROADWELL,\r
+  INTEL_COREI7_SKYLAKE,\r
+  INTEL_COREI7_SKYLAKE_AVX512,\r
+  INTEL_ATOM_BONNELL,\r
+  INTEL_ATOM_SILVERMONT,\r
+  INTEL_KNIGHTS_LANDING,\r
+  AMDPENTIUM_K6,\r
+  AMDPENTIUM_K62,\r
+  AMDPENTIUM_K63,\r
+  AMDPENTIUM_GEODE,\r
+  AMDATHLON_TBIRD,\r
+  AMDATHLON_MP,\r
+  AMDATHLON_XP,\r
+  AMDATHLON_K8SSE3,\r
+  AMDATHLON_OPTERON,\r
+  AMDATHLON_FX,\r
+  AMDATHLON_64,\r
+  AMD_BTVER1,\r
+  AMD_BTVER2,\r
+  AMDFAM15H_BDVER3,\r
+  AMDFAM15H_BDVER4,\r
+  AMDFAM17H_ZNVER1,\r
+  CPU_SUBTYPE_MAX\r
+};\r
+\r
+enum ProcessorFeatures {\r
+  FEATURE_CMOV = 0,\r
+  FEATURE_MMX,\r
+  FEATURE_POPCNT,\r
+  FEATURE_SSE,\r
+  FEATURE_SSE2,\r
+  FEATURE_SSE3,\r
+  FEATURE_SSSE3,\r
+  FEATURE_SSE4_1,\r
+  FEATURE_SSE4_2,\r
+  FEATURE_AVX,\r
+  FEATURE_AVX2,\r
+  FEATURE_AVX512,\r
+  FEATURE_AVX512SAVE,\r
+  FEATURE_MOVBE,\r
+  FEATURE_ADX,\r
+  FEATURE_EM64T\r
+};\r
+\r
+// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).\r
+// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID\r
+// support. Consequently, for i386, the presence of CPUID is checked first\r
+// via the corresponding eflags bit.\r
+// Removal of cpuid.h header motivated by PR30384\r
+// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp\r
+// or test-suite, but are used in external projects e.g. libstdcxx\r
+static bool isCpuIdSupported() {\r
+#if defined(__GNUC__) || defined(__clang__)\r
+#if defined(__i386__)\r
+  int __cpuid_supported;\r
+  __asm__("  pushfl\n"\r
+          "  popl   %%eax\n"\r
+          "  movl   %%eax,%%ecx\n"\r
+          "  xorl   $0x00200000,%%eax\n"\r
+          "  pushl  %%eax\n"\r
+          "  popfl\n"\r
+          "  pushfl\n"\r
+          "  popl   %%eax\n"\r
+          "  movl   $0,%0\n"\r
+          "  cmpl   %%eax,%%ecx\n"\r
+          "  je     1f\n"\r
+          "  movl   $1,%0\n"\r
+          "1:"\r
+          : "=r"(__cpuid_supported)\r
+          :\r
+          : "eax", "ecx");\r
+  if (!__cpuid_supported)\r
+    return false;\r
+#endif\r
+  return true;\r
+#endif\r
+  return true;\r
+}\r
+\r
+/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in\r
+/// the specified arguments.  If we can't run cpuid on the host, return true.\r
+static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,\r
+                               unsigned *rECX, unsigned *rEDX) {\r
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)\r
+#if defined(__GNUC__) || defined(__clang__)\r
+#if defined(__x86_64__)\r
+  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.\r
+  // FIXME: should we save this for Clang?\r
+  __asm__("movq\t%%rbx, %%rsi\n\t"\r
+          "cpuid\n\t"\r
+          "xchgq\t%%rbx, %%rsi\n\t"\r
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
+          : "a"(value));\r
+#elif defined(__i386__)\r
+  __asm__("movl\t%%ebx, %%esi\n\t"\r
+          "cpuid\n\t"\r
+          "xchgl\t%%ebx, %%esi\n\t"\r
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
+          : "a"(value));\r
+#else\r
+  assert(0 && "This method is defined only for x86.");\r
+#endif\r
+#elif defined(_MSC_VER)\r
+  // The MSVC intrinsic is portable across x86 and x64.\r
+  int registers[4];\r
+  __cpuid(registers, value);\r
+  *rEAX = registers[0];\r
+  *rEBX = registers[1];\r
+  *rECX = registers[2];\r
+  *rEDX = registers[3];\r
+#endif\r
+  return false;\r
+#else\r
+  return true;\r
+#endif\r
+}\r
+\r
+/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return\r
+/// the 4 values in the specified arguments.  If we can't run cpuid on the host,\r
+/// return true.\r
+static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,\r
+                                 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,\r
+                                 unsigned *rEDX) {\r
+#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)\r
+#if defined(__x86_64__) || defined(_M_X64)\r
+#if defined(__GNUC__) || defined(__clang__)\r
+  // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.\r
+  // FIXME: should we save this for Clang?\r
+  __asm__("movq\t%%rbx, %%rsi\n\t"\r
+          "cpuid\n\t"\r
+          "xchgq\t%%rbx, %%rsi\n\t"\r
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
+          : "a"(value), "c"(subleaf));\r
+#elif defined(_MSC_VER)\r
+  int registers[4];\r
+  __cpuidex(registers, value, subleaf);\r
+  *rEAX = registers[0];\r
+  *rEBX = registers[1];\r
+  *rECX = registers[2];\r
+  *rEDX = registers[3];\r
+#endif\r
+#elif defined(__i386__) || defined(_M_IX86)\r
+#if defined(__GNUC__) || defined(__clang__)\r
+  __asm__("movl\t%%ebx, %%esi\n\t"\r
+          "cpuid\n\t"\r
+          "xchgl\t%%ebx, %%esi\n\t"\r
+          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)\r
+          : "a"(value), "c"(subleaf));\r
+#elif defined(_MSC_VER)\r
+  __asm {\r
+      mov   eax,value\r
+      mov   ecx,subleaf\r
+      cpuid\r
+      mov   esi,rEAX\r
+      mov   dword ptr [esi],eax\r
+      mov   esi,rEBX\r
+      mov   dword ptr [esi],ebx\r
+      mov   esi,rECX\r
+      mov   dword ptr [esi],ecx\r
+      mov   esi,rEDX\r
+      mov   dword ptr [esi],edx\r
+  }\r
+#endif\r
+#else\r
+  assert(0 && "This method is defined only for x86.");\r
+#endif\r
+  return false;\r
+#else\r
+  return true;\r
+#endif\r
+}\r
+\r
+static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {\r
+#if defined(__GNUC__) || defined(__clang__)\r
+  // Check xgetbv; this uses a .byte sequence instead of the instruction\r
+  // directly because older assemblers do not include support for xgetbv and\r
+  // there is no easy way to conditionally compile based on the assembler used.\r
+  __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));\r
+  return false;\r
+#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)\r
+  unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);\r
+  *rEAX = Result;\r
+  *rEDX = Result >> 32;\r
+  return false;\r
+#else\r
+  return true;\r
+#endif\r
+}\r
+\r
+static void detectX86FamilyModel(unsigned EAX, unsigned *Family,\r
+                                 unsigned *Model) {\r
+  *Family = (EAX >> 8) & 0xf; // Bits 8 - 11\r
+  *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7\r
+  if (*Family == 6 || *Family == 0xf) {\r
+    if (*Family == 0xf)\r
+      // Examine extended family ID if family ID is F.\r
+      *Family += (EAX >> 20) & 0xff; // Bits 20 - 27\r
+    // Examine extended model ID if family ID is 6 or F.\r
+    *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19\r
+  }\r
+}\r
+\r
+static void\r
+getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,\r
+                                unsigned int Brand_id, unsigned int Features,\r
+                                unsigned *Type, unsigned *Subtype) {\r
+  if (Brand_id != 0)\r
+    return;\r
+  switch (Family) {\r
+  case 3:\r
+    *Type = INTEL_i386;\r
+    break;\r
+  case 4:\r
+    switch (Model) {\r
+    case 0: // Intel486 DX processors\r
+    case 1: // Intel486 DX processors\r
+    case 2: // Intel486 SX processors\r
+    case 3: // Intel487 processors, IntelDX2 OverDrive processors,\r
+            // IntelDX2 processors\r
+    case 4: // Intel486 SL processor\r
+    case 5: // IntelSX2 processors\r
+    case 7: // Write-Back Enhanced IntelDX2 processors\r
+    case 8: // IntelDX4 OverDrive processors, IntelDX4 processors\r
+    default:\r
+      *Type = INTEL_i486;\r
+      break;\r
+    }\r
+    break;\r
+  case 5:\r
+    switch (Model) {\r
+    case 1: // Pentium OverDrive processor for Pentium processor (60, 66),\r
+            // Pentium processors (60, 66)\r
+    case 2: // Pentium OverDrive processor for Pentium processor (75, 90,\r
+            // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,\r
+            // 150, 166, 200)\r
+    case 3: // Pentium OverDrive processors for Intel486 processor-based\r
+            // systems\r
+      *Type = INTEL_PENTIUM;\r
+      break;\r
+    case 4: // Pentium OverDrive processor with MMX technology for Pentium\r
+            // processor (75, 90, 100, 120, 133), Pentium processor with\r
+            // MMX technology (166, 200)\r
+      *Type = INTEL_PENTIUM;\r
+      *Subtype = INTEL_PENTIUM_MMX;\r
+      break;\r
+    default:\r
+      *Type = INTEL_PENTIUM;\r
+      break;\r
+    }\r
+    break;\r
+  case 6:\r
+    switch (Model) {\r
+    case 0x01: // Pentium Pro processor\r
+      *Type = INTEL_PENTIUM_PRO;\r
+      break;\r
+    case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,\r
+               // model 03\r
+    case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,\r
+               // model 05, and Intel Celeron processor, model 05\r
+    case 0x06: // Celeron processor, model 06\r
+      *Type = INTEL_PENTIUM_II;\r
+      break;\r
+    case 0x07: // Pentium III processor, model 07, and Pentium III Xeon\r
+               // processor, model 07\r
+    case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,\r
+               // model 08, and Celeron processor, model 08\r
+    case 0x0a: // Pentium III Xeon processor, model 0Ah\r
+    case 0x0b: // Pentium III processor, model 0Bh\r
+      *Type = INTEL_PENTIUM_III;\r
+      break;\r
+    case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.\r
+    case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model\r
+               // 0Dh. All processors are manufactured using the 90 nm process.\r
+    case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579\r
+               // Integrated Processor with Intel QuickAssist Technology\r
+      *Type = INTEL_PENTIUM_M;\r
+      break;\r
+    case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model\r
+               // 0Eh. All processors are manufactured using the 65 nm process.\r
+      *Type = INTEL_CORE_DUO;\r
+      break;   // yonah\r
+    case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile\r
+               // processor, Intel Core 2 Quad processor, Intel Core 2 Quad\r
+               // mobile processor, Intel Core 2 Extreme processor, Intel\r
+               // Pentium Dual-Core processor, Intel Xeon processor, model\r
+               // 0Fh. All processors are manufactured using the 65 nm process.\r
+    case 0x16: // Intel Celeron processor model 16h. All processors are\r
+               // manufactured using the 65 nm process\r
+      *Type = INTEL_CORE2; // "core2"\r
+      *Subtype = INTEL_CORE2_65;\r
+      break;\r
+    case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model\r
+               // 17h. All processors are manufactured using the 45 nm process.\r
+               //\r
+               // 45nm: Penryn , Wolfdale, Yorkfield (XE)\r
+    case 0x1d: // Intel Xeon processor MP. All processors are manufactured using\r
+               // the 45 nm process.\r
+      *Type = INTEL_CORE2; // "penryn"\r
+      *Subtype = INTEL_CORE2_45;\r
+      break;\r
+    case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All\r
+               // processors are manufactured using the 45 nm process.\r
+    case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.\r
+               // As found in a Summer 2010 model iMac.\r
+    case 0x1f:\r
+    case 0x2e:             // Nehalem EX\r
+      *Type = INTEL_COREI7; // "nehalem"\r
+      *Subtype = INTEL_COREI7_NEHALEM;\r
+      break;\r
+    case 0x25: // Intel Core i7, laptop version.\r
+    case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All\r
+               // processors are manufactured using the 32 nm process.\r
+    case 0x2f: // Westmere EX\r
+      *Type = INTEL_COREI7; // "westmere"\r
+      *Subtype = INTEL_COREI7_WESTMERE;\r
+      break;\r
+    case 0x2a: // Intel Core i7 processor. All processors are manufactured\r
+               // using the 32 nm process.\r
+    case 0x2d:\r
+      *Type = INTEL_COREI7; //"sandybridge"\r
+      *Subtype = INTEL_COREI7_SANDYBRIDGE;\r
+      break;\r
+    case 0x3a:\r
+    case 0x3e:             // Ivy Bridge EP\r
+      *Type = INTEL_COREI7; // "ivybridge"\r
+      *Subtype = INTEL_COREI7_IVYBRIDGE;\r
+      break;\r
+\r
+    // Haswell:\r
+    case 0x3c:\r
+    case 0x3f:\r
+    case 0x45:\r
+    case 0x46:\r
+      *Type = INTEL_COREI7; // "haswell"\r
+      *Subtype = INTEL_COREI7_HASWELL;\r
+      break;\r
+\r
+    // Broadwell:\r
+    case 0x3d:\r
+    case 0x47:\r
+    case 0x4f:\r
+    case 0x56:\r
+      *Type = INTEL_COREI7; // "broadwell"\r
+      *Subtype = INTEL_COREI7_BROADWELL;\r
+      break;\r
+\r
+    // Skylake:\r
+    case 0x4e: // Skylake mobile\r
+    case 0x5e: // Skylake desktop\r
+    case 0x8e: // Kaby Lake mobile\r
+    case 0x9e: // Kaby Lake desktop\r
+      *Type = INTEL_COREI7; // "skylake"\r
+      *Subtype = INTEL_COREI7_SKYLAKE;\r
+      break;\r
+\r
+    // Skylake Xeon:\r
+    case 0x55:\r
+      *Type = INTEL_COREI7;\r
+      // Check that we really have AVX512\r
+      if (Features & (1 << FEATURE_AVX512)) {\r
+        *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"\r
+      } else {\r
+        *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"\r
+      }\r
+      break;\r
+\r
+    case 0x1c: // Most 45 nm Intel Atom processors\r
+    case 0x26: // 45 nm Atom Lincroft\r
+    case 0x27: // 32 nm Atom Medfield\r
+    case 0x35: // 32 nm Atom Midview\r
+    case 0x36: // 32 nm Atom Midview\r
+      *Type = INTEL_ATOM;\r
+      *Subtype = INTEL_ATOM_BONNELL;\r
+      break; // "bonnell"\r
+\r
+    // Atom Silvermont codes from the Intel software optimization guide.\r
+    case 0x37:\r
+    case 0x4a:\r
+    case 0x4d:\r
+    case 0x5a:\r
+    case 0x5d:\r
+    case 0x4c: // really airmont\r
+      *Type = INTEL_ATOM;\r
+      *Subtype = INTEL_ATOM_SILVERMONT;\r
+      break; // "silvermont"\r
+\r
+    case 0x57:\r
+      *Type = INTEL_XEONPHI; // knl\r
+      *Subtype = INTEL_KNIGHTS_LANDING;\r
+      break;\r
+\r
+    default: // Unknown family 6 CPU, try to guess.\r
+      if (Features & (1 << FEATURE_AVX512)) {\r
+        *Type = INTEL_XEONPHI; // knl\r
+        *Subtype = INTEL_KNIGHTS_LANDING;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_ADX)) {\r
+        *Type = INTEL_COREI7;\r
+        *Subtype = INTEL_COREI7_BROADWELL;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_AVX2)) {\r
+        *Type = INTEL_COREI7;\r
+        *Subtype = INTEL_COREI7_HASWELL;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_AVX)) {\r
+        *Type = INTEL_COREI7;\r
+        *Subtype = INTEL_COREI7_SANDYBRIDGE;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_SSE4_2)) {\r
+        if (Features & (1 << FEATURE_MOVBE)) {\r
+          *Type = INTEL_ATOM;\r
+          *Subtype = INTEL_ATOM_SILVERMONT;\r
+        } else {\r
+          *Type = INTEL_COREI7;\r
+          *Subtype = INTEL_COREI7_NEHALEM;\r
+        }\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_SSE4_1)) {\r
+        *Type = INTEL_CORE2; // "penryn"\r
+        *Subtype = INTEL_CORE2_45;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_SSSE3)) {\r
+        if (Features & (1 << FEATURE_MOVBE)) {\r
+          *Type = INTEL_ATOM;\r
+          *Subtype = INTEL_ATOM_BONNELL; // "bonnell"\r
+        } else {\r
+          *Type = INTEL_CORE2; // "core2"\r
+          *Subtype = INTEL_CORE2_65;\r
+        }\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_EM64T)) {\r
+        *Type = INTEL_X86_64;\r
+        break; // x86-64\r
+      }\r
+      if (Features & (1 << FEATURE_SSE2)) {\r
+        *Type = INTEL_PENTIUM_M;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_SSE)) {\r
+        *Type = INTEL_PENTIUM_III;\r
+        break;\r
+      }\r
+      if (Features & (1 << FEATURE_MMX)) {\r
+        *Type = INTEL_PENTIUM_II;\r
+        break;\r
+      }\r
+      *Type = INTEL_PENTIUM_PRO;\r
+      break;\r
+    }\r
+    break;\r
+  case 15: {\r
+    switch (Model) {\r
+    case 0: // Pentium 4 processor, Intel Xeon processor. All processors are\r
+            // model 00h and manufactured using the 0.18 micron process.\r
+    case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon\r
+            // processor MP, and Intel Celeron processor. All processors are\r
+            // model 01h and manufactured using the 0.18 micron process.\r
+    case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,\r
+            // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron\r
+            // processor, and Mobile Intel Celeron processor. All processors\r
+            // are model 02h and manufactured using the 0.13 micron process.\r
+      *Type =\r
+          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);\r
+      break;\r
+\r
+    case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D\r
+            // processor. All processors are model 03h and manufactured using\r
+            // the 90 nm process.\r
+    case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,\r
+            // Pentium D processor, Intel Xeon processor, Intel Xeon\r
+            // processor MP, Intel Celeron D processor. All processors are\r
+            // model 04h and manufactured using the 90 nm process.\r
+    case 6: // Pentium 4 processor, Pentium D processor, Pentium processor\r
+            // Extreme Edition, Intel Xeon processor, Intel Xeon processor\r
+            // MP, Intel Celeron D processor. All processors are model 06h\r
+            // and manufactured using the 65 nm process.\r
+      *Type =\r
+          ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);\r
+      break;\r
+\r
+    default:\r
+      *Type =\r
+          ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);\r
+      break;\r
+    }\r
+    break;\r
+  }\r
+  default:\r
+    break; /*"generic"*/\r
+  }\r
+}\r
+\r
+static void getAMDProcessorTypeAndSubtype(unsigned int Family,\r
+                                          unsigned int Model,\r
+                                          unsigned int Features,\r
+                                          unsigned *Type,\r
+                                          unsigned *Subtype) {\r
+  // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There\r
+  // appears to be no way to generate the wide variety of AMD-specific targets\r
+  // from the information returned from CPUID.\r
+  switch (Family) {\r
+  case 4:\r
+    *Type = AMD_i486;\r
+    break;\r
+  case 5:\r
+    *Type = AMDPENTIUM;\r
+    switch (Model) {\r
+    case 6:\r
+    case 7:\r
+      *Subtype = AMDPENTIUM_K6;\r
+      break; // "k6"\r
+    case 8:\r
+      *Subtype = AMDPENTIUM_K62;\r
+      break; // "k6-2"\r
+    case 9:\r
+    case 13:\r
+      *Subtype = AMDPENTIUM_K63;\r
+      break; // "k6-3"\r
+    case 10:\r
+      *Subtype = AMDPENTIUM_GEODE;\r
+      break; // "geode"\r
+    }\r
+    break;\r
+  case 6:\r
+    *Type = AMDATHLON;\r
+    switch (Model) {\r
+    case 4:\r
+      *Subtype = AMDATHLON_TBIRD;\r
+      break; // "athlon-tbird"\r
+    case 6:\r
+    case 7:\r
+    case 8:\r
+      *Subtype = AMDATHLON_MP;\r
+      break; // "athlon-mp"\r
+    case 10:\r
+      *Subtype = AMDATHLON_XP;\r
+      break; // "athlon-xp"\r
+    }\r
+    break;\r
+  case 15:\r
+    *Type = AMDATHLON;\r
+    if (Features & (1 << FEATURE_SSE3)) {\r
+      *Subtype = AMDATHLON_K8SSE3;\r
+      break; // "k8-sse3"\r
+    }\r
+    switch (Model) {\r
+    case 1:\r
+      *Subtype = AMDATHLON_OPTERON;\r
+      break; // "opteron"\r
+    case 5:\r
+      *Subtype = AMDATHLON_FX;\r
+      break; // "athlon-fx"; also opteron\r
+    default:\r
+      *Subtype = AMDATHLON_64;\r
+      break; // "athlon64"\r
+    }\r
+    break;\r
+  case 16:\r
+    *Type = AMDFAM10H; // "amdfam10"\r
+    switch (Model) {\r
+    case 2:\r
+      *Subtype = AMDFAM10H_BARCELONA;\r
+      break;\r
+    case 4:\r
+      *Subtype = AMDFAM10H_SHANGHAI;\r
+      break;\r
+    case 8:\r
+      *Subtype = AMDFAM10H_ISTANBUL;\r
+      break;\r
+    }\r
+    break;\r
+  case 20:\r
+    *Type = AMDFAM14H;\r
+    *Subtype = AMD_BTVER1;\r
+    break; // "btver1";\r
+  case 21:\r
+    *Type = AMDFAM15H;\r
+    if (!(Features &\r
+          (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.\r
+      *Subtype = AMD_BTVER1;\r
+      break; // "btver1"\r
+    }\r
+    if (Model >= 0x50 && Model <= 0x6f) {\r
+      *Subtype = AMDFAM15H_BDVER4;\r
+      break; // "bdver4"; 50h-6Fh: Excavator\r
+    }\r
+    if (Model >= 0x30 && Model <= 0x3f) {\r
+      *Subtype = AMDFAM15H_BDVER3;\r
+      break; // "bdver3"; 30h-3Fh: Steamroller\r
+    }\r
+    if (Model >= 0x10 && Model <= 0x1f) {\r
+      *Subtype = AMDFAM15H_BDVER2;\r
+      break; // "bdver2"; 10h-1Fh: Piledriver\r
+    }\r
+    if (Model <= 0x0f) {\r
+      *Subtype = AMDFAM15H_BDVER1;\r
+      break; // "bdver1"; 00h-0Fh: Bulldozer\r
+    }\r
+    break;\r
+  case 22:\r
+    *Type = AMDFAM16H;\r
+    if (!(Features &\r
+          (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.\r
+      *Subtype = AMD_BTVER1;\r
+      break; // "btver1";\r
+    }\r
+    *Subtype = AMD_BTVER2;\r
+    break; // "btver2"\r
+  case 23:\r
+    *Type = AMDFAM17H;\r
+    if (Features & (1 << FEATURE_ADX)) {\r
+      *Subtype = AMDFAM17H_ZNVER1;\r
+      break; // "znver1"\r
+    }\r
+    *Subtype =  AMD_BTVER1;\r
+    break;\r
+  default:\r
+    break; // "generic"\r
+  }\r
+}\r
+\r
+static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,\r
+                                     unsigned MaxLeaf) {\r
+  unsigned Features = 0;\r
+  unsigned int EAX, EBX;\r
+  Features |= (((EDX >> 23) & 1) << FEATURE_MMX);\r
+  Features |= (((EDX >> 25) & 1) << FEATURE_SSE);\r
+  Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);\r
+  Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);\r
+  Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);\r
+  Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);\r
+  Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);\r
+  Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);\r
+\r
+  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV\r
+  // indicates that the AVX registers will be saved and restored on context\r
+  // switch, then we have full AVX support.\r
+  const unsigned AVXBits = (1 << 27) | (1 << 28);\r
+  bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&\r
+                ((EAX & 0x6) == 0x6);\r
+  bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);\r
+  bool HasLeaf7 =\r
+      MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);\r
+  bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);\r
+  bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);\r
+  bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);\r
+  Features |= (HasAVX << FEATURE_AVX);\r
+  Features |= (HasAVX2 << FEATURE_AVX2);\r
+  Features |= (HasAVX512 << FEATURE_AVX512);\r
+  Features |= (HasAVX512Save << FEATURE_AVX512SAVE);\r
+  Features |= (HasADX << FEATURE_ADX);\r
+\r
+  getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);\r
+  Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);\r
+  return Features;\r
+}\r
+\r
+StringRef sys::getHostCPUName() {\r
+  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;\r
+  unsigned MaxLeaf, Vendor;\r
+\r
+#if defined(__GNUC__) || defined(__clang__)\r
+  //FIXME: include cpuid.h from clang or copy __get_cpuid_max here\r
+  // and simplify it to not invoke __cpuid (like cpu_model.c in\r
+  // compiler-rt/lib/builtins/cpu_model.c?\r
+  // Opting for the second option.\r
+  if(!isCpuIdSupported())\r
+    return "generic";\r
+#endif\r
+  if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))\r
+    return "generic";\r
+  if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))\r
+    return "generic";\r
+\r
+  unsigned Brand_id = EBX & 0xff;\r
+  unsigned Family = 0, Model = 0;\r
+  unsigned Features = 0;\r
+  detectX86FamilyModel(EAX, &Family, &Model);\r
+  Features = getAvailableFeatures(ECX, EDX, MaxLeaf);\r
+\r
+  unsigned Type;\r
+  unsigned Subtype;\r
+\r
+  if (Vendor == SIG_INTEL) {\r
+    getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,\r
+                                    &Subtype);\r
+    switch (Type) {\r
+    case INTEL_i386:\r
+      return "i386";\r
+    case INTEL_i486:\r
+      return "i486";\r
+    case INTEL_PENTIUM:\r
+      if (Subtype == INTEL_PENTIUM_MMX)\r
+        return "pentium-mmx";\r
+      return "pentium";\r
+    case INTEL_PENTIUM_PRO:\r
+      return "pentiumpro";\r
+    case INTEL_PENTIUM_II:\r
+      return "pentium2";\r
+    case INTEL_PENTIUM_III:\r
+      return "pentium3";\r
+    case INTEL_PENTIUM_IV:\r
+      return "pentium4";\r
+    case INTEL_PENTIUM_M:\r
+      return "pentium-m";\r
+    case INTEL_CORE_DUO:\r
+      return "yonah";\r
+    case INTEL_CORE2:\r
+      switch (Subtype) {\r
+      case INTEL_CORE2_65:\r
+        return "core2";\r
+      case INTEL_CORE2_45:\r
+        return "penryn";\r
+      default:\r
+        return "core2";\r
+      }\r
+    case INTEL_COREI7:\r
+      switch (Subtype) {\r
+      case INTEL_COREI7_NEHALEM:\r
+        return "nehalem";\r
+      case INTEL_COREI7_WESTMERE:\r
+        return "westmere";\r
+      case INTEL_COREI7_SANDYBRIDGE:\r
+        return "sandybridge";\r
+      case INTEL_COREI7_IVYBRIDGE:\r
+        return "ivybridge";\r
+      case INTEL_COREI7_HASWELL:\r
+        return "haswell";\r
+      case INTEL_COREI7_BROADWELL:\r
+        return "broadwell";\r
+      case INTEL_COREI7_SKYLAKE:\r
+        return "skylake";\r
+      case INTEL_COREI7_SKYLAKE_AVX512:\r
+        return "skylake-avx512";\r
+      default:\r
+        return "corei7";\r
+      }\r
+    case INTEL_ATOM:\r
+      switch (Subtype) {\r
+      case INTEL_ATOM_BONNELL:\r
+        return "bonnell";\r
+      case INTEL_ATOM_SILVERMONT:\r
+        return "silvermont";\r
+      default:\r
+        return "atom";\r
+      }\r
+    case INTEL_XEONPHI:\r
+      return "knl"; /*update for more variants added*/\r
+    case INTEL_X86_64:\r
+      return "x86-64";\r
+    case INTEL_NOCONA:\r
+      return "nocona";\r
+    case INTEL_PRESCOTT:\r
+      return "prescott";\r
+    default:\r
+      return "generic";\r
+    }\r
+  } else if (Vendor == SIG_AMD) {\r
+    getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);\r
+    switch (Type) {\r
+    case AMD_i486:\r
+      return "i486";\r
+    case AMDPENTIUM:\r
+      switch (Subtype) {\r
+      case AMDPENTIUM_K6:\r
+        return "k6";\r
+      case AMDPENTIUM_K62:\r
+        return "k6-2";\r
+      case AMDPENTIUM_K63:\r
+        return "k6-3";\r
+      case AMDPENTIUM_GEODE:\r
+        return "geode";\r
+      default:\r
+        return "pentium";\r
+      }\r
+    case AMDATHLON:\r
+      switch (Subtype) {\r
+      case AMDATHLON_TBIRD:\r
+        return "athlon-tbird";\r
+      case AMDATHLON_MP:\r
+        return "athlon-mp";\r
+      case AMDATHLON_XP:\r
+        return "athlon-xp";\r
+      case AMDATHLON_K8SSE3:\r
+        return "k8-sse3";\r
+      case AMDATHLON_OPTERON:\r
+        return "opteron";\r
+      case AMDATHLON_FX:\r
+        return "athlon-fx";\r
+      case AMDATHLON_64:\r
+        return "athlon64";\r
+      default:\r
+        return "athlon";\r
+      }\r
+    case AMDFAM10H:\r
+      if(Subtype == AMDFAM10H_BARCELONA)\r
+        return "barcelona";\r
+      return "amdfam10";\r
+    case AMDFAM14H:\r
+      return "btver1";\r
+    case AMDFAM15H:\r
+      switch (Subtype) {\r
+      case AMDFAM15H_BDVER1:\r
+        return "bdver1";\r
+      case AMDFAM15H_BDVER2:\r
+        return "bdver2";\r
+      case AMDFAM15H_BDVER3:\r
+        return "bdver3";\r
+      case AMDFAM15H_BDVER4:\r
+        return "bdver4";\r
+      case AMD_BTVER1:\r
+        return "btver1";\r
+      default:\r
+        return "amdfam15";\r
+      }\r
+    case AMDFAM16H:\r
+      switch (Subtype) {\r
+      case AMD_BTVER1:\r
+        return "btver1";\r
+      case AMD_BTVER2:\r
+        return "btver2";\r
+      default:\r
+        return "amdfam16";\r
+      }\r
+    case AMDFAM17H:\r
+      switch (Subtype) {\r
+      case AMD_BTVER1:\r
+        return "btver1";\r
+      case AMDFAM17H_ZNVER1:\r
+        return "znver1";\r
+      default:\r
+        return "amdfam17";\r
+      }\r
+    default:\r
+      return "generic";\r
+    }\r
+  }\r
+  return "generic";\r
+}\r
+\r
+#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))\r
+StringRef sys::getHostCPUName() {\r
+  host_basic_info_data_t hostInfo;\r
+  mach_msg_type_number_t infoCount;\r
+\r
+  infoCount = HOST_BASIC_INFO_COUNT;\r
+  host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,\r
+            &infoCount);\r
+\r
+  if (hostInfo.cpu_type != CPU_TYPE_POWERPC)\r
+    return "generic";\r
+\r
+  switch (hostInfo.cpu_subtype) {\r
+  case CPU_SUBTYPE_POWERPC_601:\r
+    return "601";\r
+  case CPU_SUBTYPE_POWERPC_602:\r
+    return "602";\r
+  case CPU_SUBTYPE_POWERPC_603:\r
+    return "603";\r
+  case CPU_SUBTYPE_POWERPC_603e:\r
+    return "603e";\r
+  case CPU_SUBTYPE_POWERPC_603ev:\r
+    return "603ev";\r
+  case CPU_SUBTYPE_POWERPC_604:\r
+    return "604";\r
+  case CPU_SUBTYPE_POWERPC_604e:\r
+    return "604e";\r
+  case CPU_SUBTYPE_POWERPC_620:\r
+    return "620";\r
+  case CPU_SUBTYPE_POWERPC_750:\r
+    return "750";\r
+  case CPU_SUBTYPE_POWERPC_7400:\r
+    return "7400";\r
+  case CPU_SUBTYPE_POWERPC_7450:\r
+    return "7450";\r
+  case CPU_SUBTYPE_POWERPC_970:\r
+    return "970";\r
+  default:;\r
+  }\r
+\r
+  return "generic";\r
+}\r
+#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))\r
+StringRef sys::getHostCPUName() {\r
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
+  const StringRef& Content = P ? P->getBuffer() : "";\r
+  return detail::getHostCPUNameForPowerPC(Content);\r
+}\r
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))\r
+StringRef sys::getHostCPUName() {\r
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
+  const StringRef& Content = P ? P->getBuffer() : "";\r
+  return detail::getHostCPUNameForARM(Content);\r
+}\r
+#elif defined(__linux__) && defined(__s390x__)\r
+StringRef sys::getHostCPUName() {\r
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
+  const StringRef& Content = P ? P->getBuffer() : "";\r
+  return detail::getHostCPUNameForS390x(Content);\r
+}\r
+#else\r
+StringRef sys::getHostCPUName() { return "generic"; }\r
+#endif\r
+\r
+#if defined(__linux__) && defined(__x86_64__)\r
+// On Linux, the number of physical cores can be computed from /proc/cpuinfo,\r
+// using the number of unique physical/core id pairs. The following\r
+// implementation reads the /proc/cpuinfo format on an x86_64 system.\r
+static int computeHostNumPhysicalCores() {\r
+  // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be\r
+  // mmapped because it appears to have 0 size.\r
+  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =\r
+      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");\r
+  if (std::error_code EC = Text.getError()) {\r
+    llvm::errs() << "Can't read "\r
+                 << "/proc/cpuinfo: " << EC.message() << "\n";\r
+    return -1;\r
+  }\r
+  SmallVector<StringRef, 8> strs;\r
+  (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,\r
+                             /*KeepEmpty=*/false);\r
+  int CurPhysicalId = -1;\r
+  int CurCoreId = -1;\r
+  SmallSet<std::pair<int, int>, 32> UniqueItems;\r
+  for (auto &Line : strs) {\r
+    Line = Line.trim();\r
+    if (!Line.startswith("physical id") && !Line.startswith("core id"))\r
+      continue;\r
+    std::pair<StringRef, StringRef> Data = Line.split(':');\r
+    auto Name = Data.first.trim();\r
+    auto Val = Data.second.trim();\r
+    if (Name == "physical id") {\r
+      assert(CurPhysicalId == -1 &&\r
+             "Expected a core id before seeing another physical id");\r
+      Val.getAsInteger(10, CurPhysicalId);\r
+    }\r
+    if (Name == "core id") {\r
+      assert(CurCoreId == -1 &&\r
+             "Expected a physical id before seeing another core id");\r
+      Val.getAsInteger(10, CurCoreId);\r
+    }\r
+    if (CurPhysicalId != -1 && CurCoreId != -1) {\r
+      UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));\r
+      CurPhysicalId = -1;\r
+      CurCoreId = -1;\r
+    }\r
+  }\r
+  return UniqueItems.size();\r
+}\r
+#elif defined(__APPLE__) && defined(__x86_64__)\r
+#include <sys/param.h>\r
+#include <sys/sysctl.h>\r
+\r
+// Gets the number of *physical cores* on the machine.\r
+static int computeHostNumPhysicalCores() {\r
+  uint32_t count;\r
+  size_t len = sizeof(count);\r
+  sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);\r
+  if (count < 1) {\r
+    int nm[2];\r
+    nm[0] = CTL_HW;\r
+    nm[1] = HW_AVAILCPU;\r
+    sysctl(nm, 2, &count, &len, NULL, 0);\r
+    if (count < 1)\r
+      return -1;\r
+  }\r
+  return count;\r
+}\r
+#else\r
+// On other systems, return -1 to indicate unknown.\r
+static int computeHostNumPhysicalCores() { return -1; }\r
+#endif\r
+\r
+int sys::getHostNumPhysicalCores() {\r
+  static int NumCores = computeHostNumPhysicalCores();\r
+  return NumCores;\r
+}\r
+\r
+#if defined(__i386__) || defined(_M_IX86) || \\r
+    defined(__x86_64__) || defined(_M_X64)\r
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {\r
+  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;\r
+  unsigned MaxLevel;\r
+  union {\r
+    unsigned u[3];\r
+    char c[12];\r
+  } text;\r
+\r
+  if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||\r
+      MaxLevel < 1)\r
+    return false;\r
+\r
+  getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);\r
+\r
+  Features["cmov"] = (EDX >> 15) & 1;\r
+  Features["mmx"] = (EDX >> 23) & 1;\r
+  Features["sse"] = (EDX >> 25) & 1;\r
+  Features["sse2"] = (EDX >> 26) & 1;\r
+  Features["sse3"] = (ECX >> 0) & 1;\r
+  Features["ssse3"] = (ECX >> 9) & 1;\r
+  Features["sse4.1"] = (ECX >> 19) & 1;\r
+  Features["sse4.2"] = (ECX >> 20) & 1;\r
+\r
+  Features["pclmul"] = (ECX >> 1) & 1;\r
+  Features["cx16"] = (ECX >> 13) & 1;\r
+  Features["movbe"] = (ECX >> 22) & 1;\r
+  Features["popcnt"] = (ECX >> 23) & 1;\r
+  Features["aes"] = (ECX >> 25) & 1;\r
+  Features["rdrnd"] = (ECX >> 30) & 1;\r
+\r
+  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV\r
+  // indicates that the AVX registers will be saved and restored on context\r
+  // switch, then we have full AVX support.\r
+  bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&\r
+                    !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);\r
+  Features["avx"] = HasAVXSave;\r
+  Features["fma"] = HasAVXSave && (ECX >> 12) & 1;\r
+  Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;\r
+\r
+  // Only enable XSAVE if OS has enabled support for saving YMM state.\r
+  Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;\r
+\r
+  // AVX512 requires additional context to be saved by the OS.\r
+  bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);\r
+\r
+  unsigned MaxExtLevel;\r
+  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);\r
+\r
+  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&\r
+                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);\r
+  Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);\r
+  Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);\r
+  Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);\r
+  Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;\r
+  Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);\r
+  Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;\r
+  Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);\r
+  Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);\r
+\r
+  bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&\r
+                     !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);\r
+  Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);\r
+\r
+  bool HasLeaf7 =\r
+      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);\r
+\r
+  // AVX2 is only supported if we have the OS save support from AVX.\r
+  Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);\r
+\r
+  Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);\r
+  Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);\r
+  Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);\r
+  Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);\r
+  Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);\r
+  Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);\r
+  Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);\r
+  Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);\r
+  Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);\r
+  Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);\r
+\r
+  // AVX512 is only supported if the OS supports the context save for it.\r
+  Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;\r
+  Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;\r
+  Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;\r
+  Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;\r
+  Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;\r
+  Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;\r
+  Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;\r
+  Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;\r
+\r
+  Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);\r
+  Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;\r
+  // Enable protection keys\r
+  Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);\r
+\r
+  bool HasLeafD = MaxLevel >= 0xd &&\r
+                  !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);\r
+\r
+  // Only enable XSAVE if OS has enabled support for saving YMM state.\r
+  Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);\r
+  Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);\r
+  Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);\r
+\r
+  return true;\r
+}\r
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))\r
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {\r
+  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();\r
+  if (!P)\r
+    return false;\r
+\r
+  SmallVector<StringRef, 32> Lines;\r
+  P->getBuffer().split(Lines, "\n");\r
+\r
+  SmallVector<StringRef, 32> CPUFeatures;\r
+\r
+  // Look for the CPU features.\r
+  for (unsigned I = 0, E = Lines.size(); I != E; ++I)\r
+    if (Lines[I].startswith("Features")) {\r
+      Lines[I].split(CPUFeatures, ' ');\r
+      break;\r
+    }\r
+\r
+#if defined(__aarch64__)\r
+  // Keep track of which crypto features we have seen\r
+  enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };\r
+  uint32_t crypto = 0;\r
+#endif\r
+\r
+  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {\r
+    StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])\r
+#if defined(__aarch64__)\r
+                                   .Case("asimd", "neon")\r
+                                   .Case("fp", "fp-armv8")\r
+                                   .Case("crc32", "crc")\r
+#else\r
+                                   .Case("half", "fp16")\r
+                                   .Case("neon", "neon")\r
+                                   .Case("vfpv3", "vfp3")\r
+                                   .Case("vfpv3d16", "d16")\r
+                                   .Case("vfpv4", "vfp4")\r
+                                   .Case("idiva", "hwdiv-arm")\r
+                                   .Case("idivt", "hwdiv")\r
+#endif\r
+                                   .Default("");\r
+\r
+#if defined(__aarch64__)\r
+    // We need to check crypto separately since we need all of the crypto\r
+    // extensions to enable the subtarget feature\r
+    if (CPUFeatures[I] == "aes")\r
+      crypto |= CAP_AES;\r
+    else if (CPUFeatures[I] == "pmull")\r
+      crypto |= CAP_PMULL;\r
+    else if (CPUFeatures[I] == "sha1")\r
+      crypto |= CAP_SHA1;\r
+    else if (CPUFeatures[I] == "sha2")\r
+      crypto |= CAP_SHA2;\r
+#endif\r
+\r
+    if (LLVMFeatureStr != "")\r
+      Features[LLVMFeatureStr] = true;\r
+  }\r
+\r
+#if defined(__aarch64__)\r
+  // If we have all crypto bits we can add the feature\r
+  if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))\r
+    Features["crypto"] = true;\r
+#endif\r
+\r
+  return true;\r
+}\r
+#else\r
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }\r
+#endif\r
+\r
+std::string sys::getProcessTriple() {\r
+  Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));\r
+\r
+  if (sizeof(void *) == 8 && PT.isArch32Bit())\r
+    PT = PT.get64BitArchVariant();\r
+  if (sizeof(void *) == 4 && PT.isArch64Bit())\r
+    PT = PT.get32BitArchVariant();\r
+\r
+  return PT.str();\r
+}\r
index d2f650c..784c3a6 100644 (file)
@@ -170,6 +170,8 @@ def FeatureAES     : SubtargetFeature<"aes", "HasAES", "true",
                                       [FeatureSSE2]>;
 def FeatureTBM     : SubtargetFeature<"tbm", "HasTBM", "true",
                                       "Enable TBM instructions">;
+def FeatureLWP     : SubtargetFeature<"lwp", "HasLWP", "true",
+                                      "Enable LWP instructions">;
 def FeatureMOVBE   : SubtargetFeature<"movbe", "HasMOVBE", "true",
                                       "Support MOVBE instruction">;
 def FeatureRDRAND  : SubtargetFeature<"rdrnd", "HasRDRAND", "true",
@@ -691,6 +693,7 @@ def : Proc<"bdver1", [
   FeatureLZCNT,
   FeaturePOPCNT,
   FeatureXSAVE,
+  FeatureLWP,
   FeatureSlowSHLD,
   FeatureLAHFSAHF
 ]>;
@@ -713,6 +716,7 @@ def : Proc<"bdver2", [
   FeatureXSAVE,
   FeatureBMI,
   FeatureTBM,
+  FeatureLWP,
   FeatureFMA,
   FeatureSlowSHLD,
   FeatureLAHFSAHF
@@ -737,6 +741,7 @@ def : Proc<"bdver3", [
   FeatureXSAVE,
   FeatureBMI,
   FeatureTBM,
+  FeatureLWP,
   FeatureFMA,
   FeatureXSAVEOPT,
   FeatureSlowSHLD,
@@ -763,6 +768,7 @@ def : Proc<"bdver4", [
   FeatureBMI,
   FeatureBMI2,
   FeatureTBM,
+  FeatureLWP,
   FeatureFMA,
   FeatureXSAVEOPT,
   FeatureSlowSHLD,
index ef5ad4f..687dccf 100644 (file)
@@ -20318,6 +20318,19 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
       // during ExpandISelPseudos in EmitInstrWithCustomInserter.
       return SDValue();
     }
+    case Intrinsic::x86_lwpins32:
+    case Intrinsic::x86_lwpins64: {
+      SDLoc dl(Op);
+      SDValue Chain = Op->getOperand(0);
+      SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
+      SDValue LwpIns =
+          DAG.getNode(X86ISD::LWPINS, dl, VTs, Chain, Op->getOperand(2),
+                      Op->getOperand(3), Op->getOperand(4));
+      SDValue SetCC = getSETCC(X86::COND_B, LwpIns.getValue(0), dl, DAG);
+      SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC);
+      return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result,
+                         LwpIns.getValue(1));
+    }
     }
     return SDValue();
   }
@@ -24494,6 +24507,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   case X86ISD::CVTP2UI_RND:        return "X86ISD::CVTP2UI_RND";
   case X86ISD::CVTS2SI_RND:        return "X86ISD::CVTS2SI_RND";
   case X86ISD::CVTS2UI_RND:        return "X86ISD::CVTS2UI_RND";
+  case X86ISD::LWPINS:             return "X86ISD::LWPINS";
   }
   return nullptr;
 }
index 46dc587..18106c2 100644 (file)
@@ -559,6 +559,9 @@ namespace llvm {
       // Conversions between float and half-float.
       CVTPS2PH, CVTPH2PS,
 
+      // LWP insert record.
+      LWPINS,
+
       // Compare and swap.
       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
       LCMPXCHG8_DAG,
index ce08764..cdf7ce1 100644 (file)
@@ -283,6 +283,11 @@ def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA,
 def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL,
                         [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
 
+def X86lwpins : SDNode<"X86ISD::LWPINS",
+                       SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>,
+                                            SDTCisVT<2, i32>, SDTCisVT<3, i32>]>,
+                       [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPSideEffect]>;
+
 //===----------------------------------------------------------------------===//
 // X86 Operand Definitions.
 //
@@ -836,6 +841,7 @@ def HasFMA       : Predicate<"Subtarget->hasFMA()">;
 def HasFMA4      : Predicate<"Subtarget->hasFMA4()">;
 def HasXOP       : Predicate<"Subtarget->hasXOP()">;
 def HasTBM       : Predicate<"Subtarget->hasTBM()">;
+def HasLWP       : Predicate<"Subtarget->hasLWP()">;
 def HasMOVBE     : Predicate<"Subtarget->hasMOVBE()">;
 def HasRDRAND    : Predicate<"Subtarget->hasRDRAND()">;
 def HasF16C      : Predicate<"Subtarget->hasF16C()">;
@@ -2444,6 +2450,59 @@ defm TZMSK   : tbm_binary_intr<0x01, "tzmsk", MRM4r, MRM4m>;
 } // HasTBM, EFLAGS
 
 //===----------------------------------------------------------------------===//
+// Lightweight Profiling Instructions
+
+let Predicates = [HasLWP] in {
+
+def LLWPCB : I<0x12, MRM0r, (outs), (ins GR32:$src), "llwpcb\t$src",
+               [(int_x86_llwpcb GR32:$src)], IIC_LWP>,
+               XOP, XOP9, Requires<[Not64BitMode]>;
+def SLWPCB : I<0x12, MRM1r, (outs GR32:$dst), (ins), "slwpcb\t$dst",
+               [(set GR32:$dst, (int_x86_slwpcb))], IIC_LWP>,
+               XOP, XOP9, Requires<[Not64BitMode]>;
+
+def LLWPCB64 : I<0x12, MRM0r, (outs), (ins GR64:$src), "llwpcb\t$src",
+                 [(int_x86_llwpcb GR64:$src)], IIC_LWP>,
+                 XOP, XOP9, VEX_W, Requires<[In64BitMode]>;
+def SLWPCB64 : I<0x12, MRM1r, (outs GR64:$dst), (ins), "slwpcb\t$dst",
+                 [(set GR64:$dst, (int_x86_slwpcb))], IIC_LWP>,
+                 XOP, XOP9, VEX_W, Requires<[In64BitMode]>;
+
+multiclass lwpins_intr<RegisterClass RC> {
+  def rri : Ii32<0x12, MRM0r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl),
+                 "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}",
+                 [(set EFLAGS, (X86lwpins RC:$src0, GR32:$src1, imm:$cntl))]>,
+                 XOP_4V, XOPA;
+  let mayLoad = 1 in
+  def rmi : Ii32<0x12, MRM0m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl),
+                 "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}",
+                 [(set EFLAGS, (X86lwpins RC:$src0, (loadi32 addr:$src1), imm:$cntl))]>,
+                 XOP_4V, XOPA;
+}
+
+let Defs = [EFLAGS] in {
+  defm LWPINS32 : lwpins_intr<GR32>;
+  defm LWPINS64 : lwpins_intr<GR64>, VEX_W;
+} // EFLAGS
+
+multiclass lwpval_intr<RegisterClass RC, Intrinsic Int> {
+  def rri : Ii32<0x12, MRM1r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl),
+                 "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}",
+                 [(Int RC:$src0, GR32:$src1, imm:$cntl)], IIC_LWP>,
+                 XOP_4V, XOPA;
+  let mayLoad = 1 in
+  def rmi : Ii32<0x12, MRM1m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl),
+                 "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}",
+                 [(Int RC:$src0, (loadi32 addr:$src1), imm:$cntl)], IIC_LWP>,
+                 XOP_4V, XOPA;
+}
+
+defm LWPVAL32 : lwpval_intr<GR32, int_x86_lwpval32>;
+defm LWPVAL64 : lwpval_intr<GR64, int_x86_lwpval64>, VEX_W;
+
+} // HasLWP
+
+//===----------------------------------------------------------------------===//
 // MONITORX/MWAITX Instructions
 //
 let SchedRW = [ WriteSystem ] in {
index 7f7efd7..6580fbd 100644 (file)
-//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-// InstrSchedModel annotations for out-of-order CPUs.
-//
-// These annotations are independent of the itinerary classes defined below.
-
-// Instructions with folded loads need to read the memory operand immediately,
-// but other register operands don't have to be read until the load is ready.
-// These operands are marked with ReadAfterLd.
-def ReadAfterLd : SchedRead;
-
-// Instructions with both a load and a store folded are modeled as a folded
-// load + WriteRMW.
-def WriteRMW : SchedWrite;
-
-// Most instructions can fold loads, so almost every SchedWrite comes in two
-// variants: With and without a folded load.
-// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
-// with a folded load.
-class X86FoldableSchedWrite : SchedWrite {
-  // The SchedWrite to use when a load is folded into the instruction.
-  SchedWrite Folded;
-}
-
-// Multiclass that produces a linked pair of SchedWrites.
-multiclass X86SchedWritePair {
-  // Register-Memory operation.
-  def Ld : SchedWrite;
-  // Register-Register operation.
-  def NAME : X86FoldableSchedWrite {
-    let Folded = !cast<SchedWrite>(NAME#"Ld");
-  }
-}
-
-// Arithmetic.
-defm WriteALU  : X86SchedWritePair; // Simple integer ALU op.
-defm WriteIMul : X86SchedWritePair; // Integer multiplication.
-def  WriteIMulH : SchedWrite;       // Integer multiplication, high part.
-defm WriteIDiv : X86SchedWritePair; // Integer division.
-def  WriteLEA  : SchedWrite;        // LEA instructions can't fold loads.
-
-// Integer shifts and rotates.
-defm WriteShift : X86SchedWritePair;
-
-// Loads, stores, and moves, not folded with other operations.
-def WriteLoad  : SchedWrite;
-def WriteStore : SchedWrite;
-def WriteMove  : SchedWrite;
-
-// Idioms that clear a register, like xorps %xmm0, %xmm0.
-// These can often bypass execution ports completely.
-def WriteZero : SchedWrite;
-
-// Branches don't produce values, so they have no latency, but they still
-// consume resources. Indirect branches can fold loads.
-defm WriteJump : X86SchedWritePair;
-
-// Floating point. This covers both scalar and vector operations.
-defm WriteFAdd   : X86SchedWritePair; // Floating point add/sub/compare.
-defm WriteFMul   : X86SchedWritePair; // Floating point multiplication.
-defm WriteFDiv   : X86SchedWritePair; // Floating point division.
-defm WriteFSqrt  : X86SchedWritePair; // Floating point square root.
-defm WriteFRcp   : X86SchedWritePair; // Floating point reciprocal estimate.
-defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.
-defm WriteFMA    : X86SchedWritePair; // Fused Multiply Add.
-defm WriteFShuffle  : X86SchedWritePair; // Floating point vector shuffles.
-defm WriteFBlend  : X86SchedWritePair; // Floating point vector blends.
-defm WriteFVarBlend  : X86SchedWritePair; // Fp vector variable blends.
-
-// FMA Scheduling helper class.
-class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
-
-// Vector integer operations.
-defm WriteVecALU   : X86SchedWritePair; // Vector integer ALU op, no logicals.
-defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
-defm WriteVecIMul  : X86SchedWritePair; // Vector integer multiply.
-defm WriteShuffle  : X86SchedWritePair; // Vector shuffles.
-defm WriteBlend  : X86SchedWritePair; // Vector blends.
-defm WriteVarBlend  : X86SchedWritePair; // Vector variable blends.
-defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.
-
-// Vector bitwise operations.
-// These are often used on both floating point and integer vectors.
-defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
-
-// Conversion between integer and float.
-defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
-defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
-defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
-
-// Strings instructions.
-// Packed Compare Implicit Length Strings, Return Mask
-defm WritePCmpIStrM : X86SchedWritePair;
-// Packed Compare Explicit Length Strings, Return Mask
-defm WritePCmpEStrM : X86SchedWritePair;
-// Packed Compare Implicit Length Strings, Return Index
-defm WritePCmpIStrI : X86SchedWritePair;
-// Packed Compare Explicit Length Strings, Return Index
-defm WritePCmpEStrI : X86SchedWritePair;
-
-// AES instructions.
-defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.
-defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.
-defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.
-
-// Carry-less multiplication instructions.
-defm WriteCLMul : X86SchedWritePair;
-
-// Catch-all for expensive system instructions.
-def WriteSystem : SchedWrite;
-
-// AVX2.
-defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.
-defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.
-defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.
-
-// Old microcoded instructions that nobody use.
-def WriteMicrocoded : SchedWrite;
-
-// Fence instructions.
-def WriteFence : SchedWrite;
-
-// Nop, not very useful expect it provides a model for nops!
-def WriteNop : SchedWrite;
-
-//===----------------------------------------------------------------------===//
-// Instruction Itinerary classes used for X86
-def IIC_ALU_MEM     : InstrItinClass;
-def IIC_ALU_NONMEM  : InstrItinClass;
-def IIC_LEA         : InstrItinClass;
-def IIC_LEA_16      : InstrItinClass;
-def IIC_MUL8        : InstrItinClass;
-def IIC_MUL16_MEM   : InstrItinClass;
-def IIC_MUL16_REG   : InstrItinClass;
-def IIC_MUL32_MEM   : InstrItinClass;
-def IIC_MUL32_REG   : InstrItinClass;
-def IIC_MUL64       : InstrItinClass;
-// imul by al, ax, eax, tax
-def IIC_IMUL8       : InstrItinClass;
-def IIC_IMUL16_MEM  : InstrItinClass;
-def IIC_IMUL16_REG  : InstrItinClass;
-def IIC_IMUL32_MEM  : InstrItinClass;
-def IIC_IMUL32_REG  : InstrItinClass;
-def IIC_IMUL64      : InstrItinClass;
-// imul reg by reg|mem
-def IIC_IMUL16_RM   : InstrItinClass;
-def IIC_IMUL16_RR   : InstrItinClass;
-def IIC_IMUL32_RM   : InstrItinClass;
-def IIC_IMUL32_RR   : InstrItinClass;
-def IIC_IMUL64_RM   : InstrItinClass;
-def IIC_IMUL64_RR   : InstrItinClass;
-// imul reg = reg/mem * imm
-def IIC_IMUL16_RMI  : InstrItinClass;
-def IIC_IMUL16_RRI  : InstrItinClass;
-def IIC_IMUL32_RMI  : InstrItinClass;
-def IIC_IMUL32_RRI  : InstrItinClass;
-def IIC_IMUL64_RMI  : InstrItinClass;
-def IIC_IMUL64_RRI  : InstrItinClass;
-// div
-def IIC_DIV8_MEM    : InstrItinClass;
-def IIC_DIV8_REG    : InstrItinClass;
-def IIC_DIV16       : InstrItinClass;
-def IIC_DIV32       : InstrItinClass;
-def IIC_DIV64       : InstrItinClass;
-// idiv
-def IIC_IDIV8       : InstrItinClass;
-def IIC_IDIV16      : InstrItinClass;
-def IIC_IDIV32      : InstrItinClass;
-def IIC_IDIV64      : InstrItinClass;
-// neg/not/inc/dec
-def IIC_UNARY_REG   : InstrItinClass;
-def IIC_UNARY_MEM   : InstrItinClass;
-// add/sub/and/or/xor/sbc/cmp/test
-def IIC_BIN_MEM     : InstrItinClass;
-def IIC_BIN_NONMEM  : InstrItinClass;
-// adc/sbc
-def IIC_BIN_CARRY_MEM     : InstrItinClass;
-def IIC_BIN_CARRY_NONMEM  : InstrItinClass;
-// shift/rotate
-def IIC_SR          : InstrItinClass;
-// shift double
-def IIC_SHD16_REG_IM : InstrItinClass;
-def IIC_SHD16_REG_CL : InstrItinClass;
-def IIC_SHD16_MEM_IM : InstrItinClass;
-def IIC_SHD16_MEM_CL : InstrItinClass;
-def IIC_SHD32_REG_IM : InstrItinClass;
-def IIC_SHD32_REG_CL : InstrItinClass;
-def IIC_SHD32_MEM_IM : InstrItinClass;
-def IIC_SHD32_MEM_CL : InstrItinClass;
-def IIC_SHD64_REG_IM : InstrItinClass;
-def IIC_SHD64_REG_CL : InstrItinClass;
-def IIC_SHD64_MEM_IM : InstrItinClass;
-def IIC_SHD64_MEM_CL : InstrItinClass;
-// cmov
-def IIC_CMOV16_RM : InstrItinClass;
-def IIC_CMOV16_RR : InstrItinClass;
-def IIC_CMOV32_RM : InstrItinClass;
-def IIC_CMOV32_RR : InstrItinClass;
-def IIC_CMOV64_RM : InstrItinClass;
-def IIC_CMOV64_RR : InstrItinClass;
-// set
-def IIC_SET_R : InstrItinClass;
-def IIC_SET_M : InstrItinClass;
-// jmp/jcc/jcxz
-def IIC_Jcc : InstrItinClass;
-def IIC_JCXZ : InstrItinClass;
-def IIC_JMP_REL : InstrItinClass;
-def IIC_JMP_REG : InstrItinClass;
-def IIC_JMP_MEM : InstrItinClass;
-def IIC_JMP_FAR_MEM : InstrItinClass;
-def IIC_JMP_FAR_PTR : InstrItinClass;
-// loop
-def IIC_LOOP : InstrItinClass;
-def IIC_LOOPE : InstrItinClass;
-def IIC_LOOPNE : InstrItinClass;
-// call
-def IIC_CALL_RI : InstrItinClass;
-def IIC_CALL_MEM : InstrItinClass;
-def IIC_CALL_FAR_MEM : InstrItinClass;
-def IIC_CALL_FAR_PTR : InstrItinClass;
-// ret
-def IIC_RET : InstrItinClass;
-def IIC_RET_IMM : InstrItinClass;
-//sign extension movs
-def IIC_MOVSX : InstrItinClass;
-def IIC_MOVSX_R16_R8 : InstrItinClass;
-def IIC_MOVSX_R16_M8 : InstrItinClass;
-def IIC_MOVSX_R16_R16 : InstrItinClass;
-def IIC_MOVSX_R32_R32 : InstrItinClass;
-//zero extension movs
-def IIC_MOVZX : InstrItinClass;
-def IIC_MOVZX_R16_R8 : InstrItinClass;
-def IIC_MOVZX_R16_M8 : InstrItinClass;
-
-def IIC_REP_MOVS : InstrItinClass;
-def IIC_REP_STOS : InstrItinClass;
-
-// SSE scalar/parallel binary operations
-def IIC_SSE_ALU_F32S_RR : InstrItinClass;
-def IIC_SSE_ALU_F32S_RM : InstrItinClass;
-def IIC_SSE_ALU_F64S_RR : InstrItinClass;
-def IIC_SSE_ALU_F64S_RM : InstrItinClass;
-def IIC_SSE_MUL_F32S_RR : InstrItinClass;
-def IIC_SSE_MUL_F32S_RM : InstrItinClass;
-def IIC_SSE_MUL_F64S_RR : InstrItinClass;
-def IIC_SSE_MUL_F64S_RM : InstrItinClass;
-def IIC_SSE_DIV_F32S_RR : InstrItinClass;
-def IIC_SSE_DIV_F32S_RM : InstrItinClass;
-def IIC_SSE_DIV_F64S_RR : InstrItinClass;
-def IIC_SSE_DIV_F64S_RM : InstrItinClass;
-def IIC_SSE_ALU_F32P_RR : InstrItinClass;
-def IIC_SSE_ALU_F32P_RM : InstrItinClass;
-def IIC_SSE_ALU_F64P_RR : InstrItinClass;
-def IIC_SSE_ALU_F64P_RM : InstrItinClass;
-def IIC_SSE_MUL_F32P_RR : InstrItinClass;
-def IIC_SSE_MUL_F32P_RM : InstrItinClass;
-def IIC_SSE_MUL_F64P_RR : InstrItinClass;
-def IIC_SSE_MUL_F64P_RM : InstrItinClass;
-def IIC_SSE_DIV_F32P_RR : InstrItinClass;
-def IIC_SSE_DIV_F32P_RM : InstrItinClass;
-def IIC_SSE_DIV_F64P_RR : InstrItinClass;
-def IIC_SSE_DIV_F64P_RM : InstrItinClass;
-
-def IIC_SSE_COMIS_RR : InstrItinClass;
-def IIC_SSE_COMIS_RM : InstrItinClass;
-
-def IIC_SSE_HADDSUB_RR : InstrItinClass;
-def IIC_SSE_HADDSUB_RM : InstrItinClass;
-
-def IIC_SSE_BIT_P_RR  : InstrItinClass;
-def IIC_SSE_BIT_P_RM  : InstrItinClass;
-
-def IIC_SSE_INTALU_P_RR  : InstrItinClass;
-def IIC_SSE_INTALU_P_RM  : InstrItinClass;
-def IIC_SSE_INTALUQ_P_RR  : InstrItinClass;
-def IIC_SSE_INTALUQ_P_RM  : InstrItinClass;
-
-def IIC_SSE_INTMUL_P_RR : InstrItinClass;
-def IIC_SSE_INTMUL_P_RM : InstrItinClass;
-
-def IIC_SSE_INTSH_P_RR : InstrItinClass;
-def IIC_SSE_INTSH_P_RM : InstrItinClass;
-def IIC_SSE_INTSH_P_RI : InstrItinClass;
-
-def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;
-
-def IIC_SSE_SHUFP : InstrItinClass;
-def IIC_SSE_PSHUF_RI : InstrItinClass;
-def IIC_SSE_PSHUF_MI : InstrItinClass;
-
-def IIC_SSE_UNPCK : InstrItinClass;
-
-def IIC_SSE_MOVMSK : InstrItinClass;
-def IIC_SSE_MASKMOV : InstrItinClass;
-
-def IIC_SSE_PEXTRW : InstrItinClass;
-def IIC_SSE_PINSRW : InstrItinClass;
-
-def IIC_SSE_PABS_RR : InstrItinClass;
-def IIC_SSE_PABS_RM : InstrItinClass;
-
-def IIC_SSE_SQRTPS_RR : InstrItinClass;
-def IIC_SSE_SQRTPS_RM : InstrItinClass;
-def IIC_SSE_SQRTSS_RR : InstrItinClass;
-def IIC_SSE_SQRTSS_RM : InstrItinClass;
-def IIC_SSE_SQRTPD_RR : InstrItinClass;
-def IIC_SSE_SQRTPD_RM : InstrItinClass;
-def IIC_SSE_SQRTSD_RR : InstrItinClass;
-def IIC_SSE_SQRTSD_RM : InstrItinClass;
-
-def IIC_SSE_RSQRTPS_RR : InstrItinClass;
-def IIC_SSE_RSQRTPS_RM : InstrItinClass;
-def IIC_SSE_RSQRTSS_RR : InstrItinClass;
-def IIC_SSE_RSQRTSS_RM : InstrItinClass;
-
-def IIC_SSE_RCPP_RR : InstrItinClass;
-def IIC_SSE_RCPP_RM : InstrItinClass;
-def IIC_SSE_RCPS_RR : InstrItinClass;
-def IIC_SSE_RCPS_RM : InstrItinClass;
-
-def IIC_SSE_MOV_S_RR : InstrItinClass;
-def IIC_SSE_MOV_S_RM : InstrItinClass;
-def IIC_SSE_MOV_S_MR : InstrItinClass;
-
-def IIC_SSE_MOVA_P_RR : InstrItinClass;
-def IIC_SSE_MOVA_P_RM : InstrItinClass;
-def IIC_SSE_MOVA_P_MR : InstrItinClass;
-
-def IIC_SSE_MOVU_P_RR : InstrItinClass;
-def IIC_SSE_MOVU_P_RM : InstrItinClass;
-def IIC_SSE_MOVU_P_MR : InstrItinClass;
-
-def IIC_SSE_MOVDQ : InstrItinClass;
-def IIC_SSE_MOVD_ToGP : InstrItinClass;
-def IIC_SSE_MOVQ_RR : InstrItinClass;
-
-def IIC_SSE_MOV_LH : InstrItinClass;
-
-def IIC_SSE_LDDQU : InstrItinClass;
-
-def IIC_SSE_MOVNT : InstrItinClass;
-
-def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
-def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
-def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
-def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
-def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
-def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
-def IIC_SSE_PSHUFB_RR : InstrItinClass;
-def IIC_SSE_PSHUFB_RM : InstrItinClass;
-def IIC_SSE_PSIGN_RR : InstrItinClass;
-def IIC_SSE_PSIGN_RM : InstrItinClass;
-
-def IIC_SSE_PMADD : InstrItinClass;
-def IIC_SSE_PMULHRSW : InstrItinClass;
-def IIC_SSE_PALIGNRR : InstrItinClass;
-def IIC_SSE_PALIGNRM : InstrItinClass;
-def IIC_SSE_MWAIT : InstrItinClass;
-def IIC_SSE_MONITOR : InstrItinClass;
-def IIC_SSE_MWAITX : InstrItinClass;
-def IIC_SSE_MONITORX : InstrItinClass;
-def IIC_SSE_CLZERO : InstrItinClass;
-
-def IIC_SSE_PREFETCH : InstrItinClass;
-def IIC_SSE_PAUSE : InstrItinClass;
-def IIC_SSE_LFENCE : InstrItinClass;
-def IIC_SSE_MFENCE : InstrItinClass;
-def IIC_SSE_SFENCE : InstrItinClass;
-def IIC_SSE_LDMXCSR : InstrItinClass;
-def IIC_SSE_STMXCSR : InstrItinClass;
-
-def IIC_SSE_CVT_PD_RR : InstrItinClass;
-def IIC_SSE_CVT_PD_RM : InstrItinClass;
-def IIC_SSE_CVT_PS_RR : InstrItinClass;
-def IIC_SSE_CVT_PS_RM : InstrItinClass;
-def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;
-def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;
-def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
-def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
-def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
-def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
-def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
-def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
-def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
-def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;
-
-// MMX
-def IIC_MMX_MOV_MM_RM : InstrItinClass;
-def IIC_MMX_MOV_REG_MM : InstrItinClass;
-def IIC_MMX_MOVQ_RM : InstrItinClass;
-def IIC_MMX_MOVQ_RR : InstrItinClass;
-
-def IIC_MMX_ALU_RM : InstrItinClass;
-def IIC_MMX_ALU_RR : InstrItinClass;
-def IIC_MMX_ALUQ_RM : InstrItinClass;
-def IIC_MMX_ALUQ_RR : InstrItinClass;
-def IIC_MMX_PHADDSUBW_RM : InstrItinClass;
-def IIC_MMX_PHADDSUBW_RR : InstrItinClass;
-def IIC_MMX_PHADDSUBD_RM : InstrItinClass;
-def IIC_MMX_PHADDSUBD_RR : InstrItinClass;
-def IIC_MMX_PMUL : InstrItinClass;
-def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;
-def IIC_MMX_MISC_FUNC_REG : InstrItinClass;
-def IIC_MMX_PSADBW : InstrItinClass;
-def IIC_MMX_SHIFT_RI : InstrItinClass;
-def IIC_MMX_SHIFT_RM : InstrItinClass;
-def IIC_MMX_SHIFT_RR : InstrItinClass;
-def IIC_MMX_UNPCK_H_RM : InstrItinClass;
-def IIC_MMX_UNPCK_H_RR : InstrItinClass;
-def IIC_MMX_UNPCK_L : InstrItinClass;
-def IIC_MMX_PCK_RM : InstrItinClass;
-def IIC_MMX_PCK_RR : InstrItinClass;
-def IIC_MMX_PSHUF : InstrItinClass;
-def IIC_MMX_PEXTR : InstrItinClass;
-def IIC_MMX_PINSRW : InstrItinClass;
-def IIC_MMX_MASKMOV : InstrItinClass;
-
-def IIC_MMX_CVT_PD_RR : InstrItinClass;
-def IIC_MMX_CVT_PD_RM : InstrItinClass;
-def IIC_MMX_CVT_PS_RR : InstrItinClass;
-def IIC_MMX_CVT_PS_RM : InstrItinClass;
-
-def IIC_CMPX_LOCK : InstrItinClass;
-def IIC_CMPX_LOCK_8 : InstrItinClass;
-def IIC_CMPX_LOCK_8B : InstrItinClass;
-def IIC_CMPX_LOCK_16B : InstrItinClass;
-
-def IIC_XADD_LOCK_MEM : InstrItinClass;
-def IIC_XADD_LOCK_MEM8 : InstrItinClass;
-
-def IIC_FILD : InstrItinClass;
-def IIC_FLD : InstrItinClass;
-def IIC_FLD80 : InstrItinClass;
-def IIC_FST : InstrItinClass;
-def IIC_FST80 : InstrItinClass;
-def IIC_FIST : InstrItinClass;
-def IIC_FLDZ : InstrItinClass;
-def IIC_FUCOM : InstrItinClass;
-def IIC_FUCOMI : InstrItinClass;
-def IIC_FCOMI : InstrItinClass;
-def IIC_FNSTSW : InstrItinClass;
-def IIC_FNSTCW : InstrItinClass;
-def IIC_FLDCW : InstrItinClass;
-def IIC_FNINIT : InstrItinClass;
-def IIC_FFREE : InstrItinClass;
-def IIC_FNCLEX : InstrItinClass;
-def IIC_WAIT : InstrItinClass;
-def IIC_FXAM : InstrItinClass;
-def IIC_FNOP : InstrItinClass;
-def IIC_FLDL : InstrItinClass;
-def IIC_F2XM1 : InstrItinClass;
-def IIC_FYL2X : InstrItinClass;
-def IIC_FPTAN : InstrItinClass;
-def IIC_FPATAN : InstrItinClass;
-def IIC_FXTRACT : InstrItinClass;
-def IIC_FPREM1 : InstrItinClass;
-def IIC_FPSTP : InstrItinClass;
-def IIC_FPREM : InstrItinClass;
-def IIC_FYL2XP1 : InstrItinClass;
-def IIC_FSINCOS : InstrItinClass;
-def IIC_FRNDINT : InstrItinClass;
-def IIC_FSCALE : InstrItinClass;
-def IIC_FCOMPP : InstrItinClass;
-def IIC_FXSAVE : InstrItinClass;
-def IIC_FXRSTOR : InstrItinClass;
-
-def IIC_FXCH : InstrItinClass;
-
-// System instructions
-def IIC_CPUID : InstrItinClass;
-def IIC_INT : InstrItinClass;
-def IIC_INT3 : InstrItinClass;
-def IIC_INVD : InstrItinClass;
-def IIC_INVLPG : InstrItinClass;
-def IIC_IRET : InstrItinClass;
-def IIC_HLT : InstrItinClass;
-def IIC_LXS : InstrItinClass;
-def IIC_LTR : InstrItinClass;
-def IIC_RDTSC : InstrItinClass;
-def IIC_RSM : InstrItinClass;
-def IIC_SIDT : InstrItinClass;
-def IIC_SGDT : InstrItinClass;
-def IIC_SLDT : InstrItinClass;
-def IIC_STR : InstrItinClass;
-def IIC_SWAPGS : InstrItinClass;
-def IIC_SYSCALL : InstrItinClass;
-def IIC_SYS_ENTER_EXIT : InstrItinClass;
-def IIC_IN_RR : InstrItinClass;
-def IIC_IN_RI : InstrItinClass;
-def IIC_OUT_RR : InstrItinClass;
-def IIC_OUT_IR : InstrItinClass;
-def IIC_INS : InstrItinClass;
-def IIC_MOV_REG_DR : InstrItinClass;
-def IIC_MOV_DR_REG : InstrItinClass;
-def IIC_MOV_REG_CR : InstrItinClass;
-def IIC_MOV_CR_REG : InstrItinClass;
-def IIC_MOV_REG_SR : InstrItinClass;
-def IIC_MOV_MEM_SR : InstrItinClass;
-def IIC_MOV_SR_REG : InstrItinClass;
-def IIC_MOV_SR_MEM : InstrItinClass;
-def IIC_LAR_RM : InstrItinClass;
-def IIC_LAR_RR : InstrItinClass;
-def IIC_LSL_RM : InstrItinClass;
-def IIC_LSL_RR : InstrItinClass;
-def IIC_LGDT : InstrItinClass;
-def IIC_LIDT : InstrItinClass;
-def IIC_LLDT_REG : InstrItinClass;
-def IIC_LLDT_MEM : InstrItinClass;
-def IIC_PUSH_CS : InstrItinClass;
-def IIC_PUSH_SR : InstrItinClass;
-def IIC_POP_SR : InstrItinClass;
-def IIC_POP_SR_SS : InstrItinClass;
-def IIC_VERR : InstrItinClass;
-def IIC_VERW_REG : InstrItinClass;
-def IIC_VERW_MEM : InstrItinClass;
-def IIC_WRMSR : InstrItinClass;
-def IIC_RDMSR : InstrItinClass;
-def IIC_RDPMC : InstrItinClass;
-def IIC_SMSW : InstrItinClass;
-def IIC_LMSW_REG : InstrItinClass;
-def IIC_LMSW_MEM : InstrItinClass;
-def IIC_ENTER : InstrItinClass;
-def IIC_LEAVE : InstrItinClass;
-def IIC_POP_MEM : InstrItinClass;
-def IIC_POP_REG16 : InstrItinClass;
-def IIC_POP_REG : InstrItinClass;
-def IIC_POP_F : InstrItinClass;
-def IIC_POP_FD : InstrItinClass;
-def IIC_POP_A : InstrItinClass;
-def IIC_PUSH_IMM : InstrItinClass;
-def IIC_PUSH_MEM : InstrItinClass;
-def IIC_PUSH_REG : InstrItinClass;
-def IIC_PUSH_F : InstrItinClass;
-def IIC_PUSH_A : InstrItinClass;
-def IIC_BSWAP : InstrItinClass;
-def IIC_BIT_SCAN_MEM : InstrItinClass;
-def IIC_BIT_SCAN_REG : InstrItinClass;
-def IIC_MOVS : InstrItinClass;
-def IIC_STOS : InstrItinClass;
-def IIC_SCAS : InstrItinClass;
-def IIC_CMPS : InstrItinClass;
-def IIC_MOV : InstrItinClass;
-def IIC_MOV_MEM : InstrItinClass;
-def IIC_AHF : InstrItinClass;
-def IIC_BT_MI : InstrItinClass;
-def IIC_BT_MR : InstrItinClass;
-def IIC_BT_RI : InstrItinClass;
-def IIC_BT_RR : InstrItinClass;
-def IIC_BTX_MI : InstrItinClass;
-def IIC_BTX_MR : InstrItinClass;
-def IIC_BTX_RI : InstrItinClass;
-def IIC_BTX_RR : InstrItinClass;
-def IIC_XCHG_REG : InstrItinClass;
-def IIC_XCHG_MEM : InstrItinClass;
-def IIC_XADD_REG : InstrItinClass;
-def IIC_XADD_MEM : InstrItinClass;
-def IIC_CMPXCHG_MEM : InstrItinClass;
-def IIC_CMPXCHG_REG : InstrItinClass;
-def IIC_CMPXCHG_MEM8 : InstrItinClass;
-def IIC_CMPXCHG_REG8 : InstrItinClass;
-def IIC_CMPXCHG_8B : InstrItinClass;
-def IIC_CMPXCHG_16B : InstrItinClass;
-def IIC_LODS : InstrItinClass;
-def IIC_OUTS : InstrItinClass;
-def IIC_CLC : InstrItinClass;
-def IIC_CLD : InstrItinClass;
-def IIC_CLI : InstrItinClass;
-def IIC_CMC : InstrItinClass;
-def IIC_CLTS : InstrItinClass;
-def IIC_STC : InstrItinClass;
-def IIC_STI : InstrItinClass;
-def IIC_STD : InstrItinClass;
-def IIC_XLAT : InstrItinClass;
-def IIC_AAA : InstrItinClass;
-def IIC_AAD : InstrItinClass;
-def IIC_AAM : InstrItinClass;
-def IIC_AAS : InstrItinClass;
-def IIC_DAA : InstrItinClass;
-def IIC_DAS : InstrItinClass;
-def IIC_BOUND : InstrItinClass;
-def IIC_ARPL_REG : InstrItinClass;
-def IIC_ARPL_MEM : InstrItinClass;
-def IIC_MOVBE : InstrItinClass;
-def IIC_AES   : InstrItinClass;
-def IIC_BLEND_MEM : InstrItinClass;
-def IIC_BLEND_NOMEM : InstrItinClass;
-def IIC_CBW   : InstrItinClass;
-def IIC_CRC32_REG : InstrItinClass;
-def IIC_CRC32_MEM : InstrItinClass;
-def IIC_SSE_DPPD_RR : InstrItinClass;
-def IIC_SSE_DPPD_RM : InstrItinClass;
-def IIC_SSE_DPPS_RR : InstrItinClass;
-def IIC_SSE_DPPS_RM : InstrItinClass;
-def IIC_MMX_EMMS : InstrItinClass;
-def IIC_SSE_EXTRACTPS_RR : InstrItinClass;
-def IIC_SSE_EXTRACTPS_RM : InstrItinClass;
-def IIC_SSE_INSERTPS_RR : InstrItinClass;
-def IIC_SSE_INSERTPS_RM : InstrItinClass;
-def IIC_SSE_MPSADBW_RR : InstrItinClass;
-def IIC_SSE_MPSADBW_RM : InstrItinClass;
-def IIC_SSE_PMULLD_RR : InstrItinClass;
-def IIC_SSE_PMULLD_RM : InstrItinClass;
-def IIC_SSE_ROUNDPS_REG : InstrItinClass;
-def IIC_SSE_ROUNDPS_MEM : InstrItinClass;
-def IIC_SSE_ROUNDPD_REG : InstrItinClass;
-def IIC_SSE_ROUNDPD_MEM : InstrItinClass;
-def IIC_SSE_POPCNT_RR : InstrItinClass;
-def IIC_SSE_POPCNT_RM : InstrItinClass;
-def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;
-def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;
-
-def IIC_NOP : InstrItinClass;
-
-//===----------------------------------------------------------------------===//
-// Processor instruction itineraries.
-
-// IssueWidth is analogous to the number of decode units. Core and its
-// descendents, including Nehalem and SandyBridge have 4 decoders.
-// Resources beyond the decoder operate on micro-ops and are bufferred
-// so adjacent micro-ops don't directly compete.
-//
-// MicroOpBufferSize > 1 indicates that RAW dependencies can be
-// decoded in the same cycle. The value 32 is a reasonably arbitrary
-// number of in-flight instructions.
-//
-// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
-// indicates high latency opcodes. Alternatively, InstrItinData
-// entries may be included here to define specific operand
-// latencies. Since these latencies are not used for pipeline hazards,
-// they do not need to be exact.
-//
-// The GenericX86Model contains no instruction itineraries
-// and disables PostRAScheduler.
-class GenericX86Model : SchedMachineModel {
-  let IssueWidth = 4;
-  let MicroOpBufferSize = 32;
-  let LoadLatency = 4;
-  let HighLatency = 10;
-  let PostRAScheduler = 0;
-  let CompleteModel = 0;
-}
-
-def GenericModel : GenericX86Model;
-
-// Define a model with the PostRAScheduler enabled.
-def GenericPostRAModel : GenericX86Model {
-  let PostRAScheduler = 1;
-}
-
-include "X86ScheduleAtom.td"
-include "X86SchedSandyBridge.td"
-include "X86SchedHaswell.td"
-include "X86ScheduleSLM.td"
-include "X86ScheduleBtVer2.td"
-
+//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//\r
+//\r
+//                     The LLVM Compiler Infrastructure\r
+//\r
+// This file is distributed under the University of Illinois Open Source\r
+// License. See LICENSE.TXT for details.\r
+//\r
+//===----------------------------------------------------------------------===//\r
+\r
+// InstrSchedModel annotations for out-of-order CPUs.\r
+//\r
+// These annotations are independent of the itinerary classes defined below.\r
+\r
+// Instructions with folded loads need to read the memory operand immediately,\r
+// but other register operands don't have to be read until the load is ready.\r
+// These operands are marked with ReadAfterLd.\r
+def ReadAfterLd : SchedRead;\r
+\r
+// Instructions with both a load and a store folded are modeled as a folded\r
+// load + WriteRMW.\r
+def WriteRMW : SchedWrite;\r
+\r
+// Most instructions can fold loads, so almost every SchedWrite comes in two\r
+// variants: With and without a folded load.\r
+// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite\r
+// with a folded load.\r
+class X86FoldableSchedWrite : SchedWrite {\r
+  // The SchedWrite to use when a load is folded into the instruction.\r
+  SchedWrite Folded;\r
+}\r
+\r
+// Multiclass that produces a linked pair of SchedWrites.\r
+multiclass X86SchedWritePair {\r
+  // Register-Memory operation.\r
+  def Ld : SchedWrite;\r
+  // Register-Register operation.\r
+  def NAME : X86FoldableSchedWrite {\r
+    let Folded = !cast<SchedWrite>(NAME#"Ld");\r
+  }\r
+}\r
+\r
+// Arithmetic.\r
+defm WriteALU  : X86SchedWritePair; // Simple integer ALU op.\r
+defm WriteIMul : X86SchedWritePair; // Integer multiplication.\r
+def  WriteIMulH : SchedWrite;       // Integer multiplication, high part.\r
+defm WriteIDiv : X86SchedWritePair; // Integer division.\r
+def  WriteLEA  : SchedWrite;        // LEA instructions can't fold loads.\r
+\r
+// Integer shifts and rotates.\r
+defm WriteShift : X86SchedWritePair;\r
+\r
+// Loads, stores, and moves, not folded with other operations.\r
+def WriteLoad  : SchedWrite;\r
+def WriteStore : SchedWrite;\r
+def WriteMove  : SchedWrite;\r
+\r
+// Idioms that clear a register, like xorps %xmm0, %xmm0.\r
+// These can often bypass execution ports completely.\r
+def WriteZero : SchedWrite;\r
+\r
+// Branches don't produce values, so they have no latency, but they still\r
+// consume resources. Indirect branches can fold loads.\r
+defm WriteJump : X86SchedWritePair;\r
+\r
+// Floating point. This covers both scalar and vector operations.\r
+defm WriteFAdd   : X86SchedWritePair; // Floating point add/sub/compare.\r
+defm WriteFMul   : X86SchedWritePair; // Floating point multiplication.\r
+defm WriteFDiv   : X86SchedWritePair; // Floating point division.\r
+defm WriteFSqrt  : X86SchedWritePair; // Floating point square root.\r
+defm WriteFRcp   : X86SchedWritePair; // Floating point reciprocal estimate.\r
+defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.\r
+defm WriteFMA    : X86SchedWritePair; // Fused Multiply Add.\r
+defm WriteFShuffle  : X86SchedWritePair; // Floating point vector shuffles.\r
+defm WriteFBlend  : X86SchedWritePair; // Floating point vector blends.\r
+defm WriteFVarBlend  : X86SchedWritePair; // Fp vector variable blends.\r
+\r
+// FMA Scheduling helper class.\r
+class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }\r
+\r
+// Vector integer operations.\r
+defm WriteVecALU   : X86SchedWritePair; // Vector integer ALU op, no logicals.\r
+defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.\r
+defm WriteVecIMul  : X86SchedWritePair; // Vector integer multiply.\r
+defm WriteShuffle  : X86SchedWritePair; // Vector shuffles.\r
+defm WriteBlend  : X86SchedWritePair; // Vector blends.\r
+defm WriteVarBlend  : X86SchedWritePair; // Vector variable blends.\r
+defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.\r
+\r
+// Vector bitwise operations.\r
+// These are often used on both floating point and integer vectors.\r
+defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.\r
+\r
+// Conversion between integer and float.\r
+defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.\r
+defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.\r
+defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.\r
+\r
+// Strings instructions.\r
+// Packed Compare Implicit Length Strings, Return Mask\r
+defm WritePCmpIStrM : X86SchedWritePair;\r
+// Packed Compare Explicit Length Strings, Return Mask\r
+defm WritePCmpEStrM : X86SchedWritePair;\r
+// Packed Compare Implicit Length Strings, Return Index\r
+defm WritePCmpIStrI : X86SchedWritePair;\r
+// Packed Compare Explicit Length Strings, Return Index\r
+defm WritePCmpEStrI : X86SchedWritePair;\r
+\r
+// AES instructions.\r
+defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.\r
+defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.\r
+defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.\r
+\r
+// Carry-less multiplication instructions.\r
+defm WriteCLMul : X86SchedWritePair;\r
+\r
+// Catch-all for expensive system instructions.\r
+def WriteSystem : SchedWrite;\r
+\r
+// AVX2.\r
+defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.\r
+defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.\r
+defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.\r
+\r
+// Old microcoded instructions that nobody use.\r
+def WriteMicrocoded : SchedWrite;\r
+\r
+// Fence instructions.\r
+def WriteFence : SchedWrite;\r
+\r
+// Nop, not very useful expect it provides a model for nops!\r
+def WriteNop : SchedWrite;\r
+\r
+//===----------------------------------------------------------------------===//\r
+// Instruction Itinerary classes used for X86\r
+def IIC_ALU_MEM     : InstrItinClass;\r
+def IIC_ALU_NONMEM  : InstrItinClass;\r
+def IIC_LEA         : InstrItinClass;\r
+def IIC_LEA_16      : InstrItinClass;\r
+def IIC_MUL8        : InstrItinClass;\r
+def IIC_MUL16_MEM   : InstrItinClass;\r
+def IIC_MUL16_REG   : InstrItinClass;\r
+def IIC_MUL32_MEM   : InstrItinClass;\r
+def IIC_MUL32_REG   : InstrItinClass;\r
+def IIC_MUL64       : InstrItinClass;\r
+// imul by al, ax, eax, tax\r
+def IIC_IMUL8       : InstrItinClass;\r
+def IIC_IMUL16_MEM  : InstrItinClass;\r
+def IIC_IMUL16_REG  : InstrItinClass;\r
+def IIC_IMUL32_MEM  : InstrItinClass;\r
+def IIC_IMUL32_REG  : InstrItinClass;\r
+def IIC_IMUL64      : InstrItinClass;\r
+// imul reg by reg|mem\r
+def IIC_IMUL16_RM   : InstrItinClass;\r
+def IIC_IMUL16_RR   : InstrItinClass;\r
+def IIC_IMUL32_RM   : InstrItinClass;\r
+def IIC_IMUL32_RR   : InstrItinClass;\r
+def IIC_IMUL64_RM   : InstrItinClass;\r
+def IIC_IMUL64_RR   : InstrItinClass;\r
+// imul reg = reg/mem * imm\r
+def IIC_IMUL16_RMI  : InstrItinClass;\r
+def IIC_IMUL16_RRI  : InstrItinClass;\r
+def IIC_IMUL32_RMI  : InstrItinClass;\r
+def IIC_IMUL32_RRI  : InstrItinClass;\r
+def IIC_IMUL64_RMI  : InstrItinClass;\r
+def IIC_IMUL64_RRI  : InstrItinClass;\r
+// div\r
+def IIC_DIV8_MEM    : InstrItinClass;\r
+def IIC_DIV8_REG    : InstrItinClass;\r
+def IIC_DIV16       : InstrItinClass;\r
+def IIC_DIV32       : InstrItinClass;\r
+def IIC_DIV64       : InstrItinClass;\r
+// idiv\r
+def IIC_IDIV8       : InstrItinClass;\r
+def IIC_IDIV16      : InstrItinClass;\r
+def IIC_IDIV32      : InstrItinClass;\r
+def IIC_IDIV64      : InstrItinClass;\r
+// neg/not/inc/dec\r
+def IIC_UNARY_REG   : InstrItinClass;\r
+def IIC_UNARY_MEM   : InstrItinClass;\r
+// add/sub/and/or/xor/sbc/cmp/test\r
+def IIC_BIN_MEM     : InstrItinClass;\r
+def IIC_BIN_NONMEM  : InstrItinClass;\r
+// adc/sbc\r
+def IIC_BIN_CARRY_MEM     : InstrItinClass;\r
+def IIC_BIN_CARRY_NONMEM  : InstrItinClass;\r
+// shift/rotate\r
+def IIC_SR          : InstrItinClass;\r
+// shift double\r
+def IIC_SHD16_REG_IM : InstrItinClass;\r
+def IIC_SHD16_REG_CL : InstrItinClass;\r
+def IIC_SHD16_MEM_IM : InstrItinClass;\r
+def IIC_SHD16_MEM_CL : InstrItinClass;\r
+def IIC_SHD32_REG_IM : InstrItinClass;\r
+def IIC_SHD32_REG_CL : InstrItinClass;\r
+def IIC_SHD32_MEM_IM : InstrItinClass;\r
+def IIC_SHD32_MEM_CL : InstrItinClass;\r
+def IIC_SHD64_REG_IM : InstrItinClass;\r
+def IIC_SHD64_REG_CL : InstrItinClass;\r
+def IIC_SHD64_MEM_IM : InstrItinClass;\r
+def IIC_SHD64_MEM_CL : InstrItinClass;\r
+// cmov\r
+def IIC_CMOV16_RM : InstrItinClass;\r
+def IIC_CMOV16_RR : InstrItinClass;\r
+def IIC_CMOV32_RM : InstrItinClass;\r
+def IIC_CMOV32_RR : InstrItinClass;\r
+def IIC_CMOV64_RM : InstrItinClass;\r
+def IIC_CMOV64_RR : InstrItinClass;\r
+// set\r
+def IIC_SET_R : InstrItinClass;\r
+def IIC_SET_M : InstrItinClass;\r
+// jmp/jcc/jcxz\r
+def IIC_Jcc : InstrItinClass;\r
+def IIC_JCXZ : InstrItinClass;\r
+def IIC_JMP_REL : InstrItinClass;\r
+def IIC_JMP_REG : InstrItinClass;\r
+def IIC_JMP_MEM : InstrItinClass;\r
+def IIC_JMP_FAR_MEM : InstrItinClass;\r
+def IIC_JMP_FAR_PTR : InstrItinClass;\r
+// loop\r
+def IIC_LOOP : InstrItinClass;\r
+def IIC_LOOPE : InstrItinClass;\r
+def IIC_LOOPNE : InstrItinClass;\r
+// call\r
+def IIC_CALL_RI : InstrItinClass;\r
+def IIC_CALL_MEM : InstrItinClass;\r
+def IIC_CALL_FAR_MEM : InstrItinClass;\r
+def IIC_CALL_FAR_PTR : InstrItinClass;\r
+// ret\r
+def IIC_RET : InstrItinClass;\r
+def IIC_RET_IMM : InstrItinClass;\r
+//sign extension movs\r
+def IIC_MOVSX : InstrItinClass;\r
+def IIC_MOVSX_R16_R8 : InstrItinClass;\r
+def IIC_MOVSX_R16_M8 : InstrItinClass;\r
+def IIC_MOVSX_R16_R16 : InstrItinClass;\r
+def IIC_MOVSX_R32_R32 : InstrItinClass;\r
+//zero extension movs\r
+def IIC_MOVZX : InstrItinClass;\r
+def IIC_MOVZX_R16_R8 : InstrItinClass;\r
+def IIC_MOVZX_R16_M8 : InstrItinClass;\r
+\r
+def IIC_REP_MOVS : InstrItinClass;\r
+def IIC_REP_STOS : InstrItinClass;\r
+\r
+// SSE scalar/parallel binary operations\r
+def IIC_SSE_ALU_F32S_RR : InstrItinClass;\r
+def IIC_SSE_ALU_F32S_RM : InstrItinClass;\r
+def IIC_SSE_ALU_F64S_RR : InstrItinClass;\r
+def IIC_SSE_ALU_F64S_RM : InstrItinClass;\r
+def IIC_SSE_MUL_F32S_RR : InstrItinClass;\r
+def IIC_SSE_MUL_F32S_RM : InstrItinClass;\r
+def IIC_SSE_MUL_F64S_RR : InstrItinClass;\r
+def IIC_SSE_MUL_F64S_RM : InstrItinClass;\r
+def IIC_SSE_DIV_F32S_RR : InstrItinClass;\r
+def IIC_SSE_DIV_F32S_RM : InstrItinClass;\r
+def IIC_SSE_DIV_F64S_RR : InstrItinClass;\r
+def IIC_SSE_DIV_F64S_RM : InstrItinClass;\r
+def IIC_SSE_ALU_F32P_RR : InstrItinClass;\r
+def IIC_SSE_ALU_F32P_RM : InstrItinClass;\r
+def IIC_SSE_ALU_F64P_RR : InstrItinClass;\r
+def IIC_SSE_ALU_F64P_RM : InstrItinClass;\r
+def IIC_SSE_MUL_F32P_RR : InstrItinClass;\r
+def IIC_SSE_MUL_F32P_RM : InstrItinClass;\r
+def IIC_SSE_MUL_F64P_RR : InstrItinClass;\r
+def IIC_SSE_MUL_F64P_RM : InstrItinClass;\r
+def IIC_SSE_DIV_F32P_RR : InstrItinClass;\r
+def IIC_SSE_DIV_F32P_RM : InstrItinClass;\r
+def IIC_SSE_DIV_F64P_RR : InstrItinClass;\r
+def IIC_SSE_DIV_F64P_RM : InstrItinClass;\r
+\r
+def IIC_SSE_COMIS_RR : InstrItinClass;\r
+def IIC_SSE_COMIS_RM : InstrItinClass;\r
+\r
+def IIC_SSE_HADDSUB_RR : InstrItinClass;\r
+def IIC_SSE_HADDSUB_RM : InstrItinClass;\r
+\r
+def IIC_SSE_BIT_P_RR  : InstrItinClass;\r
+def IIC_SSE_BIT_P_RM  : InstrItinClass;\r
+\r
+def IIC_SSE_INTALU_P_RR  : InstrItinClass;\r
+def IIC_SSE_INTALU_P_RM  : InstrItinClass;\r
+def IIC_SSE_INTALUQ_P_RR  : InstrItinClass;\r
+def IIC_SSE_INTALUQ_P_RM  : InstrItinClass;\r
+\r
+def IIC_SSE_INTMUL_P_RR : InstrItinClass;\r
+def IIC_SSE_INTMUL_P_RM : InstrItinClass;\r
+\r
+def IIC_SSE_INTSH_P_RR : InstrItinClass;\r
+def IIC_SSE_INTSH_P_RM : InstrItinClass;\r
+def IIC_SSE_INTSH_P_RI : InstrItinClass;\r
+\r
+def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;\r
+\r
+def IIC_SSE_SHUFP : InstrItinClass;\r
+def IIC_SSE_PSHUF_RI : InstrItinClass;\r
+def IIC_SSE_PSHUF_MI : InstrItinClass;\r
+\r
+def IIC_SSE_UNPCK : InstrItinClass;\r
+\r
+def IIC_SSE_MOVMSK : InstrItinClass;\r
+def IIC_SSE_MASKMOV : InstrItinClass;\r
+\r
+def IIC_SSE_PEXTRW : InstrItinClass;\r
+def IIC_SSE_PINSRW : InstrItinClass;\r
+\r
+def IIC_SSE_PABS_RR : InstrItinClass;\r
+def IIC_SSE_PABS_RM : InstrItinClass;\r
+\r
+def IIC_SSE_SQRTPS_RR : InstrItinClass;\r
+def IIC_SSE_SQRTPS_RM : InstrItinClass;\r
+def IIC_SSE_SQRTSS_RR : InstrItinClass;\r
+def IIC_SSE_SQRTSS_RM : InstrItinClass;\r
+def IIC_SSE_SQRTPD_RR : InstrItinClass;\r
+def IIC_SSE_SQRTPD_RM : InstrItinClass;\r
+def IIC_SSE_SQRTSD_RR : InstrItinClass;\r
+def IIC_SSE_SQRTSD_RM : InstrItinClass;\r
+\r
+def IIC_SSE_RSQRTPS_RR : InstrItinClass;\r
+def IIC_SSE_RSQRTPS_RM : InstrItinClass;\r
+def IIC_SSE_RSQRTSS_RR : InstrItinClass;\r
+def IIC_SSE_RSQRTSS_RM : InstrItinClass;\r
+\r
+def IIC_SSE_RCPP_RR : InstrItinClass;\r
+def IIC_SSE_RCPP_RM : InstrItinClass;\r
+def IIC_SSE_RCPS_RR : InstrItinClass;\r
+def IIC_SSE_RCPS_RM : InstrItinClass;\r
+\r
+def IIC_SSE_MOV_S_RR : InstrItinClass;\r
+def IIC_SSE_MOV_S_RM : InstrItinClass;\r
+def IIC_SSE_MOV_S_MR : InstrItinClass;\r
+\r
+def IIC_SSE_MOVA_P_RR : InstrItinClass;\r
+def IIC_SSE_MOVA_P_RM : InstrItinClass;\r
+def IIC_SSE_MOVA_P_MR : InstrItinClass;\r
+\r
+def IIC_SSE_MOVU_P_RR : InstrItinClass;\r
+def IIC_SSE_MOVU_P_RM : InstrItinClass;\r
+def IIC_SSE_MOVU_P_MR : InstrItinClass;\r
+\r
+def IIC_SSE_MOVDQ : InstrItinClass;\r
+def IIC_SSE_MOVD_ToGP : InstrItinClass;\r
+def IIC_SSE_MOVQ_RR : InstrItinClass;\r
+\r
+def IIC_SSE_MOV_LH : InstrItinClass;\r
+\r
+def IIC_SSE_LDDQU : InstrItinClass;\r
+\r
+def IIC_SSE_MOVNT : InstrItinClass;\r
+\r
+def IIC_SSE_PHADDSUBD_RR : InstrItinClass;\r
+def IIC_SSE_PHADDSUBD_RM : InstrItinClass;\r
+def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;\r
+def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;\r
+def IIC_SSE_PHADDSUBW_RR : InstrItinClass;\r
+def IIC_SSE_PHADDSUBW_RM : InstrItinClass;\r
+def IIC_SSE_PSHUFB_RR : InstrItinClass;\r
+def IIC_SSE_PSHUFB_RM : InstrItinClass;\r
+def IIC_SSE_PSIGN_RR : InstrItinClass;\r
+def IIC_SSE_PSIGN_RM : InstrItinClass;\r
+\r
+def IIC_SSE_PMADD : InstrItinClass;\r
+def IIC_SSE_PMULHRSW : InstrItinClass;\r
+def IIC_SSE_PALIGNRR : InstrItinClass;\r
+def IIC_SSE_PALIGNRM : InstrItinClass;\r
+def IIC_SSE_MWAIT : InstrItinClass;\r
+def IIC_SSE_MONITOR : InstrItinClass;\r
+def IIC_SSE_MWAITX : InstrItinClass;\r
+def IIC_SSE_MONITORX : InstrItinClass;\r
+def IIC_SSE_CLZERO : InstrItinClass;\r
+\r
+def IIC_SSE_PREFETCH : InstrItinClass;\r
+def IIC_SSE_PAUSE : InstrItinClass;\r
+def IIC_SSE_LFENCE : InstrItinClass;\r
+def IIC_SSE_MFENCE : InstrItinClass;\r
+def IIC_SSE_SFENCE : InstrItinClass;\r
+def IIC_SSE_LDMXCSR : InstrItinClass;\r
+def IIC_SSE_STMXCSR : InstrItinClass;\r
+\r
+def IIC_SSE_CVT_PD_RR : InstrItinClass;\r
+def IIC_SSE_CVT_PD_RM : InstrItinClass;\r
+def IIC_SSE_CVT_PS_RR : InstrItinClass;\r
+def IIC_SSE_CVT_PS_RM : InstrItinClass;\r
+def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;\r
+def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;\r
+def IIC_SSE_CVT_Scalar_RR : InstrItinClass;\r
+def IIC_SSE_CVT_Scalar_RM : InstrItinClass;\r
+def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;\r
+def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;\r
+def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;\r
+def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;\r
+def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;\r
+def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;\r
+\r
+// MMX\r
+def IIC_MMX_MOV_MM_RM : InstrItinClass;\r
+def IIC_MMX_MOV_REG_MM : InstrItinClass;\r
+def IIC_MMX_MOVQ_RM : InstrItinClass;\r
+def IIC_MMX_MOVQ_RR : InstrItinClass;\r
+\r
+def IIC_MMX_ALU_RM : InstrItinClass;\r
+def IIC_MMX_ALU_RR : InstrItinClass;\r
+def IIC_MMX_ALUQ_RM : InstrItinClass;\r
+def IIC_MMX_ALUQ_RR : InstrItinClass;\r
+def IIC_MMX_PHADDSUBW_RM : InstrItinClass;\r
+def IIC_MMX_PHADDSUBW_RR : InstrItinClass;\r
+def IIC_MMX_PHADDSUBD_RM : InstrItinClass;\r
+def IIC_MMX_PHADDSUBD_RR : InstrItinClass;\r
+def IIC_MMX_PMUL : InstrItinClass;\r
+def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;\r
+def IIC_MMX_MISC_FUNC_REG : InstrItinClass;\r
+def IIC_MMX_PSADBW : InstrItinClass;\r
+def IIC_MMX_SHIFT_RI : InstrItinClass;\r
+def IIC_MMX_SHIFT_RM : InstrItinClass;\r
+def IIC_MMX_SHIFT_RR : InstrItinClass;\r
+def IIC_MMX_UNPCK_H_RM : InstrItinClass;\r
+def IIC_MMX_UNPCK_H_RR : InstrItinClass;\r
+def IIC_MMX_UNPCK_L : InstrItinClass;\r
+def IIC_MMX_PCK_RM : InstrItinClass;\r
+def IIC_MMX_PCK_RR : InstrItinClass;\r
+def IIC_MMX_PSHUF : InstrItinClass;\r
+def IIC_MMX_PEXTR : InstrItinClass;\r
+def IIC_MMX_PINSRW : InstrItinClass;\r
+def IIC_MMX_MASKMOV : InstrItinClass;\r
+\r
+def IIC_MMX_CVT_PD_RR : InstrItinClass;\r
+def IIC_MMX_CVT_PD_RM : InstrItinClass;\r
+def IIC_MMX_CVT_PS_RR : InstrItinClass;\r
+def IIC_MMX_CVT_PS_RM : InstrItinClass;\r
+\r
+def IIC_CMPX_LOCK : InstrItinClass;\r
+def IIC_CMPX_LOCK_8 : InstrItinClass;\r
+def IIC_CMPX_LOCK_8B : InstrItinClass;\r
+def IIC_CMPX_LOCK_16B : InstrItinClass;\r
+\r
+def IIC_XADD_LOCK_MEM : InstrItinClass;\r
+def IIC_XADD_LOCK_MEM8 : InstrItinClass;\r
+\r
+def IIC_FILD : InstrItinClass;\r
+def IIC_FLD : InstrItinClass;\r
+def IIC_FLD80 : InstrItinClass;\r
+def IIC_FST : InstrItinClass;\r
+def IIC_FST80 : InstrItinClass;\r
+def IIC_FIST : InstrItinClass;\r
+def IIC_FLDZ : InstrItinClass;\r
+def IIC_FUCOM : InstrItinClass;\r
+def IIC_FUCOMI : InstrItinClass;\r
+def IIC_FCOMI : InstrItinClass;\r
+def IIC_FNSTSW : InstrItinClass;\r
+def IIC_FNSTCW : InstrItinClass;\r
+def IIC_FLDCW : InstrItinClass;\r
+def IIC_FNINIT : InstrItinClass;\r
+def IIC_FFREE : InstrItinClass;\r
+def IIC_FNCLEX : InstrItinClass;\r
+def IIC_WAIT : InstrItinClass;\r
+def IIC_FXAM : InstrItinClass;\r
+def IIC_FNOP : InstrItinClass;\r
+def IIC_FLDL : InstrItinClass;\r
+def IIC_F2XM1 : InstrItinClass;\r
+def IIC_FYL2X : InstrItinClass;\r
+def IIC_FPTAN : InstrItinClass;\r
+def IIC_FPATAN : InstrItinClass;\r
+def IIC_FXTRACT : InstrItinClass;\r
+def IIC_FPREM1 : InstrItinClass;\r
+def IIC_FPSTP : InstrItinClass;\r
+def IIC_FPREM : InstrItinClass;\r
+def IIC_FYL2XP1 : InstrItinClass;\r
+def IIC_FSINCOS : InstrItinClass;\r
+def IIC_FRNDINT : InstrItinClass;\r
+def IIC_FSCALE : InstrItinClass;\r
+def IIC_FCOMPP : InstrItinClass;\r
+def IIC_FXSAVE : InstrItinClass;\r
+def IIC_FXRSTOR : InstrItinClass;\r
+\r
+def IIC_FXCH : InstrItinClass;\r
+\r
+// System instructions\r
+def IIC_CPUID : InstrItinClass;\r
+def IIC_INT : InstrItinClass;\r
+def IIC_INT3 : InstrItinClass;\r
+def IIC_INVD : InstrItinClass;\r
+def IIC_INVLPG : InstrItinClass;\r
+def IIC_IRET : InstrItinClass;\r
+def IIC_HLT : InstrItinClass;\r
+def IIC_LXS : InstrItinClass;\r
+def IIC_LTR : InstrItinClass;\r
+def IIC_RDTSC : InstrItinClass;\r
+def IIC_RSM : InstrItinClass;\r
+def IIC_SIDT : InstrItinClass;\r
+def IIC_SGDT : InstrItinClass;\r
+def IIC_SLDT : InstrItinClass;\r
+def IIC_STR : InstrItinClass;\r
+def IIC_SWAPGS : InstrItinClass;\r
+def IIC_SYSCALL : InstrItinClass;\r
+def IIC_SYS_ENTER_EXIT : InstrItinClass;\r
+def IIC_IN_RR : InstrItinClass;\r
+def IIC_IN_RI : InstrItinClass;\r
+def IIC_OUT_RR : InstrItinClass;\r
+def IIC_OUT_IR : InstrItinClass;\r
+def IIC_INS : InstrItinClass;\r
+def IIC_LWP : InstrItinClass;\r
+def IIC_MOV_REG_DR : InstrItinClass;\r
+def IIC_MOV_DR_REG : InstrItinClass;\r
+def IIC_MOV_REG_CR : InstrItinClass;\r
+def IIC_MOV_CR_REG : InstrItinClass;\r
+def IIC_MOV_REG_SR : InstrItinClass;\r
+def IIC_MOV_MEM_SR : InstrItinClass;\r
+def IIC_MOV_SR_REG : InstrItinClass;\r
+def IIC_MOV_SR_MEM : InstrItinClass;\r
+def IIC_LAR_RM : InstrItinClass;\r
+def IIC_LAR_RR : InstrItinClass;\r
+def IIC_LSL_RM : InstrItinClass;\r
+def IIC_LSL_RR : InstrItinClass;\r
+def IIC_LGDT : InstrItinClass;\r
+def IIC_LIDT : InstrItinClass;\r
+def IIC_LLDT_REG : InstrItinClass;\r
+def IIC_LLDT_MEM : InstrItinClass;\r
+def IIC_PUSH_CS : InstrItinClass;\r
+def IIC_PUSH_SR : InstrItinClass;\r
+def IIC_POP_SR : InstrItinClass;\r
+def IIC_POP_SR_SS : InstrItinClass;\r
+def IIC_VERR : InstrItinClass;\r
+def IIC_VERW_REG : InstrItinClass;\r
+def IIC_VERW_MEM : InstrItinClass;\r
+def IIC_WRMSR : InstrItinClass;\r
+def IIC_RDMSR : InstrItinClass;\r
+def IIC_RDPMC : InstrItinClass;\r
+def IIC_SMSW : InstrItinClass;\r
+def IIC_LMSW_REG : InstrItinClass;\r
+def IIC_LMSW_MEM : InstrItinClass;\r
+def IIC_ENTER : InstrItinClass;\r
+def IIC_LEAVE : InstrItinClass;\r
+def IIC_POP_MEM : InstrItinClass;\r
+def IIC_POP_REG16 : InstrItinClass;\r
+def IIC_POP_REG : InstrItinClass;\r
+def IIC_POP_F : InstrItinClass;\r
+def IIC_POP_FD : InstrItinClass;\r
+def IIC_POP_A : InstrItinClass;\r
+def IIC_PUSH_IMM : InstrItinClass;\r
+def IIC_PUSH_MEM : InstrItinClass;\r
+def IIC_PUSH_REG : InstrItinClass;\r
+def IIC_PUSH_F : InstrItinClass;\r
+def IIC_PUSH_A : InstrItinClass;\r
+def IIC_BSWAP : InstrItinClass;\r
+def IIC_BIT_SCAN_MEM : InstrItinClass;\r
+def IIC_BIT_SCAN_REG : InstrItinClass;\r
+def IIC_MOVS : InstrItinClass;\r
+def IIC_STOS : InstrItinClass;\r
+def IIC_SCAS : InstrItinClass;\r
+def IIC_CMPS : InstrItinClass;\r
+def IIC_MOV : InstrItinClass;\r
+def IIC_MOV_MEM : InstrItinClass;\r
+def IIC_AHF : InstrItinClass;\r
+def IIC_BT_MI : InstrItinClass;\r
+def IIC_BT_MR : InstrItinClass;\r
+def IIC_BT_RI : InstrItinClass;\r
+def IIC_BT_RR : InstrItinClass;\r
+def IIC_BTX_MI : InstrItinClass;\r
+def IIC_BTX_MR : InstrItinClass;\r
+def IIC_BTX_RI : InstrItinClass;\r
+def IIC_BTX_RR : InstrItinClass;\r
+def IIC_XCHG_REG : InstrItinClass;\r
+def IIC_XCHG_MEM : InstrItinClass;\r
+def IIC_XADD_REG : InstrItinClass;\r
+def IIC_XADD_MEM : InstrItinClass;\r
+def IIC_CMPXCHG_MEM : InstrItinClass;\r
+def IIC_CMPXCHG_REG : InstrItinClass;\r
+def IIC_CMPXCHG_MEM8 : InstrItinClass;\r
+def IIC_CMPXCHG_REG8 : InstrItinClass;\r
+def IIC_CMPXCHG_8B : InstrItinClass;\r
+def IIC_CMPXCHG_16B : InstrItinClass;\r
+def IIC_LODS : InstrItinClass;\r
+def IIC_OUTS : InstrItinClass;\r
+def IIC_CLC : InstrItinClass;\r
+def IIC_CLD : InstrItinClass;\r
+def IIC_CLI : InstrItinClass;\r
+def IIC_CMC : InstrItinClass;\r
+def IIC_CLTS : InstrItinClass;\r
+def IIC_STC : InstrItinClass;\r
+def IIC_STI : InstrItinClass;\r
+def IIC_STD : InstrItinClass;\r
+def IIC_XLAT : InstrItinClass;\r
+def IIC_AAA : InstrItinClass;\r
+def IIC_AAD : InstrItinClass;\r
+def IIC_AAM : InstrItinClass;\r
+def IIC_AAS : InstrItinClass;\r
+def IIC_DAA : InstrItinClass;\r
+def IIC_DAS : InstrItinClass;\r
+def IIC_BOUND : InstrItinClass;\r
+def IIC_ARPL_REG : InstrItinClass;\r
+def IIC_ARPL_MEM : InstrItinClass;\r
+def IIC_MOVBE : InstrItinClass;\r
+def IIC_AES   : InstrItinClass;\r
+def IIC_BLEND_MEM : InstrItinClass;\r
+def IIC_BLEND_NOMEM : InstrItinClass;\r
+def IIC_CBW   : InstrItinClass;\r
+def IIC_CRC32_REG : InstrItinClass;\r
+def IIC_CRC32_MEM : InstrItinClass;\r
+def IIC_SSE_DPPD_RR : InstrItinClass;\r
+def IIC_SSE_DPPD_RM : InstrItinClass;\r
+def IIC_SSE_DPPS_RR : InstrItinClass;\r
+def IIC_SSE_DPPS_RM : InstrItinClass;\r
+def IIC_MMX_EMMS : InstrItinClass;\r
+def IIC_SSE_EXTRACTPS_RR : InstrItinClass;\r
+def IIC_SSE_EXTRACTPS_RM : InstrItinClass;\r
+def IIC_SSE_INSERTPS_RR : InstrItinClass;\r
+def IIC_SSE_INSERTPS_RM : InstrItinClass;\r
+def IIC_SSE_MPSADBW_RR : InstrItinClass;\r
+def IIC_SSE_MPSADBW_RM : InstrItinClass;\r
+def IIC_SSE_PMULLD_RR : InstrItinClass;\r
+def IIC_SSE_PMULLD_RM : InstrItinClass;\r
+def IIC_SSE_ROUNDPS_REG : InstrItinClass;\r
+def IIC_SSE_ROUNDPS_MEM : InstrItinClass;\r
+def IIC_SSE_ROUNDPD_REG : InstrItinClass;\r
+def IIC_SSE_ROUNDPD_MEM : InstrItinClass;\r
+def IIC_SSE_POPCNT_RR : InstrItinClass;\r
+def IIC_SSE_POPCNT_RM : InstrItinClass;\r
+def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;\r
+def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;\r
+\r
+def IIC_NOP : InstrItinClass;\r
+\r
+//===----------------------------------------------------------------------===//\r
+// Processor instruction itineraries.\r
+\r
+// IssueWidth is analogous to the number of decode units. Core and its\r
+// descendents, including Nehalem and SandyBridge have 4 decoders.\r
+// Resources beyond the decoder operate on micro-ops and are bufferred\r
+// so adjacent micro-ops don't directly compete.\r
+//\r
+// MicroOpBufferSize > 1 indicates that RAW dependencies can be\r
+// decoded in the same cycle. The value 32 is a reasonably arbitrary\r
+// number of in-flight instructions.\r
+//\r
+// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef\r
+// indicates high latency opcodes. Alternatively, InstrItinData\r
+// entries may be included here to define specific operand\r
+// latencies. Since these latencies are not used for pipeline hazards,\r
+// they do not need to be exact.\r
+//\r
+// The GenericX86Model contains no instruction itineraries\r
+// and disables PostRAScheduler.\r
+class GenericX86Model : SchedMachineModel {\r
+  let IssueWidth = 4;\r
+  let MicroOpBufferSize = 32;\r
+  let LoadLatency = 4;\r
+  let HighLatency = 10;\r
+  let PostRAScheduler = 0;\r
+  let CompleteModel = 0;\r
+}\r
+\r
+def GenericModel : GenericX86Model;\r
+\r
+// Define a model with the PostRAScheduler enabled.\r
+def GenericPostRAModel : GenericX86Model {\r
+  let PostRAScheduler = 1;\r
+}\r
+\r
+include "X86ScheduleAtom.td"\r
+include "X86SchedSandyBridge.td"\r
+include "X86SchedHaswell.td"\r
+include "X86ScheduleSLM.td"\r
+include "X86ScheduleBtVer2.td"\r
+\r
index 82ff436..9ab751e 100644 (file)
@@ -265,6 +265,7 @@ void X86Subtarget::initializeEnvironment() {
   HasFMA4 = false;
   HasXOP = false;
   HasTBM = false;
+  HasLWP = false;
   HasMOVBE = false;
   HasRDRAND = false;
   HasF16C = false;
index 8568cf0..de15142 100644 (file)
@@ -124,6 +124,9 @@ protected:
   /// Target has TBM instructions.
   bool HasTBM;
 
+  /// Target has LWP instructions
+  bool HasLWP;
+
   /// True if the processor has the MOVBE instruction.
   bool HasMOVBE;
 
@@ -447,6 +450,7 @@ public:
   bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
   bool hasXOP() const { return HasXOP; }
   bool hasTBM() const { return HasTBM; }
+  bool hasLWP() const { return HasLWP; }
   bool hasMOVBE() const { return HasMOVBE; }
   bool hasRDRAND() const { return HasRDRAND; }
   bool hasF16C() const { return HasF16C; }
diff --git a/llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll b/llvm/test/CodeGen/X86/lwp-intrinsics-x86_64.ll
new file mode 100644 (file)
index 0000000..9ee9526
--- /dev/null
@@ -0,0 +1,49 @@
+; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
+; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+lwp | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver1 | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver2 | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver3 | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver4 | FileCheck %s --check-prefix=X64
+
+define i8 @test_lwpins64_rri(i64 %a0, i32 %a1) nounwind {
+; X64-LABEL: test_lwpins64_rri:
+; X64:       # BB#0:
+; X64-NEXT:    lwpins $-1985229329, %esi, %rdi # imm = 0x89ABCDEF
+; X64-NEXT:    setb %al
+; X64-NEXT:    retq
+  %1 = tail call i8 @llvm.x86.lwpins64(i64 %a0, i32 %a1, i32 2309737967)
+  ret i8 %1
+}
+
+define i8 @test_lwpins64_rmi(i64 %a0, i32 *%p1) nounwind {
+; X64-LABEL: test_lwpins64_rmi:
+; X64:       # BB#0:
+; X64-NEXT:    lwpins $1985229328, (%rsi), %rdi # imm = 0x76543210
+; X64-NEXT:    setb %al
+; X64-NEXT:    retq
+  %a1 = load i32, i32 *%p1
+  %1 = tail call i8 @llvm.x86.lwpins64(i64 %a0, i32 %a1, i32 1985229328)
+  ret i8 %1
+}
+
+define void @test_lwpval64_rri(i64 %a0, i32 %a1) nounwind {
+; X64-LABEL: test_lwpval64_rri:
+; X64:       # BB#0:
+; X64-NEXT:    lwpval $-19088744, %esi, %rdi # imm = 0xFEDCBA98
+; X64-NEXT:    retq
+  tail call void @llvm.x86.lwpval64(i64 %a0, i32 %a1, i32 4275878552)
+  ret void
+}
+
+define void @test_lwpval64_rmi(i64 %a0, i32 *%p1) nounwind {
+; X64-LABEL: test_lwpval64_rmi:
+; X64:       # BB#0:
+; X64-NEXT:    lwpval $305419896, (%rsi), %rdi # imm = 0x12345678
+; X64-NEXT:    retq
+  %a1 = load i32, i32 *%p1
+  tail call void @llvm.x86.lwpval64(i64 %a0, i32 %a1, i32 305419896)
+  ret void
+}
+
+declare i8 @llvm.x86.lwpins64(i64, i32, i32) nounwind
+declare void @llvm.x86.lwpval64(i64, i32, i32) nounwind
diff --git a/llvm/test/CodeGen/X86/lwp-intrinsics.ll b/llvm/test/CodeGen/X86/lwp-intrinsics.ll
new file mode 100644 (file)
index 0000000..c949bc8
--- /dev/null
@@ -0,0 +1,121 @@
+; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
+; RUN: llc < %s -mtriple=i686-unknown -mattr=+lwp | FileCheck %s --check-prefix=X86
+; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver1 | FileCheck %s --check-prefix=X86
+; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver2 | FileCheck %s --check-prefix=X86
+; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver3 | FileCheck %s --check-prefix=X86
+; RUN: llc < %s -mtriple=i686-unknown -mcpu=bdver4 | FileCheck %s --check-prefix=X86
+; RUN: llc < %s -mtriple=x86_64-unknown -mattr=+lwp | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver1 | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver2 | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver3 | FileCheck %s --check-prefix=X64
+; RUN: llc < %s -mtriple=x86_64-unknown -mcpu=bdver4 | FileCheck %s --check-prefix=X64
+
+define void @test_llwpcb(i8 *%a0) nounwind {
+; X86-LABEL: test_llwpcb:
+; X86:       # BB#0:
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %eax
+; X86-NEXT:    llwpcb %eax
+; X86-NEXT:    retl
+;
+; X64-LABEL: test_llwpcb:
+; X64:       # BB#0:
+; X64-NEXT:    llwpcb %rdi
+; X64-NEXT:    retq
+  tail call void @llvm.x86.llwpcb(i8 *%a0)
+  ret void
+}
+
+define i8* @test_slwpcb(i8 *%a0) nounwind {
+; X86-LABEL: test_slwpcb:
+; X86:       # BB#0:
+; X86-NEXT:    slwpcb %eax
+; X86-NEXT:    retl
+;
+; X64-LABEL: test_slwpcb:
+; X64:       # BB#0:
+; X64-NEXT:    slwpcb %rax
+; X64-NEXT:    retq
+  %1 = tail call i8* @llvm.x86.slwpcb()
+  ret i8 *%1
+}
+
+define i8 @test_lwpins32_rri(i32 %a0, i32 %a1) nounwind {
+; X86-LABEL: test_lwpins32_rri:
+; X86:       # BB#0:
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %eax
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
+; X86-NEXT:    addl %ecx, %ecx
+; X86-NEXT:    lwpins $-1985229329, %ecx, %eax # imm = 0x89ABCDEF
+; X86-NEXT:    setb %al
+; X86-NEXT:    retl
+;
+; X64-LABEL: test_lwpins32_rri:
+; X64:       # BB#0:
+; X64-NEXT:    addl %esi, %esi
+; X64-NEXT:    lwpins $-1985229329, %esi, %edi # imm = 0x89ABCDEF
+; X64-NEXT:    setb %al
+; X64-NEXT:    retq
+  %1 = add i32 %a1, %a1
+  %2 = tail call i8 @llvm.x86.lwpins32(i32 %a0, i32 %1, i32 2309737967)
+  ret i8 %2
+}
+
+define i8 @test_lwpins32_rmi(i32 %a0, i32 *%p1) nounwind {
+; X86-LABEL: test_lwpins32_rmi:
+; X86:       # BB#0:
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %eax
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
+; X86-NEXT:    lwpins $1985229328, (%eax), %ecx # imm = 0x76543210
+; X86-NEXT:    setb %al
+; X86-NEXT:    retl
+;
+; X64-LABEL: test_lwpins32_rmi:
+; X64:       # BB#0:
+; X64-NEXT:    lwpins $1985229328, (%rsi), %edi # imm = 0x76543210
+; X64-NEXT:    setb %al
+; X64-NEXT:    retq
+  %a1 = load i32, i32 *%p1
+  %1 = tail call i8 @llvm.x86.lwpins32(i32 %a0, i32 %a1, i32 1985229328)
+  ret i8 %1
+}
+
+define void @test_lwpval32_rri(i32 %a0, i32 %a1) nounwind {
+; X86-LABEL: test_lwpval32_rri:
+; X86:       # BB#0:
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %eax
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
+; X86-NEXT:    addl %ecx, %ecx
+; X86-NEXT:    lwpval $-19088744, %ecx, %eax # imm = 0xFEDCBA98
+; X86-NEXT:    retl
+;
+; X64-LABEL: test_lwpval32_rri:
+; X64:       # BB#0:
+; X64-NEXT:    addl %esi, %esi
+; X64-NEXT:    lwpval $-19088744, %esi, %edi # imm = 0xFEDCBA98
+; X64-NEXT:    retq
+  %1 = add i32 %a1, %a1
+  tail call void @llvm.x86.lwpval32(i32 %a0, i32 %1, i32 4275878552)
+  ret void
+}
+
+define void @test_lwpval32_rmi(i32 %a0, i32 *%p1) nounwind {
+; X86-LABEL: test_lwpval32_rmi:
+; X86:       # BB#0:
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %eax
+; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
+; X86-NEXT:    lwpval $305419896, (%eax), %ecx # imm = 0x12345678
+; X86-NEXT:    retl
+;
+; X64-LABEL: test_lwpval32_rmi:
+; X64:       # BB#0:
+; X64-NEXT:    lwpval $305419896, (%rsi), %edi # imm = 0x12345678
+; X64-NEXT:    retq
+  %a1 = load i32, i32 *%p1
+  tail call void @llvm.x86.lwpval32(i32 %a0, i32 %a1, i32 305419896)
+  ret void
+}
+
+declare void @llvm.x86.llwpcb(i8*) nounwind
+declare i8* @llvm.x86.slwpcb() nounwind
+declare i8 @llvm.x86.lwpins32(i32, i32, i32) nounwind
+declare void @llvm.x86.lwpval32(i32, i32, i32) nounwind
index 9dd49e5..1b865d3 100644 (file)
 
 #CHECK: getsec
 0x0f 0x37
+
+#CHECK: llwpcb %ecx
+0x8f 0xe9 0x78 0x12 0xc1
+
+#CHECK: slwpcb %ecx
+0x8f 0xe9 0x78 0x12 0xc9
+
+# CHECK: lwpins $305419896, %ebx, %eax
+0x8f 0xea 0x78 0x12 0xc3 0x78 0x56 0x34 0x12
+
+# CHECK: lwpins $591751049, (%esp), %edx
+0x8f 0xea 0x68 0x12 0x04 0x24 0x89 0x67 0x45 0x23
+
+# CHECK: lwpval $1737075661, %ebx, %eax
+0x8f 0xea 0x78 0x12 0xcb 0xcd 0xab 0x89 0x67
+
+# CHECK: lwpval $2309737967, (%esp), %edx
+0x8f 0xea 0x68 0x12 0x0c 0x24 0xef 0xcd 0xab 0x89
index 1511347..659ad90 100644 (file)
 
 # CHECK: callq -32769
 0xe8 0xff 0x7f 0xff 0xff
+
+# CHECK: llwpcb %rax
+0x8f 0xe9 0xf8 0x12 0xc0
+
+# CHECK: slwpcb %rax
+0x8f 0xe9 0xf8 0x12 0xc8
+
+# CHECK: lwpins $305419896, %ebx, %rax
+0x8f 0xea 0xf8 0x12 0xc3 0x78 0x56 0x34 0x12
+
+# CHECK: lwpins $591751049, (%rsp), %rdx
+0x8f 0xea 0xe8 0x12 0x04 0x24 0x89 0x67 0x45 0x23
+
+# CHECK: lwpins $591751049, (%esp), %edx
+0x67 0x8f 0xea 0x68 0x12 0x04 0x24 0x89 0x67 0x45 0x23
+
+# CHECK: lwpval $1737075661, %ebx, %rax
+0x8f 0xea 0xf8 0x12 0xcb 0xcd 0xab 0x89 0x67
+
+# CHECK: lwpval $2309737967, (%rsp), %rdx
+0x8f 0xea 0xe8 0x12 0x0c 0x24 0xef 0xcd 0xab 0x89
+
+# CHECK: lwpval $2309737967, (%esp), %edx
+0x67 0x8f 0xea 0x68 0x12 0x0c 0x24 0xef 0xcd 0xab 0x89
diff --git a/llvm/test/MC/X86/lwp-x86_64.s b/llvm/test/MC/X86/lwp-x86_64.s
new file mode 100644 (file)
index 0000000..92f1596
--- /dev/null
@@ -0,0 +1,25 @@
+# RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding %s | FileCheck %s --check-prefix=CHECK
+
+llwpcb %rcx
+# CHECK: llwpcb %rcx
+# CHECK: encoding: [0x8f,0xe9,0xf8,0x12,0xc1]
+
+slwpcb %rax
+# CHECK: slwpcb %rax
+# CHECK: encoding: [0x8f,0xe9,0xf8,0x12,0xc8]
+
+lwpins $305419896, %ebx, %rax
+# CHECK: lwpins $305419896, %ebx, %rax
+# CHECK: encoding: [0x8f,0xea,0xf8,0x12,0xc3,0x78,0x56,0x34,0x12]
+
+lwpins $591751049, (%rsp), %rdx
+# CHECK: lwpins $591751049, (%rsp), %rdx
+# CHECK: encoding: [0x8f,0xea,0xe8,0x12,0x04,0x24,0x89,0x67,0x45,0x23]
+
+lwpval $1737075661, %ebx, %rax
+# CHECK: lwpval $1737075661, %ebx, %rax
+# CHECK: encoding: [0x8f,0xea,0xf8,0x12,0xcb,0xcd,0xab,0x89,0x67]
+
+lwpval $2309737967, (%rsp), %rdx
+# CHECK: lwpval $2309737967, (%rsp), %rdx
+# CHECK: encoding: [0x8f,0xea,0xe8,0x12,0x0c,0x24,0xef,0xcd,0xab,0x89]
diff --git a/llvm/test/MC/X86/lwp.s b/llvm/test/MC/X86/lwp.s
new file mode 100644 (file)
index 0000000..43d6f2c
--- /dev/null
@@ -0,0 +1,32 @@
+# RUN: llvm-mc -triple i686-unknown-unknown --show-encoding %s | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-X86
+# RUN: llvm-mc -triple x86_64-unknown-unknown --show-encoding %s | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-X64
+
+llwpcb %ecx
+# CHECK: llwpcb %ecx
+# CHECK-X86: encoding: [0x8f,0xe9,0x78,0x12,0xc1]
+# CHECK-X64: encoding: [0x8f,0xe9,0x78,0x12,0xc1]
+
+slwpcb %eax
+# CHECK: slwpcb %eax
+# CHECK-X86: encoding: [0x8f,0xe9,0x78,0x12,0xc8]
+# CHECK-X64: encoding: [0x8f,0xe9,0x78,0x12,0xc8]
+
+lwpins $305419896, %ebx, %eax
+# CHECK: lwpins $305419896, %ebx, %eax
+# CHECK-X86: encoding: [0x8f,0xea,0x78,0x12,0xc3,0x78,0x56,0x34,0x12]
+# CHECK-X64: encoding: [0x8f,0xea,0x78,0x12,0xc3,0x78,0x56,0x34,0x12]
+
+lwpins $591751049, (%esp), %edx
+# CHECK: lwpins $591751049, (%esp), %edx
+# CHECK-X86: encoding: [0x8f,0xea,0x68,0x12,0x04,0x24,0x89,0x67,0x45,0x23]
+# CHECK-X64: encoding: [0x67,0x8f,0xea,0x68,0x12,0x04,0x24,0x89,0x67,0x45,0x23]
+
+lwpval $1737075661, %ebx, %eax
+# CHECK: lwpval $1737075661, %ebx, %eax
+# CHECK-X86: encoding: [0x8f,0xea,0x78,0x12,0xcb,0xcd,0xab,0x89,0x67]
+# CHECK-X64: encoding: [0x8f,0xea,0x78,0x12,0xcb,0xcd,0xab,0x89,0x67]
+
+lwpval $2309737967, (%esp), %edx
+# CHECK: lwpval $2309737967, (%esp), %edx
+# CHECK-X86: encoding: [0x8f,0xea,0x68,0x12,0x0c,0x24,0xef,0xcd,0xab,0x89]
+# CHECK-X64: encoding: [0x67,0x8f,0xea,0x68,0x12,0x0c,0x24,0xef,0xcd,0xab,0x89]