return proc;
}
+#define SK_SUPPORT_LEGACY_COLOR32_MATHx
+
+// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
+// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
+// interesting edge cases, and it's quite a bit faster than blend_perfect.
+//
+// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, SkPMColor color) {
- if (count > 0) {
- if (0 == color) {
- if (src != dst) {
- memcpy(dst, src, count * sizeof(SkPMColor));
- }
- return;
- }
- unsigned colorA = SkGetPackedA32(color);
- if (255 == colorA) {
- sk_memset32(dst, color, count);
- } else {
- unsigned scale = 256 - SkAlpha255To256(colorA);
- do {
- *dst = color + SkAlphaMulQ(*src, scale);
- src += 1;
- dst += 1;
- } while (--count);
- }
+ switch (SkGetPackedA32(color)) {
+ case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
+ case 255: sk_memset32(dst, color, count); return;
+ }
+
+ unsigned invA = 255 - SkGetPackedA32(color);
+#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
+ unsigned round = 0;
+#else // blend_256_round_alt, good
+ invA += invA >> 7;
+ unsigned round = (128 << 16) + (128 << 0);
+#endif
+
+ while (count --> 0) {
+ // Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers.
+ const uint32_t mask = 0x00FF00FF;
+ uint32_t rb = (((*src >> 0) & mask) * invA + round) >> 8, // _r_b
+ ag = (((*src >> 8) & mask) * invA + round) >> 0; // a_g_
+ *dst = color + ((rb & mask) | (ag & ~mask));
+ src++;
+ dst++;
}
}
}
}
+#define SK_SUPPORT_LEGACY_COLOR32_MATHx
+
/* SSE2 version of Color32()
* portable version is in core/SkBlitRow_D32.cpp
*/
-void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count,
- SkPMColor color) {
- if (count <= 0) {
- return;
- }
-
- if (0 == color) {
- if (src != dst) {
- memcpy(dst, src, count * sizeof(SkPMColor));
- }
- return;
+// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
+// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
+// interesting edge cases, and it's quite a bit faster than blend_perfect.
+//
+// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
+void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) {
+ switch (SkGetPackedA32(color)) {
+ case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
+ case 255: sk_memset32(dst, color, count); return;
}
- unsigned colorA = SkGetPackedA32(color);
- if (255 == colorA) {
- sk_memset32(dst, color, count);
- } else {
- unsigned scale = 256 - SkAlpha255To256(colorA);
-
- if (count >= 4) {
- SkASSERT(((size_t)dst & 0x03) == 0);
- while (((size_t)dst & 0x0F) != 0) {
- *dst = color + SkAlphaMulQ(*src, scale);
- src++;
- dst++;
- count--;
- }
-
- const __m128i *s = reinterpret_cast<const __m128i*>(src);
- __m128i *d = reinterpret_cast<__m128i*>(dst);
- __m128i color_wide = _mm_set1_epi32(color);
- while (count >= 4) {
- __m128i src_pixel = _mm_loadu_si128(s);
- src_pixel = SkAlphaMulQ_SSE2(src_pixel, scale);
+ __m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color));
+#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
+ __m128i colorAndRound = colorHigh;
+#else // blend_256_round_alt, good
+ __m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128));
+#endif
- __m128i result = _mm_add_epi8(color_wide, src_pixel);
- _mm_store_si128(d, result);
- s++;
- d++;
- count -= 4;
- }
- src = reinterpret_cast<const SkPMColor*>(s);
- dst = reinterpret_cast<SkPMColor*>(d);
- }
+ unsigned invA = 255 - SkGetPackedA32(color);
+#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
+ __m128i invA16 = _mm_set1_epi16(invA);
+#else // blend_256_round_alt, good
+ SkASSERT(invA + (invA >> 7) < 256); // We should still fit in the low byte here.
+ __m128i invA16 = _mm_set1_epi16(invA + (invA >> 7));
+#endif
- while (count > 0) {
- *dst = color + SkAlphaMulQ(*src, scale);
- src += 1;
- dst += 1;
- count--;
- }
+ // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
+ auto kernel = [&](const __m128i& src4) -> __m128i {
+ __m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())),
+ hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128()));
+ return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8),
+ _mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8));
+ };
+
+ while (count >= 8) {
+ __m128i dst0 = kernel(_mm_loadu_si128((const __m128i*)(src+0))),
+ dst4 = kernel(_mm_loadu_si128((const __m128i*)(src+4)));
+ _mm_storeu_si128((__m128i*)(dst+0), dst0);
+ _mm_storeu_si128((__m128i*)(dst+4), dst4);
+ src += 8;
+ dst += 8;
+ count -= 8;
+ }
+ if (count >= 4) {
+ _mm_storeu_si128((__m128i*)dst, kernel(_mm_loadu_si128((const __m128i*)src)));
+ src += 4;
+ dst += 4;
+ count -= 4;
+ }
+ if (count >= 2) {
+ _mm_storel_epi64((__m128i*)dst, kernel(_mm_loadl_epi64((const __m128i*)src)));
+ src += 2;
+ dst += 2;
+ count -= 2;
+ }
+ if (count >= 1) {
+ *dst = _mm_cvtsi128_si32(kernel(_mm_cvtsi32_si128(*src)));
}
}
}
}
-void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count,
- SkPMColor color) {
- if (count <= 0) {
- return;
- }
-
- if (0 == color) {
- if (src != dst) {
- memcpy(dst, src, count * sizeof(SkPMColor));
- }
- return;
- }
-
- unsigned colorA = SkGetPackedA32(color);
- if (255 == colorA) {
- sk_memset32(dst, color, count);
- return;
+#define SK_SUPPORT_LEGACY_COLOR32_MATHx
+
+// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
+// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
+// interesting edge cases, and it's quite a bit faster than blend_perfect.
+//
+// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
+void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
+ switch (SkGetPackedA32(color)) {
+ case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
+ case 255: sk_memset32(dst, color, count); return;
}
- unsigned scale = 256 - SkAlpha255To256(colorA);
-
- if (count >= 8) {
- uint32x4_t vcolor;
- uint8x8_t vscale;
-
- vcolor = vdupq_n_u32(color);
-
- // scale numerical interval [0-255], so load as 8 bits
- vscale = vdup_n_u8(scale);
-
- do {
- // load src color, 8 pixels, 4 64 bit registers
- // (and increment src).
- uint32x2x4_t vsrc;
-#if defined(SK_CPU_ARM32) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)))
- asm (
- "vld1.32 %h[vsrc], [%[src]]!"
- : [vsrc] "=w" (vsrc), [src] "+r" (src)
- : :
- );
-#else // 64bit targets and Clang
- vsrc.val[0] = vld1_u32(src);
- vsrc.val[1] = vld1_u32(src+2);
- vsrc.val[2] = vld1_u32(src+4);
- vsrc.val[3] = vld1_u32(src+6);
- src += 8;
+ uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
+#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
+ uint16x8_t colorAndRound = colorHigh;
+#else // blend_256_round_alt, good
+ uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128));
#endif
- // multiply long by scale, 64 bits at a time,
- // destination into a 128 bit register.
- uint16x8x4_t vtmp;
- vtmp.val[0] = vmull_u8(vreinterpret_u8_u32(vsrc.val[0]), vscale);
- vtmp.val[1] = vmull_u8(vreinterpret_u8_u32(vsrc.val[1]), vscale);
- vtmp.val[2] = vmull_u8(vreinterpret_u8_u32(vsrc.val[2]), vscale);
- vtmp.val[3] = vmull_u8(vreinterpret_u8_u32(vsrc.val[3]), vscale);
-
- // shift the 128 bit registers, containing the 16
- // bit scaled values back to 8 bits, narrowing the
- // results to 64 bit registers.
- uint8x16x2_t vres;
- vres.val[0] = vcombine_u8(
- vshrn_n_u16(vtmp.val[0], 8),
- vshrn_n_u16(vtmp.val[1], 8));
- vres.val[1] = vcombine_u8(
- vshrn_n_u16(vtmp.val[2], 8),
- vshrn_n_u16(vtmp.val[3], 8));
-
- // adding back the color, using 128 bit registers.
- uint32x4x2_t vdst;
- vdst.val[0] = vreinterpretq_u32_u8(vres.val[0] +
- vreinterpretq_u8_u32(vcolor));
- vdst.val[1] = vreinterpretq_u32_u8(vres.val[1] +
- vreinterpretq_u8_u32(vcolor));
-
- // store back the 8 calculated pixels (2 128 bit
- // registers), and increment dst.
-#if defined(SK_CPU_ARM32) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)))
- asm (
- "vst1.32 %h[vdst], [%[dst]]!"
- : [dst] "+r" (dst)
- : [vdst] "w" (vdst)
- : "memory"
- );
-#else // 64bit targets and Clang
- vst1q_u32(dst, vdst.val[0]);
- vst1q_u32(dst+4, vdst.val[1]);
- dst += 8;
+ unsigned invA = 255 - SkGetPackedA32(color);
+#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
+ uint8x8_t invA8 = vdup_n_u8(invA);
+#else // blend_256_round_alt, good
+ SkASSERT(invA + (invA >> 7) < 256); // This next part only works if alpha is not 0.
+ uint8x8_t invA8 = vdup_n_u8(invA + (invA >> 7));
#endif
- count -= 8;
- } while (count >= 8);
- }
+ // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
+ auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t {
+ uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8),
+ hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8);
+ return (uint32x4_t)
+ vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi));
+ };
- while (count > 0) {
- *dst = color + SkAlphaMulQ(*src, scale);
- src += 1;
- dst += 1;
- count--;
+ while (count >= 8) {
+ uint32x4_t dst0 = kernel(vld1q_u32(src+0)),
+ dst4 = kernel(vld1q_u32(src+4));
+ vst1q_u32(dst+0, dst0);
+ vst1q_u32(dst+4, dst4);
+ src += 8;
+ dst += 8;
+ count -= 8;
+ }
+ if (count >= 4) {
+ vst1q_u32(dst, kernel(vld1q_u32(src)));
+ src += 4;
+ dst += 4;
+ count -= 4;
+ }
+ if (count >= 2) {
+ uint32x2_t src2 = vld1_u32(src);
+ vst1_u32(dst, vget_low_u32(kernel(vcombine_u32(src2, src2))));
+ src += 2;
+ dst += 2;
+ count -= 2;
+ }
+ if (count >= 1) {
+ vst1q_lane_u32(dst, kernel(vdupq_n_u32(*src)), 0);
}
}