* the wide instruction encoding, which appends a second 64-bit immediate (i.e.,
constant) value after the basic instruction for a total of 128 bits.
-The basic instruction encoding looks as follows for a little-endian processor,
-where MSB and LSB mean the most significant bits and least significant bits,
-respectively:
+The fields conforming an encoded basic instruction are stored in the
+following order::
-============= ======= ======= ======= ============
-32 bits (MSB) 16 bits 4 bits 4 bits 8 bits (LSB)
-============= ======= ======= ======= ============
-imm offset src_reg dst_reg opcode
-============= ======= ======= ======= ============
+ opcode:8 src_reg:4 dst_reg:4 offset:16 imm:32 // In little-endian BPF.
+ opcode:8 dst_reg:4 src_reg:4 offset:16 imm:32 // In big-endian BPF.
**imm**
signed integer immediate value
**opcode**
operation to perform
-and as follows for a big-endian processor:
+Note that the contents of multi-byte fields ('imm' and 'offset') are
+stored using big-endian byte ordering in big-endian BPF and
+little-endian byte ordering in little-endian BPF.
-============= ======= ======= ======= ============
-32 bits (MSB) 16 bits 4 bits 4 bits 8 bits (LSB)
-============= ======= ======= ======= ============
-imm offset dst_reg src_reg opcode
-============= ======= ======= ======= ============
+For example::
-Multi-byte fields ('imm' and 'offset') are similarly stored in
-the byte order of the processor.
+ opcode offset imm assembly
+ src_reg dst_reg
+ 07 0 1 00 00 44 33 22 11 r1 += 0x11223344 // little
+ dst_reg src_reg
+ 07 1 0 00 00 11 22 33 44 r1 += 0x11223344 // big
Note that most instructions do not use all of the fields.
Unused fields shall be cleared to zero.
using the same format but with opcode, dst_reg, src_reg, and offset all set to zero,
and imm containing the high 32 bits of the immediate value.
-================= ==================
-64 bits (MSB) 64 bits (LSB)
-================= ==================
-basic instruction pseudo instruction
-================= ==================
+This is depicted in the following figure::
+
+ basic_instruction
+ .-----------------------------.
+ | |
+ code:8 regs:8 offset:16 imm:32 unused:32 imm:32
+ | |
+ '--------------'
+ pseudo instruction
Thus the 64-bit immediate value is constructed as follows:
imm64 = (next_imm << 32) | imm
where 'next_imm' refers to the imm value of the pseudo instruction
-following the basic instruction.
+following the basic instruction. The unused bytes in the pseudo
+instruction are reserved and shall be cleared to zero.
Instruction classes
-------------------