return false;
}
-static inline void start_backtrace(struct stackframe *frame,
- unsigned long fp, unsigned long pc)
-{
- frame->fp = fp;
- frame->pc = pc;
-#ifdef CONFIG_FUNCTION_GRAPH_TRACER
- frame->graph = 0;
-#endif
-
- /*
- * Prime the first unwind.
- *
- * In unwind_frame() we'll check that the FP points to a valid stack,
- * which can't be STACK_TYPE_UNKNOWN, and the first unwind will be
- * treated as a transition to whichever stack that happens to be. The
- * prev_fp value won't be used, but we set it to 0 such that it is
- * definitely not an accessible stack address.
- */
- bitmap_zero(frame->stacks_done, __NR_STACK_TYPES);
- frame->prev_fp = 0;
- frame->prev_type = STACK_TYPE_UNKNOWN;
-}
+void start_backtrace(struct stackframe *frame, unsigned long fp,
+ unsigned long pc);
#endif /* __ASM_STACKTRACE_H */
* add sp, sp, #0x10
*/
+
+void start_backtrace(struct stackframe *frame, unsigned long fp,
+ unsigned long pc)
+{
+ frame->fp = fp;
+ frame->pc = pc;
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+ frame->graph = 0;
+#endif
+
+ /*
+ * Prime the first unwind.
+ *
+ * In unwind_frame() we'll check that the FP points to a valid stack,
+ * which can't be STACK_TYPE_UNKNOWN, and the first unwind will be
+ * treated as a transition to whichever stack that happens to be. The
+ * prev_fp value won't be used, but we set it to 0 such that it is
+ * definitely not an accessible stack address.
+ */
+ bitmap_zero(frame->stacks_done, __NR_STACK_TYPES);
+ frame->prev_fp = 0;
+ frame->prev_type = STACK_TYPE_UNKNOWN;
+}
+
/*
* Unwind from one frame record (A) to the next frame record (B).
*