virtio-blk
M: Kevin Wolf <kwolf@redhat.com>
+M: Stefan Hajnoczi <stefanha@redhat.com>
S: Supported
F: hw/virtio-blk*
Block
M: Kevin Wolf <kwolf@redhat.com>
+M: Stefan Hajnoczi <stefanha@redhat.com>
S: Supported
F: block*
F: block/
void bdrv_aio_cancel(BlockDriverAIOCB *acb)
{
- acb->pool->cancel(acb);
+ acb->aiocb_info->cancel(acb);
}
/* block I/O throttling */
qemu_aio_release(acb);
}
-static AIOPool bdrv_em_aio_pool = {
+static const AIOCBInfo bdrv_em_aiocb_info = {
.aiocb_size = sizeof(BlockDriverAIOCBSync),
.cancel = bdrv_aio_cancel_em,
};
{
BlockDriverAIOCBSync *acb;
- acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
acb->is_write = is_write;
acb->qiov = qiov;
acb->bounce = qemu_blockalign(bs, qiov->size);
qemu_aio_flush();
}
-static AIOPool bdrv_em_co_aio_pool = {
+static const AIOCBInfo bdrv_em_co_aiocb_info = {
.aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
.cancel = bdrv_aio_co_cancel_em,
};
Coroutine *co;
BlockDriverAIOCBCoroutine *acb;
- acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->req.sector = sector_num;
acb->req.nb_sectors = nb_sectors;
acb->req.qiov = qiov;
Coroutine *co;
BlockDriverAIOCBCoroutine *acb;
- acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
qemu_coroutine_enter(co, acb);
trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
- acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
acb->req.sector = sector_num;
acb->req.nb_sectors = nb_sectors;
co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
bdrv_init();
}
-void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
+void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
BlockDriverCompletionFunc *cb, void *opaque)
{
BlockDriverAIOCB *acb;
- if (pool->free_aiocb) {
- acb = pool->free_aiocb;
- pool->free_aiocb = acb->next;
- } else {
- acb = g_malloc0(pool->aiocb_size);
- acb->pool = pool;
- }
+ acb = g_slice_alloc(aiocb_info->aiocb_size);
+ acb->aiocb_info = aiocb_info;
acb->bs = bs;
acb->cb = cb;
acb->opaque = opaque;
void qemu_aio_release(void *p)
{
- BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
- AIOPool *pool = acb->pool;
- acb->next = pool->free_aiocb;
- pool->free_aiocb = acb;
+ BlockDriverAIOCB *acb = p;
+ g_slice_free1(acb->aiocb_info->aiocb_size, acb);
}
/**************************************************************/
static void blkdebug_aio_cancel(BlockDriverAIOCB *blockacb);
-static AIOPool blkdebug_aio_pool = {
+static const AIOCBInfo blkdebug_aiocb_info = {
.aiocb_size = sizeof(BlkdebugAIOCB),
.cancel = blkdebug_aio_cancel,
};
return NULL;
}
- acb = qemu_aio_get(&blkdebug_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&blkdebug_aiocb_info, bs, cb, opaque);
acb->ret = -error;
bh = qemu_bh_new(error_callback_bh, acb);
}
}
-static AIOPool blkverify_aio_pool = {
+static const AIOCBInfo blkverify_aiocb_info = {
.aiocb_size = sizeof(BlkverifyAIOCB),
.cancel = blkverify_aio_cancel,
};
BlockDriverCompletionFunc *cb,
void *opaque)
{
- BlkverifyAIOCB *acb = qemu_aio_get(&blkverify_aio_pool, bs, cb, opaque);
+ BlkverifyAIOCB *acb = qemu_aio_get(&blkverify_aiocb_info, bs, cb, opaque);
acb->bh = NULL;
acb->is_write = is_write;
// Do we have to implement canceling? Seems to work without...
}
-static AIOPool curl_aio_pool = {
+static const AIOCBInfo curl_aiocb_info = {
.aiocb_size = sizeof(CURLAIOCB),
.cancel = curl_aio_cancel,
};
{
CURLAIOCB *acb;
- acb = qemu_aio_get(&curl_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&curl_aiocb_info, bs, cb, opaque);
acb->qiov = qiov;
acb->sector_num = sector_num;
}
}
-static AIOPool gluster_aio_pool = {
+static const AIOCBInfo gluster_aiocb_info = {
.aiocb_size = sizeof(GlusterAIOCB),
.cancel = qemu_gluster_aio_cancel,
};
size = nb_sectors * BDRV_SECTOR_SIZE;
s->qemu_aio_count++;
- acb = qemu_aio_get(&gluster_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&gluster_aiocb_info, bs, cb, opaque);
acb->size = size;
acb->ret = 0;
acb->finished = NULL;
GlusterAIOCB *acb;
BDRVGlusterState *s = bs->opaque;
- acb = qemu_aio_get(&gluster_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&gluster_aiocb_info, bs, cb, opaque);
acb->size = 0;
acb->ret = 0;
acb->finished = NULL;
}
}
-static AIOPool iscsi_aio_pool = {
+static const AIOCBInfo iscsi_aiocb_info = {
.aiocb_size = sizeof(IscsiAIOCB),
.cancel = iscsi_aio_cancel,
};
uint64_t lba;
struct iscsi_data data;
- acb = qemu_aio_get(&iscsi_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&iscsi_aiocb_info, bs, cb, opaque);
trace_iscsi_aio_writev(iscsi, sector_num, nb_sectors, opaque, acb);
acb->iscsilun = iscsilun;
qemu_read_size = BDRV_SECTOR_SIZE * (size_t)nb_sectors;
- acb = qemu_aio_get(&iscsi_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&iscsi_aiocb_info, bs, cb, opaque);
trace_iscsi_aio_readv(iscsi, sector_num, nb_sectors, opaque, acb);
acb->iscsilun = iscsilun;
struct iscsi_context *iscsi = iscsilun->iscsi;
IscsiAIOCB *acb;
- acb = qemu_aio_get(&iscsi_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&iscsi_aiocb_info, bs, cb, opaque);
acb->iscsilun = iscsilun;
acb->canceled = 0;
IscsiAIOCB *acb;
struct unmap_list list[1];
- acb = qemu_aio_get(&iscsi_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&iscsi_aiocb_info, bs, cb, opaque);
acb->iscsilun = iscsilun;
acb->canceled = 0;
assert(req == SG_IO);
- acb = qemu_aio_get(&iscsi_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&iscsi_aiocb_info, bs, cb, opaque);
acb->iscsilun = iscsilun;
acb->canceled = 0;
}
}
-static AIOPool laio_pool = {
+static const AIOCBInfo laio_aiocb_info = {
.aiocb_size = sizeof(struct qemu_laiocb),
.cancel = laio_cancel,
};
struct iocb *iocbs;
off_t offset = sector_num * 512;
- laiocb = qemu_aio_get(&laio_pool, bs, cb, opaque);
+ laiocb = qemu_aio_get(&laio_aiocb_info, bs, cb, opaque);
laiocb->nbytes = nb_sectors * 512;
laiocb->ctx = s;
laiocb->ret = -EINPROGRESS;
uint64_t last_table_size;
uint64_t blocks_clusters;
do {
- uint64_t table_clusters = size_to_clusters(s, table_size);
+ uint64_t table_clusters =
+ size_to_clusters(s, table_size * sizeof(uint64_t));
blocks_clusters = 1 +
((table_clusters + refcount_block_clusters - 1)
/ refcount_block_clusters);
}
}
-static AIOPool qed_aio_pool = {
+static const AIOCBInfo qed_aiocb_info = {
.aiocb_size = sizeof(QEDAIOCB),
.cancel = qed_aio_cancel,
};
BlockDriverCompletionFunc *cb,
void *opaque, int flags)
{
- QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
+ QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
opaque, flags);
acb->cancelled = 1;
}
-static AIOPool rbd_aio_pool = {
+static const AIOCBInfo rbd_aiocb_info = {
.aiocb_size = sizeof(RBDAIOCB),
.cancel = qemu_rbd_aio_cancel,
};
BDRVRBDState *s = bs->opaque;
- acb = qemu_aio_get(&rbd_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&rbd_aiocb_info, bs, cb, opaque);
acb->cmd = cmd;
acb->qiov = qiov;
if (cmd == RBD_AIO_DISCARD) {
acb->canceled = true;
}
-static AIOPool sd_aio_pool = {
+static const AIOCBInfo sd_aiocb_info = {
.aiocb_size = sizeof(SheepdogAIOCB),
.cancel = sd_aio_cancel,
};
{
SheepdogAIOCB *acb;
- acb = qemu_aio_get(&sd_aio_pool, bs, cb, opaque);
+ acb = qemu_aio_get(&sd_aiocb_info, bs, cb, opaque);
acb->qiov = qiov;
BDRVVmdkState *s = bs->opaque;
int ret;
uint64_t n, index_in_cluster;
+ uint64_t extent_begin_sector, extent_relative_sector_num;
VmdkExtent *extent = NULL;
uint64_t cluster_offset;
ret = get_cluster_offset(
bs, extent, NULL,
sector_num << 9, 0, &cluster_offset);
- index_in_cluster = sector_num % extent->cluster_sectors;
+ extent_begin_sector = extent->end_sector - extent->sectors;
+ extent_relative_sector_num = sector_num - extent_begin_sector;
+ index_in_cluster = extent_relative_sector_num % extent->cluster_sectors;
n = extent->cluster_sectors - index_in_cluster;
if (n > nb_sectors) {
n = nb_sectors;
VmdkExtent *extent = NULL;
int n, ret;
int64_t index_in_cluster;
+ uint64_t extent_begin_sector, extent_relative_sector_num;
uint64_t cluster_offset;
VmdkMetaData m_data;
if (ret) {
return -EINVAL;
}
- index_in_cluster = sector_num % extent->cluster_sectors;
+ extent_begin_sector = extent->end_sector - extent->sectors;
+ extent_relative_sector_num = sector_num - extent_begin_sector;
+ index_in_cluster = extent_relative_sector_num % extent->cluster_sectors;
n = extent->cluster_sectors - index_in_cluster;
if (n > nb_sectors) {
n = nb_sectors;
}
}
-static AIOPool win32_aio_pool = {
+static const AIOCBInfo win32_aiocb_info = {
.aiocb_size = sizeof(QEMUWin32AIOCB),
.cancel = win32_aio_cancel,
};
uint64_t offset = sector_num * 512;
DWORD rc;
- waiocb = qemu_aio_get(&win32_aio_pool, bs, cb, opaque);
+ waiocb = qemu_aio_get(&win32_aiocb_info, bs, cb, opaque);
waiocb->nbytes = nb_sectors * 512;
waiocb->qiov = qiov;
waiocb->is_read = (type == QEMU_AIO_READ);
waiocb->is_linear = true;
}
- waiocb->ov = (OVERLAPPED) {
- .Offset = (DWORD) offset,
- .OffsetHigh = (DWORD) (offset >> 32),
- .hEvent = event_notifier_get_handle(&aio->e)
- };
+ memset(&waiocb->ov, 0, sizeof(waiocb->ov));
+ waiocb->ov.Offset = (DWORD)offset;
+ waiocb->ov.OffsetHigh = (DWORD)(offset >> 32);
+ waiocb->ov.hEvent = event_notifier_get_handle(&aio->e);
+
aio->count++;
if (type & QEMU_AIO_READ) {
dma_complete(dbs, 0);
}
-static AIOPool dma_aio_pool = {
+static const AIOCBInfo dma_aiocb_info = {
.aiocb_size = sizeof(DMAAIOCB),
.cancel = dma_aio_cancel,
};
DMAIOFunc *io_func, BlockDriverCompletionFunc *cb,
void *opaque, DMADirection dir)
{
- DMAAIOCB *dbs = qemu_aio_get(&dma_aio_pool, bs, cb, opaque);
+ DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, bs, cb, opaque);
trace_dma_bdrv_io(dbs, bs, sector_num, (dir == DMA_DIRECTION_TO_DEVICE));
static void fdctrl_reset_fifo(FDCtrl *fdctrl);
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len);
-static void fdctrl_raise_irq(FDCtrl *fdctrl, uint8_t status0);
+static void fdctrl_raise_irq(FDCtrl *fdctrl);
static FDrive *get_cur_drv(FDCtrl *fdctrl);
static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
+ FD_DIR_VERIFY = 5,
};
enum {
FD_STATE_MULTI = 0x01, /* multi track flag */
FD_STATE_FORMAT = 0x02, /* format flag */
- FD_STATE_SEEK = 0x04, /* seek flag */
};
enum {
};
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
-#define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
struct FDCtrl {
/* Change IRQ state */
static void fdctrl_reset_irq(FDCtrl *fdctrl)
{
+ fdctrl->status0 = 0;
if (!(fdctrl->sra & FD_SRA_INTPEND))
return;
FLOPPY_DPRINTF("Reset interrupt\n");
fdctrl->sra &= ~FD_SRA_INTPEND;
}
-static void fdctrl_raise_irq(FDCtrl *fdctrl, uint8_t status0)
+static void fdctrl_raise_irq(FDCtrl *fdctrl)
{
/* Sparc mutation */
if (fdctrl->sun4m && (fdctrl->msr & FD_MSR_CMDBUSY)) {
/* XXX: not sure */
fdctrl->msr &= ~FD_MSR_CMDBUSY;
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
- fdctrl->status0 = status0;
return;
}
if (!(fdctrl->sra & FD_SRA_INTPEND)) {
}
fdctrl->reset_sensei = 0;
- fdctrl->status0 = status0;
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
}
fd_recalibrate(&fdctrl->drives[i]);
fdctrl_reset_fifo(fdctrl);
if (do_irq) {
- fdctrl_raise_irq(fdctrl, FD_SR0_RDYCHG);
+ fdctrl->status0 |= FD_SR0_RDYCHG;
+ fdctrl_raise_irq(fdctrl);
fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
}
}
}
/* Set FIFO status for the host to read */
-static void fdctrl_set_fifo(FDCtrl *fdctrl, int fifo_len, uint8_t status0)
+static void fdctrl_set_fifo(FDCtrl *fdctrl, int fifo_len)
{
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
- if (status0) {
- fdctrl_raise_irq(fdctrl, status0);
- }
}
/* Set an error: unimplemented/unknown command */
qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
fdctrl->fifo[0]);
fdctrl->fifo[0] = FD_SR0_INVCMD;
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
/* Seek to next sector
} else {
new_head = 0;
new_track++;
+ fdctrl->status0 |= FD_SR0_SEEK;
if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
ret = 0;
}
}
} else {
+ fdctrl->status0 |= FD_SR0_SEEK;
new_track++;
ret = 0;
}
uint8_t status1, uint8_t status2)
{
FDrive *cur_drv;
-
cur_drv = get_cur_drv(fdctrl);
- fdctrl->status0 = status0 | FD_SR0_SEEK | (cur_drv->head << 2) |
- GET_CUR_DRV(fdctrl);
+
+ fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
+ fdctrl->status0 |= GET_CUR_DRV(fdctrl);
+ if (cur_drv->head) {
+ fdctrl->status0 |= FD_SR0_HEAD;
+ }
+ fdctrl->status0 |= status0;
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2, fdctrl->status0);
}
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->msr &= ~FD_MSR_NONDMA;
- fdctrl_set_fifo(fdctrl, 7, fdctrl->status0);
+
+ fdctrl_set_fifo(fdctrl, 7);
+ fdctrl_raise_irq(fdctrl);
}
/* Prepare a data transfer (either DMA or FIFO) */
{
FDrive *cur_drv;
uint8_t kh, kt, ks;
- int did_seek = 0;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl->fifo[5] = ks;
return;
case 1:
- did_seek = 1;
+ fdctrl->status0 |= FD_SR0_SEEK;
break;
default:
break;
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
- fdctrl->msr |= FD_MSR_CMDBUSY;
+ assert(fdctrl->msr & FD_MSR_CMDBUSY);
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
- if (did_seek)
- fdctrl->data_state |= FD_STATE_SEEK;
- else
- fdctrl->data_state &= ~FD_STATE_SEEK;
- if (fdctrl->fifo[5] == 00) {
+ if (fdctrl->fifo[5] == 0) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
- (direction == FD_DIR_READ && dma_mode == 1)) {
+ (direction == FD_DIR_READ && dma_mode == 1) ||
+ (direction == FD_DIR_VERIFY)) {
/* No access is allowed until DMA transfer has completed */
fdctrl->msr &= ~FD_MSR_RQM;
- /* Now, we just have to wait for the DMA controller to
- * recall us...
- */
- DMA_hold_DREQ(fdctrl->dma_chann);
- DMA_schedule(fdctrl->dma_chann);
+ if (direction != FD_DIR_VERIFY) {
+ /* Now, we just have to wait for the DMA controller to
+ * recall us...
+ */
+ DMA_hold_DREQ(fdctrl->dma_chann);
+ DMA_schedule(fdctrl->dma_chann);
+ } else {
+ /* Start transfer */
+ fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
+ fdctrl->data_len);
+ }
return;
} else {
FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
if (direction != FD_DIR_WRITE)
fdctrl->msr |= FD_MSR_DIO;
/* IO based transfer: calculate len */
- fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
+ fdctrl_raise_irq(fdctrl);
}
/* Prepare a transfer of deleted data */
goto transfer_error;
}
break;
+ case FD_DIR_VERIFY:
+ /* VERIFY commands */
+ break;
default:
/* SCAN commands */
{
fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SEH;
- if (FD_DID_SEEK(fdctrl->data_state))
- status0 |= FD_SR0_SEEK;
fdctrl->data_len -= len;
fdctrl_stop_transfer(fdctrl, status0, status1, status2);
transfer_error:
* then from status mode to command mode
*/
if (fdctrl->msr & FD_MSR_NONDMA) {
- fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
+ fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
fdctrl_reset_fifo(fdctrl);
fdctrl_reset_irq(fdctrl);
fdctrl->fifo[5] = ks;
return;
case 1:
- fdctrl->data_state |= FD_STATE_SEEK;
+ fdctrl->status0 |= FD_SR0_SEEK;
break;
default:
break;
if (cur_drv->sect == cur_drv->last_sect) {
fdctrl->data_state &= ~FD_STATE_FORMAT;
/* Last sector done */
- if (FD_DID_SEEK(fdctrl->data_state))
- fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
- else
- fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
+ fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
/* More to do */
fdctrl->data_pos = 0;
{
fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
fdctrl->fifo[0] = fdctrl->lock << 4;
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
- fdctrl_set_fifo(fdctrl, 10, 0);
+ fdctrl_set_fifo(fdctrl, 10);
}
static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
{
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
{
fdctrl->fifo[0] = 0x41; /* Stepping 1 */
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
- fdctrl_set_fifo(fdctrl, 15, 0);
+ fdctrl_set_fifo(fdctrl, 15);
}
static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
- fdctrl->data_state &= ~FD_STATE_SEEK;
cur_drv->bps =
fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
#if 0
(cur_drv->head << 2) |
GET_CUR_DRV(fdctrl) |
0x28;
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
fd_recalibrate(cur_drv);
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
- fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
+ fdctrl->status0 |= FD_SR0_SEEK;
+ fdctrl_raise_irq(fdctrl);
}
static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
fdctrl->reset_sensei--;
} else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
fdctrl->fifo[0] = FD_SR0_INVCMD;
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
return;
} else {
fdctrl->fifo[0] =
}
fdctrl->fifo[1] = cur_drv->track;
- fdctrl_set_fifo(fdctrl, 2, 0);
+ fdctrl_set_fifo(fdctrl, 2);
fdctrl_reset_irq(fdctrl);
fdctrl->status0 = FD_SR0_RDYCHG;
}
*/
fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
/* Raise Interrupt */
- fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
+ fdctrl->status0 |= FD_SR0_SEEK;
+ fdctrl_raise_irq(fdctrl);
}
static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
{
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
- fdctrl_set_fifo(fdctrl, 4, 0);
+ fdctrl_set_fifo(fdctrl, 4);
} else {
fdctrl_reset_fifo(fdctrl);
}
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
- fdctrl_set_fifo(fdctrl, 1, 0);
+ fdctrl_set_fifo(fdctrl, 1);
}
}
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
- fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
+ fdctrl->status0 |= FD_SR0_SEEK;
+ fdctrl_raise_irq(fdctrl);
}
static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
- fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
+ fdctrl->status0 |= FD_SR0_SEEK;
+ fdctrl_raise_irq(fdctrl);
}
static const struct {
{ FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
{ FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
{ FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
- { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_unimplemented },
+ { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
{ FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
{ FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
{ FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
* then from status mode to command mode
*/
if (fdctrl->data_pos == fdctrl->data_len)
- fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
+ fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
qemu_aio_release(iocb);
}
-static AIOPool trim_aio_pool = {
+static const AIOCBInfo trim_aiocb_info = {
.aiocb_size = sizeof(TrimAIOCB),
.cancel = trim_aio_cancel,
};
TrimAIOCB *iocb;
int i, j, ret;
- iocb = qemu_aio_get(&trim_aio_pool, bs, cb, opaque);
+ iocb = qemu_aio_get(&trim_aiocb_info, bs, cb, opaque);
iocb->bh = qemu_bh_new(ide_trim_bh_cb, iocb);
iocb->ret = 0;
static int megasas_cache_flush(MegasasState *s, MegasasCmd *cmd)
{
- qemu_aio_flush();
+ bdrv_drain_all();
return MFI_STAT_OK;
}
typedef struct BlockDriverAIOCB BlockDriverAIOCB;
typedef void BlockDriverCompletionFunc(void *opaque, int ret);
-typedef struct AIOPool {
+typedef struct AIOCBInfo {
void (*cancel)(BlockDriverAIOCB *acb);
- int aiocb_size;
- BlockDriverAIOCB *free_aiocb;
-} AIOPool;
+ size_t aiocb_size;
+} AIOCBInfo;
struct BlockDriverAIOCB {
- AIOPool *pool;
+ const AIOCBInfo *aiocb_info;
BlockDriverState *bs;
BlockDriverCompletionFunc *cb;
void *opaque;
- BlockDriverAIOCB *next;
};
-void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
+void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
BlockDriverCompletionFunc *cb, void *opaque);
void qemu_aio_release(void *p);
* disk_images_nbd:: NBD access
* disk_images_sheepdog:: Sheepdog disk images
* disk_images_iscsi:: iSCSI LUNs
+* disk_images_gluster:: GlusterFS disk images
@end menu
@node disk_images_quickstart
-cdrom iscsi://127.0.0.1/iqn.qemu.test/2
@end example
+@node disk_images_gluster
+@subsection GlusterFS disk images
+GlusterFS is an user space distributed file system.
+
+You can boot from the GlusterFS disk image with the command:
+@example
+qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
+@end example
+
+@var{gluster} is the protocol.
+
+@var{transport} specifies the transport type used to connect to gluster
+management daemon (glusterd). Valid transport types are
+tcp, unix and rdma. If a transport type isn't specified, then tcp
+type is assumed.
+
+@var{server} specifies the server where the volume file specification for
+the given volume resides. This can be either hostname, ipv4 address
+or ipv6 address. ipv6 address needs to be within square brackets [ ].
+If transport type is unix, then @var{server} field should not be specifed.
+Instead @var{socket} field needs to be populated with the path to unix domain
+socket.
+
+@var{port} is the port number on which glusterd is listening. This is optional
+and if not specified, QEMU will send 0 which will make gluster to use the
+default port. If the transport type is unix, then @var{port} should not be
+specified.
+
+@var{volname} is the name of the gluster volume which contains the disk image.
+
+@var{image} is the path to the actual disk image that resides on gluster volume.
+
+You can create a GlusterFS disk image with the command:
+@example
+qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
+@end example
+
+Examples
+@example
+qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
+qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
+qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
+qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
+qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
+qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
+qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
+qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
+@end example
@node pcsys_network
@section Network emulation
static int aio_flush_f(int argc, char **argv)
{
- qemu_aio_flush();
+ bdrv_drain_all();
return 0;
}
See also @url{http://http://www.osrg.net/sheepdog/}.
+@item GlusterFS
+GlusterFS is an user space distributed file system.
+QEMU supports the use of GlusterFS volumes for hosting VM disk images using
+TCP, Unix Domain Sockets and RDMA transport protocols.
+
+Syntax for specifying a VM disk image on GlusterFS volume is
+@example
+gluster[+transport]://[server[:port]]/volname/image[?socket=...]
+@end example
+
+
+Example
+@example
+qemu-system-x86_84 --drive file=gluster://192.0.2.1/testvol/a.img
+@end example
+
+See also @url{http://www.gluster.org}.
@end table
ETEXI
enum {
CMD_SENSE_INT = 0x08,
+ CMD_READ_ID = 0x0a,
CMD_SEEK = 0x0f,
+ CMD_VERIFY = 0x16,
CMD_READ = 0xe6,
CMD_RELATIVE_SEEK_OUT = 0x8f,
CMD_RELATIVE_SEEK_IN = 0xcf,
};
enum {
+ BUSY = 0x10,
+ NONDMA = 0x20,
RQM = 0x80,
DIO = 0x40,
g_assert(!get_irq(FLOPPY_IRQ));
}
-static uint8_t send_read_command(void)
+static uint8_t send_read_command(uint8_t cmd)
{
uint8_t drive = 0;
uint8_t head = 0;
uint8_t ret = 0;
- floppy_send(CMD_READ);
+ floppy_send(cmd);
floppy_send(head << 2 | drive);
g_assert(!get_irq(FLOPPY_IRQ));
floppy_send(cyl);
}
st0 = floppy_recv();
- if (st0 != 0x60) {
+ if (st0 != 0x40) {
+ ret = 1;
+ }
+
+ floppy_recv();
+ floppy_recv();
+ floppy_recv();
+ floppy_recv();
+ floppy_recv();
+ floppy_recv();
+
+ return ret;
+}
+
+static uint8_t send_read_no_dma_command(int nb_sect, uint8_t expected_st0)
+{
+ uint8_t drive = 0;
+ uint8_t head = 0;
+ uint8_t cyl = 0;
+ uint8_t sect_addr = 1;
+ uint8_t sect_size = 2;
+ uint8_t eot = nb_sect;
+ uint8_t gap = 0x1b;
+ uint8_t gpl = 0xff;
+
+ uint8_t msr = 0;
+ uint8_t st0;
+
+ uint8_t ret = 0;
+
+ floppy_send(CMD_READ);
+ floppy_send(head << 2 | drive);
+ g_assert(!get_irq(FLOPPY_IRQ));
+ floppy_send(cyl);
+ floppy_send(head);
+ floppy_send(sect_addr);
+ floppy_send(sect_size);
+ floppy_send(eot);
+ floppy_send(gap);
+ floppy_send(gpl);
+
+ uint16_t i = 0;
+ uint8_t n = 2;
+ for (; i < n; i++) {
+ msr = inb(FLOPPY_BASE + reg_msr);
+ if (msr == (BUSY | NONDMA | DIO | RQM)) {
+ break;
+ }
+ sleep(1);
+ }
+
+ if (i >= n) {
+ return 1;
+ }
+
+ /* Non-DMA mode */
+ for (i = 0; i < 512 * 2 * nb_sect; i++) {
+ msr = inb(FLOPPY_BASE + reg_msr);
+ assert_bit_set(msr, BUSY | RQM | DIO);
+ inb(FLOPPY_BASE + reg_fifo);
+ }
+
+ st0 = floppy_recv();
+ if (st0 != expected_st0) {
ret = 1;
}
{
uint8_t ret;
- ret = send_read_command();
+ ret = send_read_command(CMD_READ);
g_assert(ret == 0);
}
-static void test_media_change(void)
+static void test_media_insert(void)
{
uint8_t dir;
assert_bit_clear(dir, DSKCHG);
dir = inb(FLOPPY_BASE + reg_dir);
assert_bit_clear(dir, DSKCHG);
+}
+
+static void test_media_change(void)
+{
+ uint8_t dir;
+
+ test_media_insert();
/* Eject the floppy and check that DSKCHG is set. Reading it out doesn't
* reset the bit. */
g_assert(pcn == 0);
}
+static void test_read_id(void)
+{
+ uint8_t drive = 0;
+ uint8_t head = 0;
+ uint8_t cyl;
+ uint8_t st0;
+
+ /* Seek to track 0 and check with READ ID */
+ send_seek(0);
+
+ floppy_send(CMD_READ_ID);
+ g_assert(!get_irq(FLOPPY_IRQ));
+ floppy_send(head << 2 | drive);
+
+ while (!get_irq(FLOPPY_IRQ)) {
+ /* qemu involves a timer with READ ID... */
+ clock_step(1000000000LL / 50);
+ }
+
+ st0 = floppy_recv();
+ floppy_recv();
+ floppy_recv();
+ cyl = floppy_recv();
+ head = floppy_recv();
+ floppy_recv();
+ floppy_recv();
+
+ g_assert_cmpint(cyl, ==, 0);
+ g_assert_cmpint(head, ==, 0);
+ g_assert_cmpint(st0, ==, head << 2);
+
+ /* Seek to track 8 on head 1 and check with READ ID */
+ head = 1;
+ cyl = 8;
+
+ floppy_send(CMD_SEEK);
+ floppy_send(head << 2 | drive);
+ g_assert(!get_irq(FLOPPY_IRQ));
+ floppy_send(cyl);
+ g_assert(get_irq(FLOPPY_IRQ));
+ ack_irq(NULL);
+
+ floppy_send(CMD_READ_ID);
+ g_assert(!get_irq(FLOPPY_IRQ));
+ floppy_send(head << 2 | drive);
+
+ while (!get_irq(FLOPPY_IRQ)) {
+ /* qemu involves a timer with READ ID... */
+ clock_step(1000000000LL / 50);
+ }
+
+ st0 = floppy_recv();
+ floppy_recv();
+ floppy_recv();
+ cyl = floppy_recv();
+ head = floppy_recv();
+ floppy_recv();
+ floppy_recv();
+
+ g_assert_cmpint(cyl, ==, 8);
+ g_assert_cmpint(head, ==, 1);
+ g_assert_cmpint(st0, ==, head << 2);
+}
+
+static void test_read_no_dma_1(void)
+{
+ uint8_t ret;
+
+ outb(FLOPPY_BASE + reg_dor, inb(FLOPPY_BASE + reg_dor) & ~0x08);
+ send_seek(0);
+ ret = send_read_no_dma_command(1, 0x04);
+ g_assert(ret == 0);
+}
+
+static void test_read_no_dma_18(void)
+{
+ uint8_t ret;
+
+ outb(FLOPPY_BASE + reg_dor, inb(FLOPPY_BASE + reg_dor) & ~0x08);
+ send_seek(0);
+ ret = send_read_no_dma_command(18, 0x04);
+ g_assert(ret == 0);
+}
+
+static void test_read_no_dma_19(void)
+{
+ uint8_t ret;
+
+ outb(FLOPPY_BASE + reg_dor, inb(FLOPPY_BASE + reg_dor) & ~0x08);
+ send_seek(0);
+ ret = send_read_no_dma_command(19, 0x20);
+ g_assert(ret == 0);
+}
+
+static void test_verify(void)
+{
+ uint8_t ret;
+
+ ret = send_read_command(CMD_VERIFY);
+ g_assert(ret == 0);
+}
+
/* success if no crash or abort */
static void fuzz_registers(void)
{
qtest_add_func("/fdc/media_change", test_media_change);
qtest_add_func("/fdc/sense_interrupt", test_sense_interrupt);
qtest_add_func("/fdc/relative_seek", test_relative_seek);
+ qtest_add_func("/fdc/read_id", test_read_id);
+ qtest_add_func("/fdc/verify", test_verify);
+ qtest_add_func("/fdc/media_insert", test_media_insert);
+ qtest_add_func("/fdc/read_no_dma_1", test_read_no_dma_1);
+ qtest_add_func("/fdc/read_no_dma_18", test_read_no_dma_18);
+ qtest_add_func("/fdc/read_no_dma_19", test_read_no_dma_19);
qtest_add_func("/fdc/fuzz-registers", fuzz_registers);
ret = g_test_run();
--- /dev/null
+#!/usr/bin/env python
+#
+# Tests growing a large refcount table.
+#
+# Copyright (C) 2012 Red Hat, Inc.
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+import time
+import os
+import qcow2
+from qcow2 import QcowHeader
+import iotests
+from iotests import qemu_img, qemu_img_verbose, qemu_io
+import struct
+import subprocess
+
+test_img = os.path.join(iotests.test_dir, 'test.img')
+
+class TestRefcountTableGrowth(iotests.QMPTestCase):
+ '''Abstract base class for image mirroring test cases'''
+
+ def preallocate(self, name):
+ fd = open(name, "r+b")
+ try:
+ off_reftable = 512
+ off_refblock = off_reftable + (512 * 512)
+ off_l1 = off_refblock + (512 * 512 * 64)
+ off_l2 = off_l1 + (512 * 512 * 4 * 8)
+ off_data = off_l2 + (512 * 512 * 4 * 512)
+
+ # Write a new header
+ h = QcowHeader(fd)
+ h.refcount_table_offset = off_reftable
+ h.refcount_table_clusters = 512
+ h.l1_table_offset = off_l1
+ h.l1_size = 512 * 512 * 4
+ h.update(fd)
+
+ # Write a refcount table
+ fd.seek(off_reftable)
+
+ for i in xrange(0, h.refcount_table_clusters):
+ sector = ''.join(struct.pack('>Q',
+ off_refblock + i * 64 * 512 + j * 512)
+ for j in xrange(0, 64))
+ fd.write(sector)
+
+ # Write the refcount blocks
+ assert(fd.tell() == off_refblock)
+ sector = ''.join(struct.pack('>H', 1) for j in xrange(0, 64 * 256))
+ for block in xrange(0, h.refcount_table_clusters):
+ fd.write(sector)
+
+ # Write the L1 table
+ assert(fd.tell() == off_l1)
+ assert(off_l2 + 512 * h.l1_size == off_data)
+ table = ''.join(struct.pack('>Q', (1 << 63) | off_l2 + 512 * j)
+ for j in xrange(0, h.l1_size))
+ fd.write(table)
+
+ # Write the L2 tables
+ assert(fd.tell() == off_l2)
+ img_file_size = h.refcount_table_clusters * 64 * 256 * 512
+ remaining = img_file_size - off_data
+
+ off = off_data
+ while remaining > 1024 * 512:
+ pytable = list((1 << 63) | off + 512 * j
+ for j in xrange(0, 1024))
+ table = struct.pack('>1024Q', *pytable)
+ fd.write(table)
+ remaining = remaining - 1024 * 512
+ off = off + 1024 * 512
+
+ table = ''.join(struct.pack('>Q', (1 << 63) | off + 512 * j)
+ for j in xrange(0, remaining / 512))
+ fd.write(table)
+
+
+ # Data
+ fd.truncate(img_file_size)
+
+
+ finally:
+ fd.close()
+
+
+ def setUp(self):
+ qemu_img('create', '-f', iotests.imgfmt, '-o', 'cluster_size=512', test_img, '16G')
+ self.preallocate(test_img)
+ pass
+
+
+ def tearDown(self):
+ os.remove(test_img)
+ pass
+
+ def test_grow_refcount_table(self):
+ qemu_io('-c', 'write 3800M 1M', test_img)
+ qemu_img_verbose('check' , test_img)
+ pass
+
+if __name__ == '__main__':
+ iotests.main(supported_fmts=['qcow2'])
--- /dev/null
+No errors were found on the image.
+.
+----------------------------------------------------------------------
+Ran 1 tests
+
+OK
-vmdk test vmdk
-rbd test rbd
-sheepdog test sheepdog
+ -nbd test nbd
-xdiff graphical mode diff
-nocache use O_DIRECT on backing file
-misalign misalign memory allocations
IMGPROTO=rbd
xpand=false
;;
-
-sheepdog)
IMGPROTO=sheepdog
xpand=false
;;
-
+ -nbd)
+ IMGPROTO=nbd
+ xpand=false
+ ;;
-nocache)
QEMU_IO_OPTIONS="$QEMU_IO_OPTIONS --nocache"
xpand=false
[ "$QEMU" = "" ] && _fatal "qemu not found"
[ "$QEMU_IMG" = "" ] && _fatal "qemu-img not found"
-[ "$QEMU_IO" = "" ] && _fatal "qemu-img not found"
+[ "$QEMU_IO" = "" ] && _fatal "qemu-io not found"
+
+if [ "$IMGPROTO" = "nbd" ] ; then
+ [ "$QEMU_NBD" = "" ] && _fatal "qemu-nbd not found"
+fi
if $valgrind; then
export REAL_QEMU_IO="$QEMU_IO_PROG"
if [ -z "$QEMU_PROG" ]; then
export QEMU_PROG="`set_prog_path qemu`"
fi
-[ "$QEMU_PROG" = "" ] && _fatal "qemu not found"
if [ -z "$QEMU_IMG_PROG" ]; then
export QEMU_IMG_PROG="`set_prog_path qemu-img`"
fi
-[ "$QEMU_IMG_PROG" = "" ] && _fatal "qemu-img not found"
if [ -z "$QEMU_IO_PROG" ]; then
export QEMU_IO_PROG="`set_prog_path qemu-io`"
fi
-[ "$QEMU_IO_PROG" = "" ] && _fatal "qemu-io not found"
+
+if [ -z "$QEMU_NBD_PROG" ]; then
+ export QEMU_NBD_PROG="`set_prog_path qemu-nbd`"
+fi
export QEMU=$QEMU_PROG
-export QEMU_IMG=$QEMU_IMG_PROG
+export QEMU_IMG=$QEMU_IMG_PROG
export QEMU_IO="$QEMU_IO_PROG $QEMU_IO_OPTIONS"
+export QEMU_NBD=$QEMU_NBD_PROG
[ -f /etc/qemu-iotest.config ] && . /etc/qemu-iotest.config
if [ "$IMGPROTO" = "file" ]; then
TEST_IMG=$TEST_DIR/t.$IMGFMT
+elif [ "$IMGPROTO" = "nbd" ]; then
+ TEST_IMG_FILE=$TEST_DIR/t.$IMGFMT
+ TEST_IMG="nbd:127.0.0.1:10810"
else
TEST_IMG=$IMGPROTO:$TEST_DIR/t.$IMGFMT
fi
local extra_img_options=""
local image_size=$*
local optstr=""
+ local img_name=""
+
+ if [ -n "$TEST_IMG_FILE" ]; then
+ img_name=$TEST_IMG_FILE
+ else
+ img_name=$TEST_IMG
+ fi
if [ -n "$IMGOPTS" ]; then
optstr=$(_optstr_add "$optstr" "$IMGOPTS")
fi
# XXX(hch): have global image options?
- $QEMU_IMG create -f $IMGFMT $extra_img_options $TEST_IMG $image_size | \
+ $QEMU_IMG create -f $IMGFMT $extra_img_options $img_name $image_size | \
sed -e "s#$IMGPROTO:$TEST_DIR#TEST_DIR#g" \
-e "s#$TEST_DIR#TEST_DIR#g" \
-e "s#$IMGFMT#IMGFMT#g" \
-e "s# compat6=\\(on\\|off\\)##g" \
-e "s# static=\\(on\\|off\\)##g" \
-e "s# lazy_refcounts=\\(on\\|off\\)##g"
+
+ # Start an NBD server on the image file, which is what we'll be talking to
+ if [ $IMGPROTO = "nbd" ]; then
+ eval "$QEMU_NBD -v -t -b 127.0.0.1 -p 10810 $TEST_IMG_FILE &"
+ QEMU_NBD_PID=$!
+ sleep 1 # FIXME: qemu-nbd needs to be listening before we continue
+ fi
}
_cleanup_test_img()
{
case "$IMGPROTO" in
+ nbd)
+ kill $QEMU_NBD_PID
+ rm -f $TEST_IMG_FILE
+ ;;
file)
rm -f $TEST_DIR/t.$IMGFMT
rm -f $TEST_DIR/t.$IMGFMT.orig
041 rw auto backing
042 rw auto quick
043 rw auto backing
+044 rw auto
devnull = open('/dev/null', 'r+')
return subprocess.call(qemu_img_args + list(args), stdin=devnull, stdout=devnull)
+def qemu_img_verbose(*args):
+ '''Run qemu-img without supressing its output and return the exit code'''
+ return subprocess.call(qemu_img_args + list(args))
+
def qemu_io(*args):
'''Run qemu-io and return the stdout data'''
args = qemu_io_args + list(args)
try:
unittest.main(testRunner=MyTestRunner)
finally:
- sys.stderr.write(re.sub(r'Ran (\d+) test[s] in [\d.]+s', r'Ran \1 tests', output.getvalue()))
+ sys.stderr.write(re.sub(r'Ran (\d+) tests? in [\d.]+s', r'Ran \1 tests', output.getvalue()))
for name, handler, num_args, desc in cmds:
print " %-20s - %s" % (name, desc)
-if len(sys.argv) < 3:
- usage()
- sys.exit(1)
+if __name__ == '__main__':
+ if len(sys.argv) < 3:
+ usage()
+ sys.exit(1)
-main(sys.argv[1], sys.argv[2], sys.argv[3:])
+ main(sys.argv[1], sys.argv[2], sys.argv[3:])
qemu_mutex_unlock(&lock);
}
-static AIOPool thread_pool_cb_pool = {
+static const AIOCBInfo thread_pool_aiocb_info = {
.aiocb_size = sizeof(ThreadPoolElement),
.cancel = thread_pool_cancel,
};
{
ThreadPoolElement *req;
- req = qemu_aio_get(&thread_pool_cb_pool, NULL, cb, opaque);
+ req = qemu_aio_get(&thread_pool_aiocb_info, NULL, cb, opaque);
req->func = func;
req->arg = arg;
req->state = THREAD_QUEUED;