#include <linux/proc_fs.h>
#include <linux/kernel.h>
-#include <asm/mach-bigsmp/mach_apic.h>
#include <asm/mmu_context.h>
#include <asm/idle.h>
#include <asm/genapic.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_bau.h>
+#include <asm/tsc.h>
-struct bau_control **uv_bau_table_bases;
-static int uv_bau_retry_limit;
-static int uv_nshift; /* position of pnode (which is nasid>>1) */
-static unsigned long uv_mmask;
+#include <mach_apic.h>
+
+static struct bau_control **uv_bau_table_bases __read_mostly;
+static int uv_bau_retry_limit __read_mostly;
+static int uv_nshift __read_mostly; /* position of pnode (which is nasid>>1) */
+static unsigned long uv_mmask __read_mostly;
char *status_table[] = {
"IDLE",
* clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message).
*/
-static void
-uv_reply_to_message(int resource,
+static void uv_reply_to_message(int resource,
struct bau_payload_queue_entry *msg,
struct bau_msg_status *msp)
{
- int fw;
+ unsigned long dw;
- fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
+ dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
msg->replied_to = 1;
msg->sw_ack_vector = 0;
if (msp)
msp->seen_by.bits = 0;
- uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw);
+ uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
return;
}
* Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message.
*/
-static void
-uv_bau_process_message(struct bau_payload_queue_entry *msg,
+static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
int msg_slot, int sw_ack_slot)
{
int cpu;
*
* Returns the number of cpu's that have not responded.
*/
-static int
-uv_examine_destinations(struct bau_target_nodemask *distribution)
+static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
int sender;
int i;
sender = smp_processor_id();
for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
i++) {
- if (bau_node_isset(i, distribution)) {
- bau_tablesp = uv_bau_table_bases[i];
- for (msg = bau_tablesp->va_queue_first, j = 0;
- j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
- if ((msg->sending_cpu == sender) &&
- (!msg->replied_to)) {
- msp = bau_tablesp->msg_statuses + j;
- printk(KERN_DEBUG
+ if (!bau_node_isset(i, distribution))
+ continue;
+ bau_tablesp = uv_bau_table_bases[i];
+ for (msg = bau_tablesp->va_queue_first, j = 0;
+ j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
+ if ((msg->sending_cpu == sender) &&
+ (!msg->replied_to)) {
+ msp = bau_tablesp->msg_statuses + j;
+ printk(KERN_DEBUG
"blade %d: address:%#lx %d of %d, not cpu(s): ",
- i, msg->address,
- msg->acknowledge_count,
- msg->number_of_cpus);
- for (k = 0; k < msg->number_of_cpus;
- k++) {
- if (!((long)1 << k & msp->
- seen_by.bits)) {
- count++;
- printk("%d ", k);
- }
+ i, msg->address,
+ msg->acknowledge_count,
+ msg->number_of_cpus);
+ for (k = 0; k < msg->number_of_cpus;
+ k++) {
+ if (!((long)1 << k & msp->
+ seen_by.bits)) {
+ count++;
+ printk("%d ", k);
}
- printk("\n");
}
+ printk("\n");
}
}
}
return count;
}
+/*
+ * wait for completion of a broadcast message
+ *
+ * return COMPLETE, RETRY or GIVEUP
+ */
+static int uv_wait_completion(struct bau_activation_descriptor *bau_desc,
+ unsigned long mmr_offset, int right_shift)
+{
+ int exams = 0;
+ long destination_timeouts = 0;
+ long source_timeouts = 0;
+ unsigned long descriptor_status;
+
+ while ((descriptor_status = (((unsigned long)
+ uv_read_local_mmr(mmr_offset) >>
+ right_shift) & UV_ACT_STATUS_MASK)) !=
+ DESC_STATUS_IDLE) {
+ if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
+ source_timeouts++;
+ if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
+ source_timeouts = 0;
+ __get_cpu_var(ptcstats).s_retry++;
+ return FLUSH_RETRY;
+ }
+ /*
+ * spin here looking for progress at the destinations
+ */
+ if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
+ destination_timeouts++;
+ if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
+ /*
+ * returns number of cpus not responding
+ */
+ if (uv_examine_destinations
+ (&bau_desc->distribution) == 0) {
+ __get_cpu_var(ptcstats).d_retry++;
+ return FLUSH_RETRY;
+ }
+ exams++;
+ if (exams >= uv_bau_retry_limit) {
+ printk(KERN_DEBUG
+ "uv_flush_tlb_others");
+ printk("giving up on cpu %d\n",
+ smp_processor_id());
+ return FLUSH_GIVEUP;
+ }
+ /*
+ * delays can hang the simulator
+ udelay(1000);
+ */
+ destination_timeouts = 0;
+ }
+ }
+ }
+ return FLUSH_COMPLETE;
+}
+
+/**
+ * uv_flush_send_and_wait
+ *
+ * Send a broadcast and wait for a broadcast message to complete.
+ *
+ * The cpumaskp mask contains the cpus the broadcast was sent to.
+ *
+ * Returns 1 if all remote flushing was done. The mask is zeroed.
+ * Returns 0 if some remote flushing remains to be done. The mask is left
+ * unchanged.
+ */
+int uv_flush_send_and_wait(int cpu, int this_blade,
+ struct bau_activation_descriptor *bau_desc, cpumask_t *cpumaskp)
+{
+ int completion_status = 0;
+ int right_shift;
+ int bit;
+ int blade;
+ int tries = 0;
+ unsigned long index;
+ unsigned long mmr_offset;
+ cycles_t time1;
+ cycles_t time2;
+
+ if (cpu < UV_CPUS_PER_ACT_STATUS) {
+ mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
+ right_shift = cpu * UV_ACT_STATUS_SIZE;
+ } else {
+ mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
+ right_shift =
+ ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
+ }
+ time1 = get_cycles();
+ do {
+ tries++;
+ index = ((unsigned long)
+ 1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
+ uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
+ completion_status = uv_wait_completion(bau_desc, mmr_offset,
+ right_shift);
+ } while (completion_status == FLUSH_RETRY);
+ time2 = get_cycles();
+ __get_cpu_var(ptcstats).sflush += (time2 - time1);
+ if (tries > 1)
+ __get_cpu_var(ptcstats).retriesok++;
+
+ if (completion_status == FLUSH_GIVEUP) {
+ /*
+ * Cause the caller to do an IPI-style TLB shootdown on
+ * the cpu's, all of which are still in the mask.
+ */
+ __get_cpu_var(ptcstats).ptc_i++;
+ return 0;
+ }
+
+ /*
+ * Success, so clear the remote cpu's from the mask so we don't
+ * use the IPI method of shootdown on them.
+ */
+ for_each_cpu_mask(bit, *cpumaskp) {
+ blade = uv_cpu_to_blade_id(bit);
+ if (blade == this_blade)
+ continue;
+ cpu_clear(bit, *cpumaskp);
+ }
+ if (!cpus_empty(*cpumaskp))
+ return 0;
+ return 1;
+}
+
/**
* uv_flush_tlb_others - globally purge translation cache of a virtual
* address or all TLB's
*
* The cpumaskp is converted into a nodemask of the nodes containing
* the cpus.
+ *
+ * Returns 1 if all remote flushing was done.
+ * Returns 0 if some remote flushing remains to be done.
*/
-int
-uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
+int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm,
+ unsigned long va)
{
int i;
+ int bit;
int blade;
int cpu;
- int bit;
- int right_shift;
int this_blade;
- int exams = 0;
- int tries = 0;
- long source_timeouts = 0;
- long destination_timeouts = 0;
- unsigned long index;
- unsigned long mmr_offset;
- unsigned long descriptor_status;
+ int locals = 0;
struct bau_activation_descriptor *bau_desc;
- ktime_t time1, time2;
cpu = uv_blade_processor_id();
this_blade = uv_numa_blade_id();
bau_desc = __get_cpu_var(bau_control).descriptor_base;
- bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu);
+ bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu;
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
blade = uv_cpu_to_blade_id(bit);
if (blade > (UV_DISTRIBUTION_SIZE - 1))
BUG();
- if (blade == this_blade)
+ if (blade == this_blade) {
+ locals++;
continue;
+ }
bau_node_set(blade, &bau_desc->distribution);
- /* leave the bits for the remote cpu's in the mask until
- success; on failure we fall back to the IPI method */
i++;
}
- if (i == 0)
- goto none_to_flush;
+ if (i == 0) {
+ /*
+ * no off_node flushing; return status for local node
+ */
+ if (locals)
+ return 0;
+ else
+ return 1;
+ }
__get_cpu_var(ptcstats).requestor++;
__get_cpu_var(ptcstats).ntargeted += i;
bau_desc->payload.address = va;
bau_desc->payload.sending_cpu = smp_processor_id();
- if (cpu < UV_CPUS_PER_ACT_STATUS) {
- mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
- right_shift = cpu * UV_ACT_STATUS_SIZE;
- } else {
- mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
- right_shift =
- ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
- }
- time1 = ktime_get();
-
-retry:
- tries++;
- index = ((unsigned long)
- 1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
- uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
-
- while ((descriptor_status = (((unsigned long)
- uv_read_local_mmr(mmr_offset) >>
- right_shift) & UV_ACT_STATUS_MASK)) !=
- DESC_STATUS_IDLE) {
- if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
- source_timeouts++;
- if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
- source_timeouts = 0;
- __get_cpu_var(ptcstats).s_retry++;
- goto retry;
- }
- /* spin here looking for progress at the destinations */
- if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
- destination_timeouts++;
- if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
- /* returns # of cpus not responding */
- if (uv_examine_destinations
- (&bau_desc->distribution) == 0) {
- __get_cpu_var(ptcstats).d_retry++;
- goto retry;
- }
- exams++;
- if (exams >= uv_bau_retry_limit) {
- printk(KERN_DEBUG
- "uv_flush_tlb_others");
- printk("giving up on cpu %d\n",
- smp_processor_id());
- goto unsuccessful;
- }
- /* delays can hang up the simulator
- udelay(1000);
- */
- destination_timeouts = 0;
- }
- }
- }
- if (tries > 1)
- __get_cpu_var(ptcstats).retriesok++;
- /* on success, clear the remote cpu's from the mask so we don't
- use the IPI method of shootdown on them */
- for_each_cpu_mask(bit, *cpumaskp) {
- blade = uv_cpu_to_blade_id(bit);
- if (blade == this_blade)
- continue;
- cpu_clear(bit, *cpumaskp);
- }
-
-unsuccessful:
- time2 = ktime_get();
- __get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);
-
-none_to_flush:
- if (cpus_empty(*cpumaskp))
- return 1;
-
- /* Cause the caller to do an IPI-style TLB shootdown on
- the cpu's still in the mask */
- __get_cpu_var(ptcstats).ptc_i++;
- return 0;
+ return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp);
}
/*
* (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware will timeout the s/w ack and reply ERROR)
*/
-void
-uv_bau_message_interrupt(struct pt_regs *regs)
+void uv_bau_message_interrupt(struct pt_regs *regs)
{
struct bau_payload_queue_entry *pqp;
struct bau_payload_queue_entry *msg;
struct pt_regs *old_regs = set_irq_regs(regs);
- ktime_t time1, time2;
+ cycles_t time1, time2;
int msg_slot;
int sw_ack_slot;
int fw;
exit_idle();
irq_enter();
- time1 = ktime_get();
+ time1 = get_cycles();
local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
else if (count > 1)
__get_cpu_var(ptcstats).multmsg++;
- time2 = ktime_get();
- __get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64);
+ time2 = get_cycles();
+ __get_cpu_var(ptcstats).dflush += (time2 - time1);
irq_exit();
set_irq_regs(old_regs);
return;
}
-static void
-uv_enable_timeouts(void)
+static void uv_enable_timeouts(void)
{
int i;
int blade;
int cur_cpu = 0;
unsigned long apicid;
- /* better if we had each_online_blade */
last_blade = -1;
for_each_online_node(i) {
blade = uv_node_to_blade_id(i);
return;
}
-static void *
-uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
+static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
{
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
-static void *
-uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
+static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
if (*offset < num_possible_cpus())
return NULL;
}
-static void
-uv_ptc_seq_stop(struct seq_file *file, void *data)
+static void uv_ptc_seq_stop(struct seq_file *file, void *data)
{
}
* Display the statistics thru /proc
* data points to the cpu number
*/
-static int
-uv_ptc_seq_show(struct seq_file *file, void *data)
+static int uv_ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
int cpu;
seq_printf(file,
"# cpu requestor requestee one all sretry dretry ptc_i ");
seq_printf(file,
- "sw_ack sflush_us dflush_us sok dnomsg dmult starget\n");
+ "sw_ack sflush dflush sok dnomsg dmult starget\n");
}
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
stat = &per_cpu(ptcstats, cpu);
uv_read_global_mmr64(uv_blade_to_pnode
(uv_cpu_to_blade_id(cpu)),
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
- stat->sflush_ns / 1000, stat->dflush_ns / 1000,
+ stat->sflush, stat->dflush,
stat->retriesok, stat->nomsg,
stat->multmsg, stat->ntargeted);
}
* 0: display meaning of the statistics
* >0: retry limit
*/
-static ssize_t
-uv_ptc_proc_write(struct file *file, const char __user *user,
+static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
long newmode;
printk(KERN_DEBUG
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
printk(KERN_DEBUG
- "sflush_us: microseconds spent in uv_flush_tlb_others()\n");
+ "sflush_us: cycles spent in uv_flush_tlb_others()\n");
printk(KERN_DEBUG
- "dflush_us: microseconds spent in handling flush requests\n");
+ "dflush_us: cycles spent in handling flush requests\n");
printk(KERN_DEBUG "sok: successes on retry\n");
printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
printk(KERN_DEBUG
}
static const struct seq_operations uv_ptc_seq_ops = {
- .start = uv_ptc_seq_start,
- .next = uv_ptc_seq_next,
- .stop = uv_ptc_seq_stop,
- .show = uv_ptc_seq_show
+ .start = uv_ptc_seq_start,
+ .next = uv_ptc_seq_next,
+ .stop = uv_ptc_seq_stop,
+ .show = uv_ptc_seq_show
};
-static int
-uv_ptc_proc_open(struct inode *inode, struct file *file)
+static int uv_ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &uv_ptc_seq_ops);
}
static const struct file_operations proc_uv_ptc_operations = {
- .open = uv_ptc_proc_open,
- .read = seq_read,
- .write = uv_ptc_proc_write,
- .llseek = seq_lseek,
- .release = seq_release,
+ .open = uv_ptc_proc_open,
+ .read = seq_read,
+ .write = uv_ptc_proc_write,
+ .llseek = seq_lseek,
+ .release = seq_release,
};
-static struct proc_dir_entry *proc_uv_ptc;
-
-static int __init
-uv_ptc_init(void)
+static int __init uv_ptc_init(void)
{
- static struct proc_dir_entry *sgi_proc_dir;
-
- sgi_proc_dir = NULL;
+ struct proc_dir_entry *proc_uv_ptc;
if (!is_uv_system())
return 0;
- sgi_proc_dir = proc_mkdir("sgi_uv", NULL);
- if (!sgi_proc_dir)
+ if (!proc_mkdir("sgi_uv", NULL))
return -EINVAL;
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
return 0;
}
-static void __exit
-uv_ptc_exit(void)
+/*
+ * begin the initialization of the per-blade control structures
+ */
+static struct bau_control * __init uv_table_bases_init(int blade, int node)
{
- remove_proc_entry(UV_PTC_BASENAME, NULL);
+ int i;
+ int *ip;
+ struct bau_msg_status *msp;
+ struct bau_control *bau_tablesp;
+
+ bau_tablesp =
+ kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
+ if (!bau_tablesp)
+ BUG();
+ bau_tablesp->msg_statuses =
+ kmalloc_node(sizeof(struct bau_msg_status) *
+ DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, node);
+ if (!bau_tablesp->msg_statuses)
+ BUG();
+ for (i = 0, msp = bau_tablesp->msg_statuses;
+ i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, msp++) {
+ bau_cpubits_clear(&msp->seen_by, (int)
+ uv_blade_nr_possible_cpus(blade));
+ }
+ bau_tablesp->watching =
+ kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
+ GFP_KERNEL, node);
+ if (!bau_tablesp->watching)
+ BUG();
+ for (i = 0, ip = bau_tablesp->watching;
+ i < DESTINATION_PAYLOAD_QUEUE_SIZE; i++, ip++) {
+ *ip = 0;
+ }
+ uv_bau_table_bases[blade] = bau_tablesp;
+ return bau_tablesp;
}
-module_init(uv_ptc_init);
-module_exit(uv_ptc_exit);
+/*
+ * finish the initialization of the per-blade control structures
+ */
+static void __init uv_table_bases_finish(int blade, int node, int cur_cpu,
+ struct bau_control *bau_tablesp,
+ struct bau_activation_descriptor *adp)
+{
+ int i;
+ struct bau_control *bcp;
+
+ for (i = cur_cpu; i < (cur_cpu + uv_blade_nr_possible_cpus(blade));
+ i++) {
+ bcp = (struct bau_control *)&per_cpu(bau_control, i);
+ bcp->bau_msg_head = bau_tablesp->va_queue_first;
+ bcp->va_queue_first = bau_tablesp->va_queue_first;
+ bcp->va_queue_last = bau_tablesp->va_queue_last;
+ bcp->watching = bau_tablesp->watching;
+ bcp->msg_statuses = bau_tablesp->msg_statuses;
+ bcp->descriptor_base = adp;
+ }
+}
/*
- * Initialization of BAU-related structures
+ * initialize the sending side's sending buffers
*/
-int __init
-uv_bau_init(void)
+static struct bau_activation_descriptor * __init
+uv_activation_descriptor_init(int node, int pnode)
{
int i;
- int j;
- int blade;
- int nblades;
- int *ip;
- int pnode;
- int last_blade;
- int cur_cpu = 0;
unsigned long pa;
- unsigned long n;
unsigned long m;
+ unsigned long n;
unsigned long mmr_image;
- unsigned long apicid;
+ struct bau_activation_descriptor *adp;
+ struct bau_activation_descriptor *ad2;
+
+ adp = (struct bau_activation_descriptor *)
+ kmalloc_node(16384, GFP_KERNEL, node);
+ if (!adp)
+ BUG();
+ pa = __pa((unsigned long)adp);
+ n = pa >> uv_nshift;
+ m = pa & uv_mmask;
+ mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
+ if (mmr_image)
+ uv_write_global_mmr64(pnode, (unsigned long)
+ UVH_LB_BAU_SB_DESCRIPTOR_BASE,
+ (n << UV_DESC_BASE_PNODE_SHIFT | m));
+ for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
+ memset(ad2, 0, sizeof(struct bau_activation_descriptor));
+ ad2->header.sw_ack_flag = 1;
+ ad2->header.base_dest_nodeid =
+ uv_blade_to_pnode(uv_cpu_to_blade_id(0));
+ ad2->header.command = UV_NET_ENDPOINT_INTD;
+ ad2->header.int_both = 1;
+ /*
+ * all others need to be set to zero:
+ * fairness chaining multilevel count replied_to
+ */
+ }
+ return adp;
+}
+
+/*
+ * initialize the destination side's receiving buffers
+ */
+static struct bau_payload_queue_entry * __init uv_payload_queue_init(int node,
+ int pnode, struct bau_control *bau_tablesp)
+{
char *cp;
- struct bau_control *bau_tablesp;
- struct bau_activation_descriptor *adp, *ad2;
struct bau_payload_queue_entry *pqp;
- struct bau_msg_status *msp;
- struct bau_control *bcp;
- if (!is_uv_system())
- return 0;
+ pqp = (struct bau_payload_queue_entry *)
+ kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
+ sizeof(struct bau_payload_queue_entry),
+ GFP_KERNEL, node);
+ if (!pqp)
+ BUG();
+ cp = (char *)pqp + 31;
+ pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
+ bau_tablesp->va_queue_first = pqp;
+ uv_write_global_mmr64(pnode,
+ UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
+ ((unsigned long)pnode <<
+ UV_PAYLOADQ_PNODE_SHIFT) |
+ uv_physnodeaddr(pqp));
+ uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
+ uv_physnodeaddr(pqp));
+ bau_tablesp->va_queue_last =
+ pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
+ uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
+ (unsigned long)
+ uv_physnodeaddr(bau_tablesp->va_queue_last));
+ memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
+ DESTINATION_PAYLOAD_QUEUE_SIZE);
+ return pqp;
+}
- uv_bau_retry_limit = 1;
+/*
+ * Initialization of each UV blade's structures
+ */
+static int __init uv_init_blade(int blade, int node, int cur_cpu)
+{
+ int pnode;
+ unsigned long pa;
+ unsigned long apicid;
+ struct bau_activation_descriptor *adp;
+ struct bau_payload_queue_entry *pqp;
+ struct bau_control *bau_tablesp;
- if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) <
- MAX_CPUS_PER_NODE) {
- printk(KERN_ERR
- "uv_bau_init: bau_local_cpumask.bits too small\n");
- BUG();
+ bau_tablesp = uv_table_bases_init(blade, node);
+ pnode = uv_blade_to_pnode(blade);
+ adp = uv_activation_descriptor_init(node, pnode);
+ pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
+ uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
+ /*
+ * the below initialization can't be in firmware because the
+ * messaging IRQ will be determined by the OS
+ */
+ apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
+ pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
+ if ((pa & 0xff) != UV_BAU_MESSAGE) {
+ uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
+ ((apicid << 32) | UV_BAU_MESSAGE));
}
+ return 0;
+}
+
+/*
+ * Initialization of BAU-related structures
+ */
+static int __init uv_bau_init(void)
+{
+ int blade;
+ int node;
+ int nblades;
+ int last_blade;
+ int cur_cpu = 0;
+
+ if (!is_uv_system())
+ return 0;
+ uv_bau_retry_limit = 1;
uv_nshift = uv_hub_info->n_val;
uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
nblades = 0;
last_blade = -1;
- for_each_online_node(i) {
- blade = uv_node_to_blade_id(i);
+ for_each_online_node(node) {
+ blade = uv_node_to_blade_id(node);
if (blade == last_blade)
continue;
last_blade = blade;
nblades++;
}
-
uv_bau_table_bases = (struct bau_control **)
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
if (!uv_bau_table_bases)
BUG();
-
- /* better if we had each_online_blade */
last_blade = -1;
- for_each_online_node(i) {
- blade = uv_node_to_blade_id(i);
+ for_each_online_node(node) {
+ blade = uv_node_to_blade_id(node);
if (blade == last_blade)
continue;
last_blade = blade;
-
- bau_tablesp =
- kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
- if (!bau_tablesp)
- BUG();
-
- bau_tablesp->msg_statuses =
- kmalloc_node(sizeof(struct bau_msg_status) *
- DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
- if (!bau_tablesp->msg_statuses)
- BUG();
- for (j = 0, msp = bau_tablesp->msg_statuses;
- j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
- bau_cpubits_clear(&msp->seen_by, (int)
- uv_blade_nr_possible_cpus(blade));
- }
-
- bau_tablesp->watching =
- kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
- GFP_KERNEL, i);
- if (!bau_tablesp->watching)
- BUG();
- for (j = 0, ip = bau_tablesp->watching;
- j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
- *ip = 0;
- }
-
- uv_bau_table_bases[i] = bau_tablesp;
-
- pnode = uv_blade_to_pnode(blade);
-
- if (sizeof(struct bau_activation_descriptor) != 64)
- BUG();
-
- adp = (struct bau_activation_descriptor *)
- kmalloc_node(16384, GFP_KERNEL, i);
- if (!adp)
- BUG();
- if ((unsigned long)adp & 0xfff)
- BUG();
- pa = __pa((unsigned long)adp);
- n = pa >> uv_nshift;
- m = pa & uv_mmask;
-
- mmr_image = uv_read_global_mmr64(pnode,
- UVH_LB_BAU_SB_DESCRIPTOR_BASE);
- if (mmr_image)
- uv_write_global_mmr64(pnode, (unsigned long)
- UVH_LB_BAU_SB_DESCRIPTOR_BASE,
- (n << UV_DESC_BASE_PNODE_SHIFT |
- m));
- for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
- j++, ad2++) {
- memset(ad2, 0,
- sizeof(struct bau_activation_descriptor));
- ad2->header.sw_ack_flag = 1;
- ad2->header.base_dest_nodeid =
- uv_blade_to_pnode(uv_cpu_to_blade_id(0));
- ad2->header.command = UV_NET_ENDPOINT_INTD;
- ad2->header.int_both = 1;
- /* all others need to be set to zero:
- fairness chaining multilevel count replied_to */
- }
-
- pqp = (struct bau_payload_queue_entry *)
- kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
- sizeof(struct bau_payload_queue_entry),
- GFP_KERNEL, i);
- if (!pqp)
- BUG();
- if (sizeof(struct bau_payload_queue_entry) != 32)
- BUG();
- if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
- sw_ack_vector) != 15)
- BUG();
-
- cp = (char *)pqp + 31;
- pqp = (struct bau_payload_queue_entry *)
- (((unsigned long)cp >> 5) << 5);
- bau_tablesp->va_queue_first = pqp;
- uv_write_global_mmr64(pnode,
- UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
- ((unsigned long)pnode <<
- UV_PAYLOADQ_PNODE_SHIFT) |
- uv_physnodeaddr(pqp));
- uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
- uv_physnodeaddr(pqp));
- bau_tablesp->va_queue_last =
- pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
- uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
- (unsigned long)
- uv_physnodeaddr(bau_tablesp->
- va_queue_last));
- memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
- DESTINATION_PAYLOAD_QUEUE_SIZE);
-
- /* this initialization can't be in firmware because the
- messaging IRQ will be determined by the OS */
- apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
- pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
- if ((pa & 0xff) != UV_BAU_MESSAGE) {
- uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
- ((apicid << 32) |
- UV_BAU_MESSAGE));
- }
-
- for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
- j++) {
- bcp = (struct bau_control *)&per_cpu(bau_control, j);
- bcp->bau_msg_head = bau_tablesp->va_queue_first;
- bcp->va_queue_first = bau_tablesp->va_queue_first;
-
- bcp->va_queue_last = bau_tablesp->va_queue_last;
- bcp->watching = bau_tablesp->watching;
- bcp->msg_statuses = bau_tablesp->msg_statuses;
- bcp->descriptor_base = adp;
- }
- cur_cpu += uv_blade_nr_possible_cpus(i);
+ uv_init_blade(blade, node, cur_cpu);
+ cur_cpu += uv_blade_nr_possible_cpus(blade);
}
-
set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
-
uv_enable_timeouts();
-
return 0;
}
-
__initcall(uv_bau_init);
+__initcall(uv_ptc_init);
#include <linux/bitmap.h>
#define BITSPERBYTE 8
-/* Broadcast Assist Unit messaging structures */
-
/*
+ * Broadcast Assist Unit messaging structures
+ *
* Selective Broadcast activations are induced by software action
* specifying a particular 8-descriptor "set" via a 6-bit index written
* to an MMR.
* Each of the descriptors is 64 bytes in size (8*64 = 512 bytes in a set).
*/
-#define UV_ITEMS_PER_DESCRIPTOR 8
-#define UV_CPUS_PER_ACT_STATUS 32
-#define UV_ACT_STATUS_MASK 0x3
-#define UV_ACT_STATUS_SIZE 2
-#define UV_ACTIVATION_DESCRIPTOR_SIZE 32
-#define UV_DISTRIBUTION_SIZE 256
-#define UV_SW_ACK_NPENDING 8
-#define UV_BAU_MESSAGE 200 /* Messaging irq; see irq_64.h */
- /* and include/asm-x86/hw_irq_64.h */
- /* To be dynamically allocated in the future */
-#define UV_NET_ENDPOINT_INTD 0x38
-#define UV_DESC_BASE_PNODE_SHIFT 49 /* position of pnode (nasid>>1) in MMR */
-#define UV_PAYLOADQ_PNODE_SHIFT 49
-
-#define UV_PTC_BASENAME "sgi_uv/ptc_statistics"
-#define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask))
-
-/* bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1 */
+#define UV_ITEMS_PER_DESCRIPTOR 8
+#define UV_CPUS_PER_ACT_STATUS 32
+#define UV_ACT_STATUS_MASK 0x3
+#define UV_ACT_STATUS_SIZE 2
+#define UV_ACTIVATION_DESCRIPTOR_SIZE 32
+#define UV_DISTRIBUTION_SIZE 256
+#define UV_SW_ACK_NPENDING 8
+#define UV_BAU_MESSAGE 200
+/*
+ * Messaging irq; see irq_64.h and include/asm-x86/hw_irq_64.h
+ * To be dynamically allocated in the future
+ */
+#define UV_NET_ENDPOINT_INTD 0x38
+#define UV_DESC_BASE_PNODE_SHIFT 49
+#define UV_PAYLOADQ_PNODE_SHIFT 49
+#define UV_PTC_BASENAME "sgi_uv/ptc_statistics"
+#define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask))
+
+/*
+ * bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1
+ */
#define DESC_STATUS_IDLE 0
#define DESC_STATUS_ACTIVE 1
#define DESC_STATUS_DESTINATION_TIMEOUT 2
#define DESC_STATUS_SOURCE_TIMEOUT 3
-/* source side threshholds at which message retries print a warning */
+/*
+ * source side threshholds at which message retries print a warning
+ */
#define SOURCE_TIMEOUT_LIMIT 20
#define DESTINATION_TIMEOUT_LIMIT 20
-/* number of entries in the destination side payload queue */
+/*
+ * number of entries in the destination side payload queue
+ */
#define DESTINATION_PAYLOAD_QUEUE_SIZE 17
-/* number of destination side software ack resources */
+/*
+ * number of destination side software ack resources
+ */
#define DESTINATION_NUM_RESOURCES 8
#define MAX_CPUS_PER_NODE 32
+/*
+ * completion statuses for sending a TLB flush message
+ */
+#define FLUSH_RETRY 1
+#define FLUSH_GIVEUP 2
+#define FLUSH_COMPLETE 3
-/* Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor) */
-/* If the 'multilevel' flag in the header portion of the descriptor
+/*
+ * Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor)
+ * If the 'multilevel' flag in the header portion of the descriptor
* has been set to 0, then endpoint multi-unicast mode is selected.
* The distribution specification (32 bytes) is interpreted as a 256-bit
* distribution vector. Adjacent bits correspond to consecutive even numbered
* nodeIDs. The result of adding the index of a given bit to the 15-bit
* 'base_dest_nodeid' field of the header corresponds to the
- * destination nodeID associated with that specified bit. */
+ * destination nodeID associated with that specified bit.
+ */
struct bau_target_nodemask {
unsigned long bits[BITS_TO_LONGS(256)];
};
-/* mask of cpu's on a node */
-/* (during initialization we need to check that unsigned long has
- enough bits for max. cpu's per node) */
+/*
+ * mask of cpu's on a node
+ * (during initialization we need to check that unsigned long has
+ * enough bits for max. cpu's per node)
+ */
struct bau_local_cpumask {
unsigned long bits;
};
* the s/w ack bit vector ]
*/
-/* The payload is software-defined for INTD transactions */
+/*
+ * The payload is software-defined for INTD transactions
+ */
struct bau_msg_payload {
unsigned long address; /* signifies a page or all TLB's
of the cpu */
};
-/* Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor) */
-/* see table 4.2.3.0.1 in broacast_assist spec. */
+/*
+ * Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor)
+ * see table 4.2.3.0.1 in broacast_assist spec.
+ */
struct bau_msg_header {
int dest_subnodeid:6; /* must be zero */
/* bits 5:0 */
/* bits 127:107 */
};
-/* The format of the message to send, plus all accompanying control */
-/* Should be 64 bytes */
+/*
+ * The format of the message to send, plus all accompanying control
+ * Should be 64 bytes
+ */
struct bau_activation_descriptor {
struct bau_target_nodemask distribution;
- /* message template, consisting of header and payload: */
+ /*
+ * message template, consisting of header and payload:
+ */
struct bau_msg_header header;
struct bau_msg_payload payload;
};
/* bytes 24-31 */
};
-/* one for every slot in the destination payload queue */
+/*
+ * one for every slot in the destination payload queue
+ */
struct bau_msg_status {
struct bau_local_cpumask seen_by; /* map of cpu's */
};
-/* one for every slot in the destination software ack resources */
+/*
+ * one for every slot in the destination software ack resources
+ */
struct bau_sw_ack_status {
struct bau_payload_queue_entry *msg; /* associated message */
int watcher; /* cpu monitoring, or -1 */
};
-/* one on every node and per-cpu; to locate the software tables */
+/*
+ * one on every node and per-cpu; to locate the software tables
+ */
struct bau_control {
struct bau_activation_descriptor *descriptor_base;
struct bau_payload_queue_entry *bau_msg_head;
unsigned long onetlb; /* times just one tlb on this cpu was flushed */
unsigned long s_retry; /* retries on source side timeouts */
unsigned long d_retry; /* retries on destination side timeouts */
- unsigned long sflush_ns;/* nanoseconds spent in uv_flush_tlb_others */
- unsigned long dflush_ns;/* nanoseconds spent destination side */
+ unsigned long sflush; /* cycles spent in uv_flush_tlb_others */
+ unsigned long dflush; /* cycles spent on destination side */
unsigned long retriesok; /* successes on retries */
unsigned long nomsg; /* interrupts with no message */
unsigned long multmsg; /* interrupts with multiple messages */
bitmap_zero(&dstp->bits, nbits);
}
-/*
- * atomic increment of a short integer
- * (rather than using the __sync_add_and_fetch() intrinsic)
- *
- * returns the new value of the variable
- */
-static inline short int atomic_inc_short(short int *v)
-{
- asm volatile("movw $1, %%cx\n"
- "lock ; xaddw %%cx, %0\n"
- : "+m" (*v) /* outputs */
- : : "%cx", "memory"); /* inputs : clobbereds */
- return *v;
-}
-
-/*
- * atomic OR of two long integers
- * (rather than using the __sync_or_and_fetch() intrinsic)
- */
-static inline void atomic_or_long(unsigned long *v1, unsigned long v2)
-{
- asm volatile("movq %0, %%rax; lea %1, %%rdx\n"
- "lock ; orq %%rax, %%rdx\n"
- : "+m" (*v1) /* outputs */
- : "m" (v1), "m" (v2) /* inputs */
- : "memory"); /* clobbereds */
-}
-
#define cpubit_isset(cpu, bau_local_cpumask) \
test_bit((cpu), (bau_local_cpumask).bits)
-int uv_flush_tlb_others(cpumask_t *, struct mm_struct *, unsigned long);
-void uv_bau_message_intr1(void);
-void uv_bau_timeout_intr1(void);
+extern int uv_flush_tlb_others(cpumask_t *, struct mm_struct *, unsigned long);
+extern void uv_bau_message_intr1(void);
+extern void uv_bau_timeout_intr1(void);
#endif /* __ASM_X86_UV_BAU__ */