KVM: x86/mmu: Extend Eager Page Splitting to nested MMUs
authorDavid Matlack <dmatlack@google.com>
Wed, 22 Jun 2022 19:27:09 +0000 (15:27 -0400)
committerPaolo Bonzini <pbonzini@redhat.com>
Fri, 24 Jun 2022 08:52:00 +0000 (04:52 -0400)
Add support for Eager Page Splitting pages that are mapped by nested
MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB
pages, and then splitting all 2MiB pages to 4KiB pages.

Note, Eager Page Splitting is limited to nested MMUs as a policy rather
than due to any technical reason (the sp->role.guest_mode check could
just be deleted and Eager Page Splitting would work correctly for all
shadow MMU pages). There is really no reason to support Eager Page
Splitting for tdp_mmu=N, since such support will eventually be phased
out, and there is no current use case supporting Eager Page Splitting on
hosts where TDP is either disabled or unavailable in hardware.
Furthermore, future improvements to nested MMU scalability may diverge
the code from the legacy shadow paging implementation. These
improvements will be simpler to make if Eager Page Splitting does not
have to worry about legacy shadow paging.

Splitting huge pages mapped by nested MMUs requires dealing with some
extra complexity beyond that of the TDP MMU:

(1) The shadow MMU has a limit on the number of shadow pages that are
    allowed to be allocated. So, as a policy, Eager Page Splitting
    refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer
    pages available.

(2) Splitting a huge page may end up re-using an existing lower level
    shadow page tables. This is unlike the TDP MMU which always allocates
    new shadow page tables when splitting.

(3) When installing the lower level SPTEs, they must be added to the
    rmap which may require allocating additional pte_list_desc structs.

Case (2) is especially interesting since it may require a TLB flush,
unlike the TDP MMU which can fully split huge pages without any TLB
flushes. Specifically, an existing lower level page table may point to
even lower level page tables that are not fully populated, effectively
unmapping a portion of the huge page, which requires a flush.  As of
this commit, a flush is always done always after dropping the huge page
and before installing the lower level page table.

This TLB flush could instead be delayed until the MMU lock is about to be
dropped, which would batch flushes for multiple splits.  However these
flushes should be rare in practice (a huge page must be aliased in
multiple SPTEs and have been split for NX Huge Pages in only some of
them). Flushing immediately is simpler to plumb and also reduces the
chances of tripping over a CPU bug (e.g. see iTLB multihit).

[ This commit is based off of the original implementation of Eager Page
  Splitting from Peter in Google's kernel from 2016. ]

Suggested-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-23-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Documentation/admin-guide/kernel-parameters.txt
arch/x86/include/asm/kvm_host.h
arch/x86/kvm/mmu/mmu.c

index 97c16aa2f53fda926fcdc6f8ecbf3a45fe036594..329f0f274e2bb8387e91d879326f8c32a9892b0d 100644 (file)
                        the KVM_CLEAR_DIRTY ioctl, and only for the pages being
                        cleared.
 
-                       Eager page splitting currently only supports splitting
-                       huge pages mapped by the TDP MMU.
+                       Eager page splitting is only supported when kvm.tdp_mmu=Y.
 
                        Default is Y (on).
 
index 64efe8c90c31fe1ce83dd4354062caa0e44fe614..665667d61cafa29ed3539d31ff0e9d97806458dd 100644 (file)
@@ -1338,6 +1338,28 @@ struct kvm_arch {
        u32 max_vcpu_ids;
 
        bool disable_nx_huge_pages;
+
+       /*
+        * Memory caches used to allocate shadow pages when performing eager
+        * page splitting. No need for a shadowed_info_cache since eager page
+        * splitting only allocates direct shadow pages.
+        *
+        * Protected by kvm->slots_lock.
+        */
+       struct kvm_mmu_memory_cache split_shadow_page_cache;
+       struct kvm_mmu_memory_cache split_page_header_cache;
+
+       /*
+        * Memory cache used to allocate pte_list_desc structs while splitting
+        * huge pages. In the worst case, to split one huge page, 512
+        * pte_list_desc structs are needed to add each lower level leaf sptep
+        * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
+        * page table.
+        *
+        * Protected by kvm->slots_lock.
+        */
+#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
+       struct kvm_mmu_memory_cache split_desc_cache;
 };
 
 struct kvm_vm_stat {
index 192cb7dc4471470ee183d2e033588a7ae91aefae..9bfe339bf67f695ad132a226ef4689fba0e75989 100644 (file)
@@ -5942,9 +5942,25 @@ int kvm_mmu_init_vm(struct kvm *kvm)
        node->track_write = kvm_mmu_pte_write;
        node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
        kvm_page_track_register_notifier(kvm, node);
+
+       kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
+       kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
+
+       kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
+
+       kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
+       kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
+
        return 0;
 }
 
+static void mmu_free_vm_memory_caches(struct kvm *kvm)
+{
+       kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
+       kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
+       kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
+}
+
 void kvm_mmu_uninit_vm(struct kvm *kvm)
 {
        struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
@@ -5952,6 +5968,8 @@ void kvm_mmu_uninit_vm(struct kvm *kvm)
        kvm_page_track_unregister_notifier(kvm, node);
 
        kvm_mmu_uninit_tdp_mmu(kvm);
+
+       mmu_free_vm_memory_caches(kvm);
 }
 
 static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
@@ -6073,15 +6091,235 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
                kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
 }
 
+static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
+{
+       return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
+}
+
+static bool need_topup_split_caches_or_resched(struct kvm *kvm)
+{
+       if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
+               return true;
+
+       /*
+        * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
+        * to split a single huge page. Calculating how many are actually needed
+        * is possible but not worth the complexity.
+        */
+       return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
+              need_topup(&kvm->arch.split_page_header_cache, 1) ||
+              need_topup(&kvm->arch.split_shadow_page_cache, 1);
+}
+
+static int topup_split_caches(struct kvm *kvm)
+{
+       int r;
+
+       lockdep_assert_held(&kvm->slots_lock);
+
+       /*
+        * Setting capacity == min would cause KVM to drop mmu_lock even if
+        * just one object was consumed from the cache, so make capacity
+        * larger than min.
+        */
+       r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache,
+                                        2 * SPLIT_DESC_CACHE_MIN_NR_OBJECTS,
+                                        SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
+       if (r)
+               return r;
+
+       r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
+       if (r)
+               return r;
+
+       return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
+}
+
+static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
+{
+       struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
+       struct shadow_page_caches caches = {};
+       union kvm_mmu_page_role role;
+       unsigned int access;
+       gfn_t gfn;
+
+       gfn = kvm_mmu_page_get_gfn(huge_sp, huge_sptep - huge_sp->spt);
+       access = kvm_mmu_page_get_access(huge_sp, huge_sptep - huge_sp->spt);
+
+       /*
+        * Note, huge page splitting always uses direct shadow pages, regardless
+        * of whether the huge page itself is mapped by a direct or indirect
+        * shadow page, since the huge page region itself is being directly
+        * mapped with smaller pages.
+        */
+       role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
+
+       /* Direct SPs do not require a shadowed_info_cache. */
+       caches.page_header_cache = &kvm->arch.split_page_header_cache;
+       caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
+
+       /* Safe to pass NULL for vCPU since requesting a direct SP. */
+       return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
+}
+
+static void shadow_mmu_split_huge_page(struct kvm *kvm,
+                                      const struct kvm_memory_slot *slot,
+                                      u64 *huge_sptep)
+
+{
+       struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
+       u64 huge_spte = READ_ONCE(*huge_sptep);
+       struct kvm_mmu_page *sp;
+       u64 *sptep, spte;
+       gfn_t gfn;
+       int index;
+
+       sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
+
+       for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
+               sptep = &sp->spt[index];
+               gfn = kvm_mmu_page_get_gfn(sp, index);
+
+               /*
+                * The SP may already have populated SPTEs, e.g. if this huge
+                * page is aliased by multiple sptes with the same access
+                * permissions. These entries are guaranteed to map the same
+                * gfn-to-pfn translation since the SP is direct, so no need to
+                * modify them.
+                *
+                * If a given SPTE points to a lower level page table, installing
+                * such SPTEs would effectively unmap a potion of the huge page.
+                * This is not an issue because __link_shadow_page() flushes the TLB
+                * when the passed sp replaces a large SPTE.
+                */
+               if (is_shadow_present_pte(*sptep))
+                       continue;
+
+               spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
+               mmu_spte_set(sptep, spte);
+               __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
+       }
+
+       __link_shadow_page(kvm, cache, huge_sptep, sp);
+}
+
+static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
+                                         const struct kvm_memory_slot *slot,
+                                         u64 *huge_sptep)
+{
+       struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
+       int level, r = 0;
+       gfn_t gfn;
+       u64 spte;
+
+       /* Grab information for the tracepoint before dropping the MMU lock. */
+       gfn = kvm_mmu_page_get_gfn(huge_sp, huge_sptep - huge_sp->spt);
+       level = huge_sp->role.level;
+       spte = *huge_sptep;
+
+       if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
+               r = -ENOSPC;
+               goto out;
+       }
+
+       if (need_topup_split_caches_or_resched(kvm)) {
+               write_unlock(&kvm->mmu_lock);
+               cond_resched();
+               /*
+                * If the topup succeeds, return -EAGAIN to indicate that the
+                * rmap iterator should be restarted because the MMU lock was
+                * dropped.
+                */
+               r = topup_split_caches(kvm) ?: -EAGAIN;
+               write_lock(&kvm->mmu_lock);
+               goto out;
+       }
+
+       shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
+
+out:
+       trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
+       return r;
+}
+
+static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
+                                           struct kvm_rmap_head *rmap_head,
+                                           const struct kvm_memory_slot *slot)
+{
+       struct rmap_iterator iter;
+       struct kvm_mmu_page *sp;
+       u64 *huge_sptep;
+       int r;
+
+restart:
+       for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
+               sp = sptep_to_sp(huge_sptep);
+
+               /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
+               if (WARN_ON_ONCE(!sp->role.guest_mode))
+                       continue;
+
+               /* The rmaps should never contain non-leaf SPTEs. */
+               if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
+                       continue;
+
+               /* SPs with level >PG_LEVEL_4K should never by unsync. */
+               if (WARN_ON_ONCE(sp->unsync))
+                       continue;
+
+               /* Don't bother splitting huge pages on invalid SPs. */
+               if (sp->role.invalid)
+                       continue;
+
+               r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
+
+               /*
+                * The split succeeded or needs to be retried because the MMU
+                * lock was dropped. Either way, restart the iterator to get it
+                * back into a consistent state.
+                */
+               if (!r || r == -EAGAIN)
+                       goto restart;
+
+               /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
+               break;
+       }
+
+       return false;
+}
+
+static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
+                                               const struct kvm_memory_slot *slot,
+                                               gfn_t start, gfn_t end,
+                                               int target_level)
+{
+       int level;
+
+       /*
+        * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
+        * down to the target level. This ensures pages are recursively split
+        * all the way to the target level. There's no need to split pages
+        * already at the target level.
+        */
+       for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
+               slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
+                                       level, level, start, end - 1, true, false);
+       }
+}
+
 /* Must be called with the mmu_lock held in write-mode. */
 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
                                   const struct kvm_memory_slot *memslot,
                                   u64 start, u64 end,
                                   int target_level)
 {
-       if (is_tdp_mmu_enabled(kvm))
-               kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
-                                                target_level, false);
+       if (!is_tdp_mmu_enabled(kvm))
+               return;
+
+       if (kvm_memslots_have_rmaps(kvm))
+               kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
+
+       kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
 
        /*
         * A TLB flush is unnecessary at this point for the same resons as in
@@ -6096,12 +6334,19 @@ void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
        u64 start = memslot->base_gfn;
        u64 end = start + memslot->npages;
 
-       if (is_tdp_mmu_enabled(kvm)) {
-               read_lock(&kvm->mmu_lock);
-               kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
-               read_unlock(&kvm->mmu_lock);
+       if (!is_tdp_mmu_enabled(kvm))
+               return;
+
+       if (kvm_memslots_have_rmaps(kvm)) {
+               write_lock(&kvm->mmu_lock);
+               kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
+               write_unlock(&kvm->mmu_lock);
        }
 
+       read_lock(&kvm->mmu_lock);
+       kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
+       read_unlock(&kvm->mmu_lock);
+
        /*
         * No TLB flush is necessary here. KVM will flush TLBs after
         * write-protecting and/or clearing dirty on the newly split SPTEs to