// or tort (including negligence or otherwise) arising in any way out of\r
// the use of this software, even if advised of the possibility of such damage.\r
//\r
-//M*/
-#include "blenders.hpp"
-#include "util.hpp"
-
-using namespace std;
-using namespace cv;
-
-static const float WEIGHT_EPS = 1e-5f;
-
-Ptr<Blender> Blender::createDefault(int type)
-{
- if (type == NO)
- return new Blender();
- if (type == FEATHER)
- return new FeatherBlender();
- if (type == MULTI_BAND)
- return new MultiBandBlender();
- CV_Error(CV_StsBadArg, "unsupported blending method");
- return NULL;
-}
-
-
-void Blender::prepare(const vector<Point> &corners, const vector<Size> &sizes)
-{
- prepare(resultRoi(corners, sizes));
-}
-
-
-void Blender::prepare(Rect dst_roi)
-{
- dst_.create(dst_roi.size(), CV_16SC3);
- dst_.setTo(Scalar::all(0));
- dst_mask_.create(dst_roi.size(), CV_8U);
- dst_mask_.setTo(Scalar::all(0));
- dst_roi_ = dst_roi;
-}
-
-
-void Blender::feed(const Mat &img, const Mat &mask, Point tl)
-{
- CV_Assert(img.type() == CV_16SC3);
- CV_Assert(mask.type() == CV_8U);
- int dx = tl.x - dst_roi_.x;
- int dy = tl.y - dst_roi_.y;
-
- for (int y = 0; y < img.rows; ++y)
- {
- const Point3_<short> *src_row = img.ptr<Point3_<short> >(y);
- Point3_<short> *dst_row = dst_.ptr<Point3_<short> >(dy + y);
- const uchar *mask_row = mask.ptr<uchar>(y);
- uchar *dst_mask_row = dst_mask_.ptr<uchar>(dy + y);
-
- for (int x = 0; x < img.cols; ++x)
- {
- if (mask_row[x])
- dst_row[dx + x] = src_row[x];
- dst_mask_row[dx + x] |= mask_row[x];
- }
- }
-}
-
-
-void Blender::blend(Mat &dst, Mat &dst_mask)
-{
- dst_.setTo(Scalar::all(0), dst_mask_ == 0);
- dst = dst_;
- dst_mask = dst_mask_;
- dst_.release();
- dst_mask_.release();
-}
-
-
-void FeatherBlender::prepare(Rect dst_roi)
-{
- Blender::prepare(dst_roi);
- dst_weight_map_.create(dst_roi.size(), CV_32F);
- dst_weight_map_.setTo(0);
-}
-
-
-void FeatherBlender::feed(const Mat &img, const Mat &mask, Point tl)
-{
- CV_Assert(img.type() == CV_16SC3);
- CV_Assert(mask.type() == CV_8U);
-
- createWeightMap(mask, sharpness_, weight_map_);
- int dx = tl.x - dst_roi_.x;
- int dy = tl.y - dst_roi_.y;
-
- for (int y = 0; y < img.rows; ++y)
- {
- const Point3_<short>* src_row = img.ptr<Point3_<short> >(y);
- Point3_<short>* dst_row = dst_.ptr<Point3_<short> >(dy + y);
- const float* weight_row = weight_map_.ptr<float>(y);
- float* dst_weight_row = dst_weight_map_.ptr<float>(dy + y);
-
- for (int x = 0; x < img.cols; ++x)
- {
- dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]);
- dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]);
- dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]);
- dst_weight_row[dx + x] += weight_row[x];
- }
- }
-}
-
-
-void FeatherBlender::blend(Mat &dst, Mat &dst_mask)
-{
- normalize(dst_weight_map_, dst_);
- dst_mask_ = dst_weight_map_ > WEIGHT_EPS;
- Blender::blend(dst, dst_mask);
-}
-
-
-void MultiBandBlender::prepare(Rect dst_roi)
-{
- dst_roi_final_ = dst_roi;
-
- // Crop unnecessary bands
- double max_len = static_cast<double>(max(dst_roi.width, dst_roi.height));
- num_bands_ = min(actual_num_bands_, static_cast<int>(ceil(log(max_len) / log(2.0))));
-
- // Add border to the final image, to ensure sizes are divided by (1 << num_bands_)
- dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_);
- dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_);
-
- Blender::prepare(dst_roi);
-
- dst_pyr_laplace_.resize(num_bands_ + 1);
- dst_pyr_laplace_[0] = dst_;
-
- dst_band_weights_.resize(num_bands_ + 1);
- dst_band_weights_[0].create(dst_roi.size(), CV_32F);
- dst_band_weights_[0].setTo(0);
-
- for (int i = 1; i <= num_bands_; ++i)
- {
- dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2,
- (dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
- dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2,
- (dst_band_weights_[i - 1].cols + 1) / 2, CV_32F);
- dst_pyr_laplace_[i].setTo(Scalar::all(0));
- dst_band_weights_[i].setTo(0);
- }
-}
-
-
-void MultiBandBlender::feed(const Mat &img, const Mat &mask, Point tl)
-{
- CV_Assert(img.type() == CV_16SC3);
- CV_Assert(mask.type() == CV_8U);
-
- // Keep source image in memory with small border
- int gap = 3 * (1 << num_bands_);
- Point tl_new(max(dst_roi_.x, tl.x - gap),
- max(dst_roi_.y, tl.y - gap));
- Point br_new(min(dst_roi_.br().x, tl.x + img.cols + gap),
- min(dst_roi_.br().y, tl.y + img.rows + gap));
-
- // Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
- // After that scale between layers is exactly 2.
- //
- // We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
- // image is bordered to have size equal to the final image size, but this is too memory hungry approach.
- tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
- tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
- int width = br_new.x - tl_new.x;
- int height = br_new.y - tl_new.y;
- width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
- height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
- br_new.x = tl_new.x + width;
- br_new.y = tl_new.y + height;
- int dy = max(br_new.y - dst_roi_.br().y, 0);
- int dx = max(br_new.x - dst_roi_.br().x, 0);
- tl_new.x -= dx; br_new.x -= dx;
- tl_new.y -= dy; br_new.y -= dy;
-
- int top = tl.y - tl_new.y;
- int left = tl.x - tl_new.x;
- int bottom = br_new.y - tl.y - img.rows;
- int right = br_new.x - tl.x - img.cols;
-
- // Create the source image Laplacian pyramid
- vector<Mat> src_pyr_gauss(num_bands_ + 1);
- copyMakeBorder(img, src_pyr_gauss[0], top, bottom, left, right,
- BORDER_REFLECT);
- for (int i = 0; i < num_bands_; ++i)
- pyrDown(src_pyr_gauss[i], src_pyr_gauss[i + 1]);
- vector<Mat> src_pyr_laplace;
- createLaplacePyr(src_pyr_gauss, src_pyr_laplace);
- src_pyr_gauss.clear();
-
- // Create the weight map Gaussian pyramid
- Mat weight_map;
- mask.convertTo(weight_map, CV_32F, 1./255.);
- vector<Mat> weight_pyr_gauss(num_bands_ + 1);
- copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right,
- BORDER_CONSTANT);
- for (int i = 0; i < num_bands_; ++i)
- pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);
-
- int y_tl = tl_new.y - dst_roi_.y;
- int y_br = br_new.y - dst_roi_.y;
- int x_tl = tl_new.x - dst_roi_.x;
- int x_br = br_new.x - dst_roi_.x;
-
- // Add weighted layer of the source image to the final Laplacian pyramid layer
- for (int i = 0; i <= num_bands_; ++i)
- {
- for (int y = y_tl; y < y_br; ++y)
- {
- int y_ = y - y_tl;
- const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);
- Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);
- const float* weight_row = weight_pyr_gauss[i].ptr<float>(y_);
- float* dst_weight_row = dst_band_weights_[i].ptr<float>(y);
-
- for (int x = x_tl; x < x_br; ++x)
- {
- int x_ = x - x_tl;
- dst_row[x].x += static_cast<short>(src_row[x_].x * weight_row[x_]);
- dst_row[x].y += static_cast<short>(src_row[x_].y * weight_row[x_]);
- dst_row[x].z += static_cast<short>(src_row[x_].z * weight_row[x_]);
- dst_weight_row[x] += weight_row[x_];
- }
- }
- x_tl /= 2; y_tl /= 2;
- x_br /= 2; y_br /= 2;
- }
-}
-
-
-void MultiBandBlender::blend(Mat &dst, Mat &dst_mask)
-{
- for (int i = 0; i <= num_bands_; ++i)
- normalize(dst_band_weights_[i], dst_pyr_laplace_[i]);
-
- restoreImageFromLaplacePyr(dst_pyr_laplace_);
-
- dst_ = dst_pyr_laplace_[0];
- dst_ = dst_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
- dst_mask_ = dst_band_weights_[0] > WEIGHT_EPS;
- dst_mask_ = dst_mask_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));
- dst_pyr_laplace_.clear();
- dst_band_weights_.clear();
-
- Blender::blend(dst, dst_mask);
-}
-
-
-//////////////////////////////////////////////////////////////////////////////
-// Auxiliary functions
-
-void normalize(const Mat& weight, Mat& src)
-{
- CV_Assert(weight.type() == CV_32F);
- CV_Assert(src.type() == CV_16SC3);
- for (int y = 0; y < src.rows; ++y)
- {
- Point3_<short> *row = src.ptr<Point3_<short> >(y);
- const float *weight_row = weight.ptr<float>(y);
-
- for (int x = 0; x < src.cols; ++x)
- {
- row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS));
- row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS));
- row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS));
- }
- }
-}
-
-
-void createWeightMap(const Mat &mask, float sharpness, Mat &weight)
-{
- CV_Assert(mask.type() == CV_8U);
- distanceTransform(mask, weight, CV_DIST_L1, 3);
- threshold(weight * sharpness, weight, 1.f, 1.f, THRESH_TRUNC);
-}
-
-
-void createLaplacePyr(const vector<Mat> &pyr_gauss, vector<Mat> &pyr_laplace)
-{
- if (pyr_gauss.size() == 0)
- return;
- pyr_laplace.resize(pyr_gauss.size());
- Mat tmp;
- for (size_t i = 0; i < pyr_laplace.size() - 1; ++i)
- {
- pyrUp(pyr_gauss[i + 1], tmp, pyr_gauss[i].size());
- subtract(pyr_gauss[i], tmp, pyr_laplace[i]);
- }
- pyr_laplace[pyr_laplace.size() - 1] = pyr_gauss[pyr_laplace.size() - 1].clone();
-}
-
-
-void restoreImageFromLaplacePyr(vector<Mat> &pyr)
-{
- if (pyr.size() == 0)
- return;
- Mat tmp;
- for (size_t i = pyr.size() - 1; i > 0; --i)
- {
- pyrUp(pyr[i], tmp, pyr[i - 1].size());
- add(tmp, pyr[i - 1], pyr[i - 1]);
- }
-}
-
-
+//M*/\r
+#include "blenders.hpp"\r
+#include "util.hpp"\r
+\r
+using namespace std;\r
+using namespace cv;\r
+\r
+static const float WEIGHT_EPS = 1e-5f;\r
+\r
+Ptr<Blender> Blender::createDefault(int type)\r
+{\r
+ if (type == NO)\r
+ return new Blender();\r
+ if (type == FEATHER)\r
+ return new FeatherBlender();\r
+ if (type == MULTI_BAND)\r
+ return new MultiBandBlender();\r
+ CV_Error(CV_StsBadArg, "unsupported blending method");\r
+ return NULL;\r
+}\r
+\r
+\r
+void Blender::prepare(const vector<Point> &corners, const vector<Size> &sizes)\r
+{\r
+ prepare(resultRoi(corners, sizes));\r
+}\r
+\r
+\r
+void Blender::prepare(Rect dst_roi)\r
+{\r
+ dst_.create(dst_roi.size(), CV_16SC3);\r
+ dst_.setTo(Scalar::all(0));\r
+ dst_mask_.create(dst_roi.size(), CV_8U);\r
+ dst_mask_.setTo(Scalar::all(0));\r
+ dst_roi_ = dst_roi;\r
+}\r
+\r
+\r
+void Blender::feed(const Mat &img, const Mat &mask, Point tl) \r
+{\r
+ CV_Assert(img.type() == CV_16SC3);\r
+ CV_Assert(mask.type() == CV_8U);\r
+ int dx = tl.x - dst_roi_.x;\r
+ int dy = tl.y - dst_roi_.y;\r
+\r
+ for (int y = 0; y < img.rows; ++y)\r
+ {\r
+ const Point3_<short> *src_row = img.ptr<Point3_<short> >(y);\r
+ Point3_<short> *dst_row = dst_.ptr<Point3_<short> >(dy + y);\r
+ const uchar *mask_row = mask.ptr<uchar>(y);\r
+ uchar *dst_mask_row = dst_mask_.ptr<uchar>(dy + y);\r
+\r
+ for (int x = 0; x < img.cols; ++x)\r
+ {\r
+ if (mask_row[x]) \r
+ dst_row[dx + x] = src_row[x];\r
+ dst_mask_row[dx + x] |= mask_row[x];\r
+ }\r
+ }\r
+}\r
+\r
+\r
+void Blender::blend(Mat &dst, Mat &dst_mask)\r
+{\r
+ dst_.setTo(Scalar::all(0), dst_mask_ == 0);\r
+ dst = dst_;\r
+ dst_mask = dst_mask_;\r
+ dst_.release();\r
+ dst_mask_.release();\r
+}\r
+\r
+\r
+void FeatherBlender::prepare(Rect dst_roi)\r
+{\r
+ Blender::prepare(dst_roi);\r
+ dst_weight_map_.create(dst_roi.size(), CV_32F);\r
+ dst_weight_map_.setTo(0);\r
+}\r
+\r
+\r
+void FeatherBlender::feed(const Mat &img, const Mat &mask, Point tl)\r
+{\r
+ CV_Assert(img.type() == CV_16SC3);\r
+ CV_Assert(mask.type() == CV_8U);\r
+\r
+ createWeightMap(mask, sharpness_, weight_map_);\r
+ int dx = tl.x - dst_roi_.x;\r
+ int dy = tl.y - dst_roi_.y;\r
+\r
+ for (int y = 0; y < img.rows; ++y)\r
+ {\r
+ const Point3_<short>* src_row = img.ptr<Point3_<short> >(y);\r
+ Point3_<short>* dst_row = dst_.ptr<Point3_<short> >(dy + y);\r
+ const float* weight_row = weight_map_.ptr<float>(y);\r
+ float* dst_weight_row = dst_weight_map_.ptr<float>(dy + y);\r
+\r
+ for (int x = 0; x < img.cols; ++x) \r
+ {\r
+ dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]);\r
+ dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]);\r
+ dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]);\r
+ dst_weight_row[dx + x] += weight_row[x];\r
+ }\r
+ }\r
+}\r
+\r
+\r
+void FeatherBlender::blend(Mat &dst, Mat &dst_mask)\r
+{\r
+ normalize(dst_weight_map_, dst_);\r
+ dst_mask_ = dst_weight_map_ > WEIGHT_EPS;\r
+ Blender::blend(dst, dst_mask);\r
+}\r
+\r
+\r
+void MultiBandBlender::prepare(Rect dst_roi)\r
+{\r
+ dst_roi_final_ = dst_roi;\r
+\r
+ // Crop unnecessary bands\r
+ double max_len = static_cast<double>(max(dst_roi.width, dst_roi.height));\r
+ num_bands_ = min(actual_num_bands_, static_cast<int>(ceil(log(max_len) / log(2.0))));\r
+\r
+ // Add border to the final image, to ensure sizes are divided by (1 << num_bands_)\r
+ dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_);\r
+ dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_);\r
+\r
+ Blender::prepare(dst_roi);\r
+\r
+ dst_pyr_laplace_.resize(num_bands_ + 1);\r
+ dst_pyr_laplace_[0] = dst_;\r
+\r
+ dst_band_weights_.resize(num_bands_ + 1);\r
+ dst_band_weights_[0].create(dst_roi.size(), CV_32F);\r
+ dst_band_weights_[0].setTo(0);\r
+\r
+ for (int i = 1; i <= num_bands_; ++i)\r
+ {\r
+ dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2, \r
+ (dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);\r
+ dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2,\r
+ (dst_band_weights_[i - 1].cols + 1) / 2, CV_32F);\r
+ dst_pyr_laplace_[i].setTo(Scalar::all(0));\r
+ dst_band_weights_[i].setTo(0);\r
+ }\r
+}\r
+\r
+\r
+void MultiBandBlender::feed(const Mat &img, const Mat &mask, Point tl)\r
+{\r
+ CV_Assert(img.type() == CV_16SC3);\r
+ CV_Assert(mask.type() == CV_8U);\r
+\r
+ // Keep source image in memory with small border\r
+ int gap = 3 * (1 << num_bands_);\r
+ Point tl_new(max(dst_roi_.x, tl.x - gap), \r
+ max(dst_roi_.y, tl.y - gap));\r
+ Point br_new(min(dst_roi_.br().x, tl.x + img.cols + gap), \r
+ min(dst_roi_.br().y, tl.y + img.rows + gap));\r
+\r
+ // Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_). \r
+ // After that scale between layers is exactly 2.\r
+ //\r
+ // We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when \r
+ // image is bordered to have size equal to the final image size, but this is too memory hungry approach.\r
+ tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);\r
+ tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);\r
+ int width = br_new.x - tl_new.x;\r
+ int height = br_new.y - tl_new.y;\r
+ width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);\r
+ height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);\r
+ br_new.x = tl_new.x + width;\r
+ br_new.y = tl_new.y + height;\r
+ int dy = max(br_new.y - dst_roi_.br().y, 0);\r
+ int dx = max(br_new.x - dst_roi_.br().x, 0);\r
+ tl_new.x -= dx; br_new.x -= dx;\r
+ tl_new.y -= dy; br_new.y -= dy;\r
+\r
+ int top = tl.y - tl_new.y;\r
+ int left = tl.x - tl_new.x;\r
+ int bottom = br_new.y - tl.y - img.rows;\r
+ int right = br_new.x - tl.x - img.cols;\r
+\r
+ // Create the source image Laplacian pyramid\r
+ vector<Mat> src_pyr_gauss(num_bands_ + 1);\r
+ copyMakeBorder(img, src_pyr_gauss[0], top, bottom, left, right, \r
+ BORDER_REFLECT);\r
+ for (int i = 0; i < num_bands_; ++i)\r
+ pyrDown(src_pyr_gauss[i], src_pyr_gauss[i + 1]);\r
+ vector<Mat> src_pyr_laplace;\r
+ createLaplacePyr(src_pyr_gauss, src_pyr_laplace);\r
+ src_pyr_gauss.clear();\r
+\r
+ // Create the weight map Gaussian pyramid\r
+ Mat weight_map;\r
+ mask.convertTo(weight_map, CV_32F, 1./255.);\r
+ vector<Mat> weight_pyr_gauss(num_bands_ + 1);\r
+ copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, \r
+ BORDER_CONSTANT);\r
+ for (int i = 0; i < num_bands_; ++i)\r
+ pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);\r
+\r
+ int y_tl = tl_new.y - dst_roi_.y;\r
+ int y_br = br_new.y - dst_roi_.y;\r
+ int x_tl = tl_new.x - dst_roi_.x;\r
+ int x_br = br_new.x - dst_roi_.x;\r
+\r
+ // Add weighted layer of the source image to the final Laplacian pyramid layer\r
+ for (int i = 0; i <= num_bands_; ++i)\r
+ {\r
+ for (int y = y_tl; y < y_br; ++y)\r
+ {\r
+ int y_ = y - y_tl;\r
+ const Point3_<short>* src_row = src_pyr_laplace[i].ptr<Point3_<short> >(y_);\r
+ Point3_<short>* dst_row = dst_pyr_laplace_[i].ptr<Point3_<short> >(y);\r
+ const float* weight_row = weight_pyr_gauss[i].ptr<float>(y_);\r
+ float* dst_weight_row = dst_band_weights_[i].ptr<float>(y);\r
+\r
+ for (int x = x_tl; x < x_br; ++x) \r
+ {\r
+ int x_ = x - x_tl;\r
+ dst_row[x].x += static_cast<short>(src_row[x_].x * weight_row[x_]);\r
+ dst_row[x].y += static_cast<short>(src_row[x_].y * weight_row[x_]);\r
+ dst_row[x].z += static_cast<short>(src_row[x_].z * weight_row[x_]);\r
+ dst_weight_row[x] += weight_row[x_];\r
+ }\r
+ }\r
+ x_tl /= 2; y_tl /= 2; \r
+ x_br /= 2; y_br /= 2;\r
+ } \r
+}\r
+\r
+\r
+void MultiBandBlender::blend(Mat &dst, Mat &dst_mask)\r
+{\r
+ for (int i = 0; i <= num_bands_; ++i)\r
+ normalize(dst_band_weights_[i], dst_pyr_laplace_[i]);\r
+\r
+ restoreImageFromLaplacePyr(dst_pyr_laplace_);\r
+\r
+ dst_ = dst_pyr_laplace_[0];\r
+ dst_ = dst_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));\r
+ dst_mask_ = dst_band_weights_[0] > WEIGHT_EPS;\r
+ dst_mask_ = dst_mask_(Range(0, dst_roi_final_.height), Range(0, dst_roi_final_.width));\r
+ dst_pyr_laplace_.clear();\r
+ dst_band_weights_.clear();\r
+\r
+ Blender::blend(dst, dst_mask);\r
+}\r
+\r
+\r
+//////////////////////////////////////////////////////////////////////////////\r
+// Auxiliary functions\r
+\r
+void normalize(const Mat& weight, Mat& src)\r
+{\r
+ CV_Assert(weight.type() == CV_32F);\r
+ CV_Assert(src.type() == CV_16SC3);\r
+ for (int y = 0; y < src.rows; ++y)\r
+ {\r
+ Point3_<short> *row = src.ptr<Point3_<short> >(y);\r
+ const float *weight_row = weight.ptr<float>(y);\r
+\r
+ for (int x = 0; x < src.cols; ++x)\r
+ {\r
+ row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS));\r
+ row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS));\r
+ row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS));\r
+ }\r
+ }\r
+}\r
+\r
+\r
+void createWeightMap(const Mat &mask, float sharpness, Mat &weight)\r
+{\r
+ CV_Assert(mask.type() == CV_8U);\r
+ distanceTransform(mask, weight, CV_DIST_L1, 3);\r
+ threshold(weight * sharpness, weight, 1.f, 1.f, THRESH_TRUNC);\r
+}\r
+\r
+\r
+void createLaplacePyr(const vector<Mat> &pyr_gauss, vector<Mat> &pyr_laplace)\r
+{\r
+ if (pyr_gauss.size() == 0)\r
+ return;\r
+ pyr_laplace.resize(pyr_gauss.size());\r
+ Mat tmp;\r
+ for (size_t i = 0; i < pyr_laplace.size() - 1; ++i)\r
+ {\r
+ pyrUp(pyr_gauss[i + 1], tmp, pyr_gauss[i].size());\r
+ subtract(pyr_gauss[i], tmp, pyr_laplace[i]);\r
+ }\r
+ pyr_laplace[pyr_laplace.size() - 1] = pyr_gauss[pyr_laplace.size() - 1].clone();\r
+}\r
+\r
+\r
+void restoreImageFromLaplacePyr(vector<Mat> &pyr)\r
+{\r
+ if (pyr.size() == 0)\r
+ return;\r
+ Mat tmp;\r
+ for (size_t i = pyr.size() - 1; i > 0; --i)\r
+ {\r
+ pyrUp(pyr[i], tmp, pyr[i - 1].size());\r
+ add(tmp, pyr[i - 1], pyr[i - 1]);\r
+ }\r
+}\r
+\r
+\r
" --work_megapix <float>\n"\r
" Resolution for image registration step. The default is 0.6 Mpx.\n"\r
" --match_conf <float>\n"\r
- " Confidence for feature matching step. The default is 0.7.\n"\r
+ " Confidence for feature matching step. The default is 0.65.\n"\r
" --conf_thresh <float>\n"\r
" Threshold for two images are from the same panorama confidence.\n"\r
" The default is 1.0.\n"\r
Mat full_img, img;\r
\r
vector<Mat> images(num_images);\r
+ vector<Size> full_img_sizes(num_images);\r
double seam_work_aspect = 1;\r
\r
for (int i = 0; i < num_images; ++i)\r
{\r
full_img = imread(img_names[i]);\r
+ full_img_sizes[i] = full_img.size();\r
+\r
if (full_img.empty())\r
{\r
LOGLN("Can't open image " << img_names[i]);\r
vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);\r
vector<Mat> img_subset;\r
vector<string> img_names_subset;\r
+ vector<Size> full_img_sizes_subset;\r
for (size_t i = 0; i < indices.size(); ++i)\r
{\r
img_names_subset.push_back(img_names[indices[i]]);\r
img_subset.push_back(images[indices[i]]);\r
+ full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);\r
}\r
\r
images = img_subset;\r
img_names = img_names_subset;\r
+ full_img_sizes = full_img_sizes_subset;\r
\r
// Check if we still have enough images\r
num_images = static_cast<int>(img_names.size());\r
warper = Warper::createByCameraFocal(warped_image_scale, warp_type);\r
\r
// Update corners and sizes\r
- Rect dst_roi = resultRoi(corners, sizes);\r
for (int i = 0; i < num_images; ++i)\r
{\r
// Update camera focal\r
cameras[i].focal *= compose_work_aspect;\r
\r
// Update corner and size\r
- corners[i] = dst_roi.tl() + (corners[i] - dst_roi.tl()) * compose_seam_aspect;\r
- sizes[i] = Size(static_cast<int>((sizes[i].width + 1) * compose_seam_aspect), \r
- static_cast<int>((sizes[i].height + 1) * compose_seam_aspect));\r
+ Size sz = full_img_sizes[i];\r
+ if (abs(compose_scale - 1) > 1e-1)\r
+ {\r
+ sz.width = cvRound(full_img_sizes[i].width * compose_scale);\r
+ sz.height = cvRound(full_img_sizes[i].height * compose_scale);\r
+ }\r
+ Rect roi = warper->warpRoi(sz, static_cast<float>(cameras[i].focal), cameras[i].R);\r
+ corners[i] = roi.tl();\r
+ sizes[i] = roi.size();\r
}\r
}\r
if (abs(compose_scale - 1) > 1e-1)\r
Size img_size = img.size();\r
\r
// Warp the current image\r
- warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R, \r
+ warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R,\r
img_warped);\r
\r
// Warp the current image mask\r
}\r
\r
Mat result, result_mask;\r
- blender->blend(result, result_mask);\r
+ blender->blend(result, result_mask); \r
\r
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");\r
\r
const DMatch& m1 = pair_matches[i][1];\r
if (m0.distance < (1.f - match_conf_) * m1.distance)\r
{\r
- matches_info.matches.push_back(m0);\r
+ //matches_info.matches.push_back(m0);\r
matches.insert(make_pair(m0.queryIdx, m0.trainIdx));\r
}\r
}\r
const DMatch& m0 = pair_matches[i][0];\r
const DMatch& m1 = pair_matches[i][1];\r
if (m0.distance < (1.f - match_conf_) * m1.distance)\r
- if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())\r
+ if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) != matches.end())\r
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));\r
}\r
}\r
const DMatch& m1 = pair_matches[i][1];\r
if (m0.distance < (1.f - match_conf_) * m1.distance)\r
{\r
- matches_info.matches.push_back(m0);\r
+ //matches_info.matches.push_back(m0);\r
matches.insert(make_pair(m0.queryIdx, m0.trainIdx));\r
}\r
}\r
const DMatch& m0 = pair_matches[i][0];\r
const DMatch& m1 = pair_matches[i][1];\r
if (m0.distance < (1.f - match_conf_) * m1.distance)\r
- if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())\r
+ if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) != matches.end())\r
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));\r
}\r
}\r
// or tort (including negligence or otherwise) arising in any way out of\r
// the use of this software, even if advised of the possibility of such damage.\r
//\r
-//M*/
-#include <algorithm>
-#include "autocalib.hpp"
-#include "motion_estimators.hpp"
-#include "util.hpp"
-
-using namespace std;
-using namespace cv;
-
-
-//////////////////////////////////////////////////////////////////////////////
-
-CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}
-
-CameraParams::CameraParams(const CameraParams &other) { *this = other; }
-
-const CameraParams& CameraParams::operator =(const CameraParams &other)
-{
- focal = other.focal;
- R = other.R.clone();
- t = other.t.clone();
- return *this;
-}
-
-
-//////////////////////////////////////////////////////////////////////////////
-
-struct IncDistance
-{
- IncDistance(vector<int> &dists) : dists(&dists[0]) {}
- void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
- int* dists;
-};
-
-
-struct CalcRotation
-{
- CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)
- : num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {}
-
- void operator ()(const GraphEdge &edge)
- {
- int pair_idx = edge.from * num_images + edge.to;
-
- double f_from = cameras[edge.from].focal;
- double f_to = cameras[edge.to].focal;
-
- Mat K_from = Mat::eye(3, 3, CV_64F);
- K_from.at<double>(0, 0) = f_from;
- K_from.at<double>(1, 1) = f_from;
-
- Mat K_to = Mat::eye(3, 3, CV_64F);
- K_to.at<double>(0, 0) = f_to;
- K_to.at<double>(1, 1) = f_to;
-
- Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
- cameras[edge.to].R = cameras[edge.from].R * R;
- }
-
- int num_images;
- const MatchesInfo* pairwise_matches;
- CameraParams* cameras;
-};
-
-
-void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
- vector<CameraParams> &cameras)
-{
- const int num_images = static_cast<int>(features.size());
-
- // Estimate focal length and set it for all cameras
- vector<double> focals;
- estimateFocal(features, pairwise_matches, focals);
- cameras.resize(num_images);
- for (int i = 0; i < num_images; ++i)
- cameras[i].focal = focals[i];
-
- // Restore global motion
- Graph span_tree;
- vector<int> span_tree_centers;
- findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
- span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));
-}
-
-
-//////////////////////////////////////////////////////////////////////////////
-
-void BundleAdjuster::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
- vector<CameraParams> &cameras)
-{
- num_images_ = static_cast<int>(features.size());
- features_ = &features[0];
- pairwise_matches_ = &pairwise_matches[0];
-
- // Prepare focals and rotations
- cameras_.create(num_images_ * 4, 1, CV_64F);
- SVD svd;
- for (int i = 0; i < num_images_; ++i)
- {
- cameras_.at<double>(i * 4, 0) = cameras[i].focal;
-
- svd(cameras[i].R, SVD::FULL_UV);
- Mat R = svd.u * svd.vt;
- if (determinant(R) < 0)
- R *= -1;
-
- Mat rvec;
- Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
- cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
- cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
- cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
- }
-
- // Select only consistent image pairs for futher adjustment
- edges_.clear();
- for (int i = 0; i < num_images_ - 1; ++i)
- {
- for (int j = i + 1; j < num_images_; ++j)
- {
- const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
- if (matches_info.confidence > conf_thresh_)
- edges_.push_back(make_pair(i, j));
- }
- }
-
- // Compute number of correspondences
- total_num_matches_ = 0;
- for (size_t i = 0; i < edges_.size(); ++i)
- total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
-
- CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,
- cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON));
-
- CvMat matParams = cameras_;
- cvCopy(&matParams, solver.param);
-
- int count = 0;
- for(;;)
- {
- const CvMat* _param = 0;
- CvMat* _J = 0;
- CvMat* _err = 0;
-
- bool proceed = solver.update(_param, _J, _err);
-
- cvCopy( _param, &matParams );
-
- if( !proceed || !_err )
- break;
-
- if( _J )
- {
- calcJacobian();
- CvMat matJ = J_;
- cvCopy( &matJ, _J );
- }
-
- if (_err)
- {
- calcError(err_);
- LOG(".");
- count++;
- CvMat matErr = err_;
- cvCopy( &matErr, _err );
- }
- }
- LOGLN("");
- LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_)));
- LOGLN("Bundle adjustment, iterations done: " << count);
-
- // Obtain global motion
- for (int i = 0; i < num_images_; ++i)
- {
- cameras[i].focal = cameras_.at<double>(i * 4, 0);
- Mat rvec(3, 1, CV_64F);
- rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
- rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
- rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
- Rodrigues(rvec, cameras[i].R);
- Mat Mf;
- cameras[i].R.convertTo(Mf, CV_32F);
- cameras[i].R = Mf;
- }
-
- // Normalize motion to center image
- Graph span_tree;
- vector<int> span_tree_centers;
- findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
- Mat R_inv = cameras[span_tree_centers[0]].R.inv();
- for (int i = 0; i < num_images_; ++i)
- cameras[i].R = R_inv * cameras[i].R;
-}
-
-
-void BundleAdjuster::calcError(Mat &err)
-{
- err.create(total_num_matches_ * 3, 1, CV_64F);
-
- int match_idx = 0;
- for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
- {
- int i = edges_[edge_idx].first;
- int j = edges_[edge_idx].second;
- double f1 = cameras_.at<double>(i * 4, 0);
- double f2 = cameras_.at<double>(j * 4, 0);
- double R1[9], R2[9];
- Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2);
- Mat rvec(3, 1, CV_64F);
- rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);
- rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);
- rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);
- Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F);
- rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0);
- rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0);
- rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0);
- Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F);
-
- const ImageFeatures& features1 = features_[i];
- const ImageFeatures& features2 = features_[j];
- const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
-
- for (size_t k = 0; k < matches_info.matches.size(); ++k)
- {
- if (!matches_info.inliers_mask[k])
- continue;
-
- const DMatch& m = matches_info.matches[k];
-
- Point2d kp1 = features1.keypoints[m.queryIdx].pt;
- kp1.x -= 0.5 * features1.img_size.width;
- kp1.y -= 0.5 * features1.img_size.height;
- Point2d kp2 = features2.keypoints[m.trainIdx].pt;
- kp2.x -= 0.5 * features2.img_size.width;
- kp2.y -= 0.5 * features2.img_size.height;
- double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1);
- double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2);
- Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1);
- Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2);
-
- Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2],
- p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5],
- p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]);
- Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2],
- p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5],
- p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]);
-
- double mult = 1;
- if (cost_space_ == FOCAL_RAY_SPACE)
- mult = sqrt(f1 * f2);
- err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x);
- err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y);
- err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z);
- match_idx++;
- }
- }
-}
-
-
-void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
-{
- for (int i = 0; i < err1.rows; ++i)
- res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
-}
-
-
-void BundleAdjuster::calcJacobian()
-{
- J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);
-
- double f, r;
- const double df = 0.001; // Focal length step
- const double dr = 0.001; // Angle step
-
- for (int i = 0; i < num_images_; ++i)
- {
- f = cameras_.at<double>(i * 4, 0);
- cameras_.at<double>(i * 4, 0) = f - df;
- calcError(err1_);
- cameras_.at<double>(i * 4, 0) = f + df;
- calcError(err2_);
- calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4));
- cameras_.at<double>(i * 4, 0) = f;
-
- r = cameras_.at<double>(i * 4 + 1, 0);
- cameras_.at<double>(i * 4 + 1, 0) = r - dr;
- calcError(err1_);
- cameras_.at<double>(i * 4 + 1, 0) = r + dr;
- calcError(err2_);
- calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1));
- cameras_.at<double>(i * 4 + 1, 0) = r;
-
- r = cameras_.at<double>(i * 4 + 2, 0);
- cameras_.at<double>(i * 4 + 2, 0) = r - dr;
- calcError(err1_);
- cameras_.at<double>(i * 4 + 2, 0) = r + dr;
- calcError(err2_);
- calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2));
- cameras_.at<double>(i * 4 + 2, 0) = r;
-
- r = cameras_.at<double>(i * 4 + 3, 0);
- cameras_.at<double>(i * 4 + 3, 0) = r - dr;
- calcError(err1_);
- cameras_.at<double>(i * 4 + 3, 0) = r + dr;
- calcError(err2_);
- calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3));
- cameras_.at<double>(i * 4 + 3, 0) = r;
- }
-}
-
-
-//////////////////////////////////////////////////////////////////////////////
-
-void waveCorrect(vector<Mat> &rmats)
-{
- float data[9];
- Mat r0(1, 3, CV_32F, data);
- Mat r1(1, 3, CV_32F, data + 3);
- Mat r2(1, 3, CV_32F, data + 6);
- Mat R(3, 3, CV_32F, data);
-
- Mat cov = Mat::zeros(3, 3, CV_32F);
- for (size_t i = 0; i < rmats.size(); ++i)
- {
- Mat r0 = rmats[i].col(0);
- cov += r0 * r0.t();
- }
-
- SVD svd;
- svd(cov, SVD::FULL_UV);
- svd.vt.row(2).copyTo(r1);
- if (determinant(svd.vt) < 0) r1 *= -1;
-
- Mat avgz = Mat::zeros(3, 1, CV_32F);
- for (size_t i = 0; i < rmats.size(); ++i)
- avgz += rmats[i].col(2);
- r1.cross(avgz.t()).copyTo(r0);
- normalize(r0, r0);
-
- r1.cross(r0).copyTo(r2);
- if (determinant(R) < 0) R *= -1;
-
- for (size_t i = 0; i < rmats.size(); ++i)
- rmats[i] = R * rmats[i];
-}
-
-
-//////////////////////////////////////////////////////////////////////////////
-
-vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches,
- float conf_threshold)
-{
- const int num_images = static_cast<int>(features.size());
-
- DjSets comps(num_images);
- for (int i = 0; i < num_images; ++i)
- {
- for (int j = 0; j < num_images; ++j)
- {
- if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
- continue;
- int comp1 = comps.find(i);
- int comp2 = comps.find(j);
- if (comp1 != comp2)
- comps.merge(comp1, comp2);
- }
- }
-
- int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin();
-
- vector<int> indices;
- vector<int> indices_removed;
- for (int i = 0; i < num_images; ++i)
- if (comps.find(i) == max_comp)
- indices.push_back(i);
- else
- indices_removed.push_back(i);
-
- vector<ImageFeatures> features_subset;
- vector<MatchesInfo> pairwise_matches_subset;
- for (size_t i = 0; i < indices.size(); ++i)
- {
- features_subset.push_back(features[indices[i]]);
- for (size_t j = 0; j < indices.size(); ++j)
- {
- pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
- pairwise_matches_subset.back().src_img_idx = i;
- pairwise_matches_subset.back().dst_img_idx = j;
- }
- }
-
- if (static_cast<int>(features_subset.size()) == num_images)
- return indices;
-
- LOG("Removed some images, because can't match them: (");
- LOG(indices_removed[0]+1);
- for (size_t i = 1; i < indices_removed.size(); ++i)
- LOG(", " << indices_removed[i]+1);
- LOGLN(")");
-
- features = features_subset;
- pairwise_matches = pairwise_matches_subset;
-
- return indices;
-}
-
-
-void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
- Graph &span_tree, vector<int> ¢ers)
-{
- Graph graph(num_images);
- vector<GraphEdge> edges;
-
- // Construct images graph and remember its edges
- for (int i = 0; i < num_images; ++i)
- {
- for (int j = 0; j < num_images; ++j)
- {
- if (pairwise_matches[i * num_images + j].H.empty())
- continue;
- float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
- graph.addEdge(i, j, conf);
- edges.push_back(GraphEdge(i, j, conf));
- }
- }
-
- DjSets comps(num_images);
- span_tree.create(num_images);
- vector<int> span_tree_powers(num_images, 0);
-
- // Find maximum spanning tree
- sort(edges.begin(), edges.end(), greater<GraphEdge>());
- for (size_t i = 0; i < edges.size(); ++i)
- {
- int comp1 = comps.find(edges[i].from);
- int comp2 = comps.find(edges[i].to);
- if (comp1 != comp2)
- {
- comps.merge(comp1, comp2);
- span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
- span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
- span_tree_powers[edges[i].from]++;
- span_tree_powers[edges[i].to]++;
- }
- }
-
- // Find spanning tree leafs
- vector<int> span_tree_leafs;
- for (int i = 0; i < num_images; ++i)
- if (span_tree_powers[i] == 1)
- span_tree_leafs.push_back(i);
-
- // Find maximum distance from each spanning tree vertex
- vector<int> max_dists(num_images, 0);
- vector<int> cur_dists;
- for (size_t i = 0; i < span_tree_leafs.size(); ++i)
- {
- cur_dists.assign(num_images, 0);
- span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
- for (int j = 0; j < num_images; ++j)
- max_dists[j] = max(max_dists[j], cur_dists[j]);
- }
-
- // Find min-max distance
- int min_max_dist = max_dists[0];
- for (int i = 1; i < num_images; ++i)
- if (min_max_dist > max_dists[i])
- min_max_dist = max_dists[i];
-
- // Find spanning tree centers
- centers.clear();
- for (int i = 0; i < num_images; ++i)
- if (max_dists[i] == min_max_dist)
- centers.push_back(i);
- CV_Assert(centers.size() > 0 && centers.size() <= 2);
-}
+//M*/\r
+#include <algorithm>\r
+#include "autocalib.hpp"\r
+#include "motion_estimators.hpp"\r
+#include "util.hpp"\r
+\r
+using namespace std;\r
+using namespace cv;\r
+\r
+\r
+//////////////////////////////////////////////////////////////////////////////\r
+\r
+CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}\r
+\r
+CameraParams::CameraParams(const CameraParams &other) { *this = other; }\r
+\r
+const CameraParams& CameraParams::operator =(const CameraParams &other)\r
+{\r
+ focal = other.focal;\r
+ R = other.R.clone();\r
+ t = other.t.clone();\r
+ return *this;\r
+}\r
+\r
+\r
+//////////////////////////////////////////////////////////////////////////////\r
+\r
+struct IncDistance\r
+{\r
+ IncDistance(vector<int> &dists) : dists(&dists[0]) {}\r
+ void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }\r
+ int* dists;\r
+};\r
+\r
+\r
+struct CalcRotation\r
+{\r
+ CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras)\r
+ : num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {}\r
+\r
+ void operator ()(const GraphEdge &edge)\r
+ {\r
+ int pair_idx = edge.from * num_images + edge.to;\r
+\r
+ double f_from = cameras[edge.from].focal;\r
+ double f_to = cameras[edge.to].focal;\r
+\r
+ Mat K_from = Mat::eye(3, 3, CV_64F);\r
+ K_from.at<double>(0, 0) = f_from;\r
+ K_from.at<double>(1, 1) = f_from;\r
+\r
+ Mat K_to = Mat::eye(3, 3, CV_64F);\r
+ K_to.at<double>(0, 0) = f_to;\r
+ K_to.at<double>(1, 1) = f_to;\r
+\r
+ Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;\r
+ cameras[edge.to].R = cameras[edge.from].R * R;\r
+ }\r
+\r
+ int num_images;\r
+ const MatchesInfo* pairwise_matches;\r
+ CameraParams* cameras;\r
+};\r
+\r
+\r
+void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches, \r
+ vector<CameraParams> &cameras)\r
+{\r
+ const int num_images = static_cast<int>(features.size());\r
+\r
+ // Estimate focal length and set it for all cameras\r
+ vector<double> focals;\r
+ estimateFocal(features, pairwise_matches, focals);\r
+ cameras.resize(num_images);\r
+ for (int i = 0; i < num_images; ++i)\r
+ cameras[i].focal = focals[i];\r
+\r
+ // Restore global motion\r
+ Graph span_tree;\r
+ vector<int> span_tree_centers;\r
+ findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);\r
+ span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));\r
+}\r
+\r
+\r
+//////////////////////////////////////////////////////////////////////////////\r
+\r
+void BundleAdjuster::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches, \r
+ vector<CameraParams> &cameras)\r
+{\r
+ num_images_ = static_cast<int>(features.size());\r
+ features_ = &features[0];\r
+ pairwise_matches_ = &pairwise_matches[0];\r
+\r
+ // Prepare focals and rotations\r
+ cameras_.create(num_images_ * 4, 1, CV_64F);\r
+ SVD svd;\r
+ for (int i = 0; i < num_images_; ++i)\r
+ {\r
+ cameras_.at<double>(i * 4, 0) = cameras[i].focal;\r
+\r
+ svd(cameras[i].R, SVD::FULL_UV);\r
+ Mat R = svd.u * svd.vt;\r
+ if (determinant(R) < 0) \r
+ R *= -1;\r
+\r
+ Mat rvec;\r
+ Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);\r
+ cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);\r
+ cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);\r
+ cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);\r
+ }\r
+\r
+ // Select only consistent image pairs for futher adjustment\r
+ edges_.clear();\r
+ for (int i = 0; i < num_images_ - 1; ++i)\r
+ {\r
+ for (int j = i + 1; j < num_images_; ++j)\r
+ {\r
+ const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];\r
+ if (matches_info.confidence > conf_thresh_)\r
+ edges_.push_back(make_pair(i, j));\r
+ }\r
+ }\r
+\r
+ // Compute number of correspondences\r
+ total_num_matches_ = 0;\r
+ for (size_t i = 0; i < edges_.size(); ++i)\r
+ total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);\r
+\r
+ CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3,\r
+ cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON));\r
+\r
+ CvMat matParams = cameras_;\r
+ cvCopy(&matParams, solver.param);\r
+\r
+ int count = 0;\r
+ for(;;)\r
+ {\r
+ const CvMat* _param = 0;\r
+ CvMat* _J = 0;\r
+ CvMat* _err = 0;\r
+\r
+ bool proceed = solver.update(_param, _J, _err);\r
+\r
+ cvCopy( _param, &matParams );\r
+\r
+ if( !proceed || !_err )\r
+ break;\r
+\r
+ if( _J )\r
+ {\r
+ calcJacobian();\r
+ CvMat matJ = J_;\r
+ cvCopy( &matJ, _J );\r
+ }\r
+\r
+ if (_err)\r
+ {\r
+ calcError(err_);\r
+ LOG(".");\r
+ count++;\r
+ CvMat matErr = err_;\r
+ cvCopy( &matErr, _err );\r
+ }\r
+ }\r
+ LOGLN("");\r
+ LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_)));\r
+ LOGLN("Bundle adjustment, iterations done: " << count);\r
+\r
+ // Obtain global motion\r
+ for (int i = 0; i < num_images_; ++i)\r
+ {\r
+ cameras[i].focal = cameras_.at<double>(i * 4, 0);\r
+ Mat rvec(3, 1, CV_64F);\r
+ rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);\r
+ rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);\r
+ rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);\r
+ Rodrigues(rvec, cameras[i].R);\r
+ Mat Mf;\r
+ cameras[i].R.convertTo(Mf, CV_32F);\r
+ cameras[i].R = Mf;\r
+ }\r
+\r
+ // Normalize motion to center image\r
+ Graph span_tree;\r
+ vector<int> span_tree_centers;\r
+ findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);\r
+ Mat R_inv = cameras[span_tree_centers[0]].R.inv();\r
+ for (int i = 0; i < num_images_; ++i)\r
+ cameras[i].R = R_inv * cameras[i].R;\r
+}\r
+\r
+\r
+void BundleAdjuster::calcError(Mat &err)\r
+{\r
+ err.create(total_num_matches_ * 3, 1, CV_64F);\r
+\r
+ int match_idx = 0;\r
+ for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)\r
+ {\r
+ int i = edges_[edge_idx].first;\r
+ int j = edges_[edge_idx].second;\r
+ double f1 = cameras_.at<double>(i * 4, 0);\r
+ double f2 = cameras_.at<double>(j * 4, 0);\r
+ double R1[9], R2[9];\r
+ Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2);\r
+ Mat rvec(3, 1, CV_64F);\r
+ rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0);\r
+ rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0);\r
+ rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0);\r
+ Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F);\r
+ rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0);\r
+ rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0);\r
+ rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0);\r
+ Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F);\r
+\r
+ const ImageFeatures& features1 = features_[i];\r
+ const ImageFeatures& features2 = features_[j];\r
+ const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];\r
+\r
+ for (size_t k = 0; k < matches_info.matches.size(); ++k)\r
+ {\r
+ if (!matches_info.inliers_mask[k])\r
+ continue;\r
+\r
+ const DMatch& m = matches_info.matches[k];\r
+\r
+ Point2d kp1 = features1.keypoints[m.queryIdx].pt;\r
+ kp1.x -= 0.5 * features1.img_size.width;\r
+ kp1.y -= 0.5 * features1.img_size.height;\r
+ Point2d kp2 = features2.keypoints[m.trainIdx].pt;\r
+ kp2.x -= 0.5 * features2.img_size.width;\r
+ kp2.y -= 0.5 * features2.img_size.height;\r
+ double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1);\r
+ double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2);\r
+ Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1);\r
+ Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2);\r
+\r
+ Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2],\r
+ p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5],\r
+ p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]);\r
+ Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2],\r
+ p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5],\r
+ p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]);\r
+\r
+ double mult = 1;\r
+ if (cost_space_ == FOCAL_RAY_SPACE)\r
+ mult = sqrt(f1 * f2);\r
+ err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x);\r
+ err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y);\r
+ err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z);\r
+ match_idx++;\r
+ }\r
+ }\r
+}\r
+\r
+\r
+void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)\r
+{\r
+ for (int i = 0; i < err1.rows; ++i)\r
+ res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;\r
+}\r
+\r
+\r
+void BundleAdjuster::calcJacobian()\r
+{\r
+ J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);\r
+\r
+ double f, r;\r
+ const double df = 0.001; // Focal length step\r
+ const double dr = 0.001; // Angle step\r
+\r
+ for (int i = 0; i < num_images_; ++i)\r
+ {\r
+ f = cameras_.at<double>(i * 4, 0);\r
+ cameras_.at<double>(i * 4, 0) = f - df;\r
+ calcError(err1_);\r
+ cameras_.at<double>(i * 4, 0) = f + df;\r
+ calcError(err2_);\r
+ calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4));\r
+ cameras_.at<double>(i * 4, 0) = f;\r
+\r
+ r = cameras_.at<double>(i * 4 + 1, 0);\r
+ cameras_.at<double>(i * 4 + 1, 0) = r - dr;\r
+ calcError(err1_);\r
+ cameras_.at<double>(i * 4 + 1, 0) = r + dr;\r
+ calcError(err2_);\r
+ calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1));\r
+ cameras_.at<double>(i * 4 + 1, 0) = r;\r
+\r
+ r = cameras_.at<double>(i * 4 + 2, 0);\r
+ cameras_.at<double>(i * 4 + 2, 0) = r - dr;\r
+ calcError(err1_);\r
+ cameras_.at<double>(i * 4 + 2, 0) = r + dr;\r
+ calcError(err2_);\r
+ calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2));\r
+ cameras_.at<double>(i * 4 + 2, 0) = r;\r
+\r
+ r = cameras_.at<double>(i * 4 + 3, 0);\r
+ cameras_.at<double>(i * 4 + 3, 0) = r - dr;\r
+ calcError(err1_);\r
+ cameras_.at<double>(i * 4 + 3, 0) = r + dr;\r
+ calcError(err2_);\r
+ calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3));\r
+ cameras_.at<double>(i * 4 + 3, 0) = r;\r
+ }\r
+}\r
+\r
+\r
+//////////////////////////////////////////////////////////////////////////////\r
+\r
+void waveCorrect(vector<Mat> &rmats)\r
+{\r
+ float data[9];\r
+ Mat r0(1, 3, CV_32F, data);\r
+ Mat r1(1, 3, CV_32F, data + 3);\r
+ Mat r2(1, 3, CV_32F, data + 6);\r
+ Mat R(3, 3, CV_32F, data);\r
+\r
+ Mat cov = Mat::zeros(3, 3, CV_32F);\r
+ for (size_t i = 0; i < rmats.size(); ++i)\r
+ { \r
+ Mat r0 = rmats[i].col(0);\r
+ cov += r0 * r0.t();\r
+ }\r
+\r
+ SVD svd;\r
+ svd(cov, SVD::FULL_UV);\r
+ svd.vt.row(2).copyTo(r1);\r
+ if (determinant(svd.vt) < 0) r1 *= -1;\r
+\r
+ Mat avgz = Mat::zeros(3, 1, CV_32F);\r
+ for (size_t i = 0; i < rmats.size(); ++i)\r
+ avgz += rmats[i].col(2);\r
+ r1.cross(avgz.t()).copyTo(r0);\r
+ normalize(r0, r0);\r
+\r
+ r1.cross(r0).copyTo(r2);\r
+ if (determinant(R) < 0) R *= -1;\r
+\r
+ for (size_t i = 0; i < rmats.size(); ++i)\r
+ rmats[i] = R * rmats[i];\r
+}\r
+\r
+\r
+//////////////////////////////////////////////////////////////////////////////\r
+\r
+vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches, \r
+ float conf_threshold)\r
+{\r
+ const int num_images = static_cast<int>(features.size());\r
+\r
+ DjSets comps(num_images);\r
+ for (int i = 0; i < num_images; ++i)\r
+ {\r
+ for (int j = 0; j < num_images; ++j)\r
+ {\r
+ if (pairwise_matches[i*num_images + j].confidence < conf_threshold)\r
+ continue;\r
+ int comp1 = comps.find(i);\r
+ int comp2 = comps.find(j);\r
+ if (comp1 != comp2) \r
+ comps.merge(comp1, comp2);\r
+ }\r
+ }\r
+\r
+ int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin();\r
+\r
+ vector<int> indices;\r
+ vector<int> indices_removed;\r
+ for (int i = 0; i < num_images; ++i)\r
+ if (comps.find(i) == max_comp)\r
+ indices.push_back(i); \r
+ else\r
+ indices_removed.push_back(i);\r
+\r
+ vector<ImageFeatures> features_subset;\r
+ vector<MatchesInfo> pairwise_matches_subset;\r
+ for (size_t i = 0; i < indices.size(); ++i)\r
+ {\r
+ features_subset.push_back(features[indices[i]]);\r
+ for (size_t j = 0; j < indices.size(); ++j)\r
+ {\r
+ pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);\r
+ pairwise_matches_subset.back().src_img_idx = i;\r
+ pairwise_matches_subset.back().dst_img_idx = j;\r
+ }\r
+ }\r
+\r
+ if (static_cast<int>(features_subset.size()) == num_images)\r
+ return indices;\r
+\r
+ LOG("Removed some images, because can't match them: (");\r
+ LOG(indices_removed[0]+1);\r
+ for (size_t i = 1; i < indices_removed.size(); ++i) \r
+ LOG(", " << indices_removed[i]+1);\r
+ LOGLN("). Try decrease --match_conf value.");\r
+\r
+ features = features_subset;\r
+ pairwise_matches = pairwise_matches_subset;\r
+\r
+ return indices;\r
+}\r
+\r
+\r
+void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,\r
+ Graph &span_tree, vector<int> ¢ers)\r
+{\r
+ Graph graph(num_images);\r
+ vector<GraphEdge> edges;\r
+\r
+ // Construct images graph and remember its edges\r
+ for (int i = 0; i < num_images; ++i)\r
+ {\r
+ for (int j = 0; j < num_images; ++j)\r
+ {\r
+ if (pairwise_matches[i * num_images + j].H.empty())\r
+ continue;\r
+ float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);\r
+ graph.addEdge(i, j, conf);\r
+ edges.push_back(GraphEdge(i, j, conf));\r
+ }\r
+ }\r
+\r
+ DjSets comps(num_images);\r
+ span_tree.create(num_images);\r
+ vector<int> span_tree_powers(num_images, 0);\r
+\r
+ // Find maximum spanning tree\r
+ sort(edges.begin(), edges.end(), greater<GraphEdge>());\r
+ for (size_t i = 0; i < edges.size(); ++i)\r
+ {\r
+ int comp1 = comps.find(edges[i].from);\r
+ int comp2 = comps.find(edges[i].to);\r
+ if (comp1 != comp2)\r
+ {\r
+ comps.merge(comp1, comp2);\r
+ span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);\r
+ span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);\r
+ span_tree_powers[edges[i].from]++;\r
+ span_tree_powers[edges[i].to]++;\r
+ }\r
+ }\r
+\r
+ // Find spanning tree leafs\r
+ vector<int> span_tree_leafs;\r
+ for (int i = 0; i < num_images; ++i)\r
+ if (span_tree_powers[i] == 1)\r
+ span_tree_leafs.push_back(i);\r
+\r
+ // Find maximum distance from each spanning tree vertex\r
+ vector<int> max_dists(num_images, 0);\r
+ vector<int> cur_dists;\r
+ for (size_t i = 0; i < span_tree_leafs.size(); ++i)\r
+ {\r
+ cur_dists.assign(num_images, 0);\r
+ span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));\r
+ for (int j = 0; j < num_images; ++j)\r
+ max_dists[j] = max(max_dists[j], cur_dists[j]);\r
+ }\r
+\r
+ // Find min-max distance\r
+ int min_max_dist = max_dists[0];\r
+ for (int i = 1; i < num_images; ++i)\r
+ if (min_max_dist > max_dists[i])\r
+ min_max_dist = max_dists[i];\r
+\r
+ // Find spanning tree centers\r
+ centers.clear();\r
+ for (int i = 0; i < num_images; ++i)\r
+ if (max_dists[i] == min_max_dist)\r
+ centers.push_back(i);\r
+ CV_Assert(centers.size() > 0 && centers.size() <= 2);\r
+}\r
// or tort (including negligence or otherwise) arising in any way out of\r
// the use of this software, even if advised of the possibility of such damage.\r
//\r
-//M*/
-#include "seam_finders.hpp"
-#include "util.hpp"
-
-using namespace std;
-using namespace cv;
-
-
-Ptr<SeamFinder> SeamFinder::createDefault(int type)
-{
- if (type == NO)
- return new NoSeamFinder();
- if (type == VORONOI)
- return new VoronoiSeamFinder();
- if (type == GC_COLOR)
- return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR);
- if (type == GC_COLOR_GRAD)
- return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR_GRAD);
- CV_Error(CV_StsBadArg, "unsupported seam finding method");
- return NULL;
-}
-
-
-void PairwiseSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,
- vector<Mat> &masks)
-{
- if (src.size() == 0)
- return;
-
- images_ = src;
- corners_ = corners;
- masks_ = masks;
-
- for (size_t i = 0; i < src.size() - 1; ++i)
- {
- for (size_t j = i + 1; j < src.size(); ++j)
- {
- Rect roi;
- if (overlapRoi(corners[i], corners[j], src[i].size(), src[j].size(), roi))
- findInPair(i, j, roi);
- }
- }
-}
-
-
-void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
-{
- const int gap = 10;
- Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
- Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
-
- Mat img1 = images_[first], img2 = images_[second];
- Mat mask1 = masks_[first], mask2 = masks_[second];
- Point tl1 = corners_[first], tl2 = corners_[second];
-
- // Cut submasks with some gap
- for (int y = -gap; y < roi.height + gap; ++y)
- {
- for (int x = -gap; x < roi.width + gap; ++x)
- {
- int y1 = roi.y - tl1.y + y;
- int x1 = roi.x - tl1.x + x;
- if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
- submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
- else
- submask1.at<uchar>(y + gap, x + gap) = 0;
-
- int y2 = roi.y - tl2.y + y;
- int x2 = roi.x - tl2.x + x;
- if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
- submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
- else
- submask2.at<uchar>(y + gap, x + gap) = 0;
- }
- }
-
- Mat collision = (submask1 != 0) & (submask2 != 0);
- Mat unique1 = submask1.clone(); unique1.setTo(0, collision);
- Mat unique2 = submask2.clone(); unique2.setTo(0, collision);
-
- Mat dist1, dist2;
- distanceTransform(unique1 == 0, dist1, CV_DIST_L1, 3);
- distanceTransform(unique2 == 0, dist2, CV_DIST_L1, 3);
-
- Mat seam = dist1 < dist2;
-
- for (int y = 0; y < roi.height; ++y)
- {
- for (int x = 0; x < roi.width; ++x)
- {
- if (seam.at<uchar>(y + gap, x + gap))
- mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
- else
- mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
- }
- }
-}
-
-
-class GraphCutSeamFinder::Impl : public PairwiseSeamFinder
-{
-public:
- Impl(int cost_type, float terminal_cost, float bad_region_penalty)
- : cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}
-
- void find(const vector<Mat> &src, const vector<Point> &corners, vector<Mat> &masks);
- void findInPair(size_t first, size_t second, Rect roi);
-
-private:
+//M*/\r
+#include "seam_finders.hpp"\r
+#include "util.hpp"\r
+\r
+using namespace std;\r
+using namespace cv;\r
+\r
+\r
+Ptr<SeamFinder> SeamFinder::createDefault(int type)\r
+{\r
+ if (type == NO)\r
+ return new NoSeamFinder();\r
+ if (type == VORONOI)\r
+ return new VoronoiSeamFinder();\r
+ if (type == GC_COLOR)\r
+ return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR);\r
+ if (type == GC_COLOR_GRAD)\r
+ return new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR_GRAD);\r
+ CV_Error(CV_StsBadArg, "unsupported seam finding method");\r
+ return NULL;\r
+}\r
+\r
+\r
+void PairwiseSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,\r
+ vector<Mat> &masks)\r
+{\r
+ if (src.size() == 0)\r
+ return;\r
+\r
+ images_ = src;\r
+ corners_ = corners;\r
+ masks_ = masks;\r
+\r
+ for (size_t i = 0; i < src.size() - 1; ++i)\r
+ {\r
+ for (size_t j = i + 1; j < src.size(); ++j)\r
+ {\r
+ Rect roi;\r
+ if (overlapRoi(corners[i], corners[j], src[i].size(), src[j].size(), roi))\r
+ findInPair(i, j, roi);\r
+ }\r
+ }\r
+}\r
+\r
+\r
+void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)\r
+{\r
+ const int gap = 10;\r
+ Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);\r
+ Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);\r
+\r
+ Mat img1 = images_[first], img2 = images_[second];\r
+ Mat mask1 = masks_[first], mask2 = masks_[second];\r
+ Point tl1 = corners_[first], tl2 = corners_[second];\r
+\r
+ // Cut submasks with some gap\r
+ for (int y = -gap; y < roi.height + gap; ++y)\r
+ {\r
+ for (int x = -gap; x < roi.width + gap; ++x)\r
+ {\r
+ int y1 = roi.y - tl1.y + y;\r
+ int x1 = roi.x - tl1.x + x;\r
+ if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)\r
+ submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);\r
+ else\r
+ submask1.at<uchar>(y + gap, x + gap) = 0;\r
+\r
+ int y2 = roi.y - tl2.y + y;\r
+ int x2 = roi.x - tl2.x + x;\r
+ if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)\r
+ submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);\r
+ else\r
+ submask2.at<uchar>(y + gap, x + gap) = 0;\r
+ }\r
+ }\r
+\r
+ Mat collision = (submask1 != 0) & (submask2 != 0);\r
+ Mat unique1 = submask1.clone(); unique1.setTo(0, collision);\r
+ Mat unique2 = submask2.clone(); unique2.setTo(0, collision);\r
+\r
+ Mat dist1, dist2;\r
+ distanceTransform(unique1 == 0, dist1, CV_DIST_L1, 3);\r
+ distanceTransform(unique2 == 0, dist2, CV_DIST_L1, 3);\r
+\r
+ Mat seam = dist1 < dist2;\r
+\r
+ for (int y = 0; y < roi.height; ++y)\r
+ {\r
+ for (int x = 0; x < roi.width; ++x)\r
+ {\r
+ if (seam.at<uchar>(y + gap, x + gap))\r
+ mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;\r
+ else\r
+ mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;\r
+ }\r
+ }\r
+}\r
+\r
+\r
+class GraphCutSeamFinder::Impl : public PairwiseSeamFinder\r
+{\r
+public:\r
+ Impl(int cost_type, float terminal_cost, float bad_region_penalty)\r
+ : cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}\r
+\r
+ void find(const vector<Mat> &src, const vector<Point> &corners, vector<Mat> &masks);\r
+ void findInPair(size_t first, size_t second, Rect roi);\r
+\r
+private:\r
void setGraphWeightsColor(const Mat &img1, const Mat &img2, \r
- const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);
+ const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);\r
void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, \r
- const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
- GCGraph<float> &graph);
-
- vector<Mat> dx_, dy_;
- int cost_type_;
- float terminal_cost_;
- float bad_region_penalty_;
-};
-
-
-void GraphCutSeamFinder::Impl::find(const vector<Mat> &src, const vector<Point> &corners,
- vector<Mat> &masks)
-{
- // Compute gradients
- dx_.resize(src.size());
- dy_.resize(src.size());
- Mat dx, dy;
- for (size_t i = 0; i < src.size(); ++i)
- {
- CV_Assert(src[i].channels() == 3);
- Sobel(src[i], dx, CV_32F, 1, 0);
- Sobel(src[i], dy, CV_32F, 0, 1);
- dx_[i].create(src[i].size(), CV_32F);
- dy_[i].create(src[i].size(), CV_32F);
- for (int y = 0; y < src[i].rows; ++y)
- {
- const Point3f* dx_row = dx.ptr<Point3f>(y);
- const Point3f* dy_row = dy.ptr<Point3f>(y);
- float* dx_row_ = dx_[i].ptr<float>(y);
- float* dy_row_ = dy_[i].ptr<float>(y);
- for (int x = 0; x < src[i].cols; ++x)
- {
- dx_row_[x] = normL2(dx_row[x]);
- dy_row_[x] = normL2(dy_row[x]);
- }
- }
- }
- PairwiseSeamFinder::find(src, corners, masks);
-}
-
-
+ const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, \r
+ GCGraph<float> &graph);\r
+\r
+ vector<Mat> dx_, dy_;\r
+ int cost_type_;\r
+ float terminal_cost_;\r
+ float bad_region_penalty_;\r
+};\r
+\r
+\r
+void GraphCutSeamFinder::Impl::find(const vector<Mat> &src, const vector<Point> &corners, \r
+ vector<Mat> &masks)\r
+{\r
+ // Compute gradients\r
+ dx_.resize(src.size());\r
+ dy_.resize(src.size());\r
+ Mat dx, dy;\r
+ for (size_t i = 0; i < src.size(); ++i)\r
+ {\r
+ CV_Assert(src[i].channels() == 3);\r
+ Sobel(src[i], dx, CV_32F, 1, 0);\r
+ Sobel(src[i], dy, CV_32F, 0, 1);\r
+ dx_[i].create(src[i].size(), CV_32F);\r
+ dy_[i].create(src[i].size(), CV_32F);\r
+ for (int y = 0; y < src[i].rows; ++y)\r
+ {\r
+ const Point3f* dx_row = dx.ptr<Point3f>(y);\r
+ const Point3f* dy_row = dy.ptr<Point3f>(y);\r
+ float* dx_row_ = dx_[i].ptr<float>(y);\r
+ float* dy_row_ = dy_[i].ptr<float>(y);\r
+ for (int x = 0; x < src[i].cols; ++x)\r
+ {\r
+ dx_row_[x] = normL2(dx_row[x]);\r
+ dy_row_[x] = normL2(dy_row[x]);\r
+ }\r
+ }\r
+ }\r
+ PairwiseSeamFinder::find(src, corners, masks);\r
+}\r
+\r
+\r
void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2, \r
- const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)
-{
- const Size img_size = img1.size();
-
- // Set terminal weights
- for (int y = 0; y < img_size.height; ++y)
- {
- for (int x = 0; x < img_size.width; ++x)
- {
- int v = graph.addVtx();
- graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
- mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
- }
- }
-
- // Set regular edge weights
- const float weight_eps = 1e-3f;
- for (int y = 0; y < img_size.height; ++y)
- {
- for (int x = 0; x < img_size.width; ++x)
- {
- int v = y * img_size.width + x;
- if (x < img_size.width - 1)
- {
- float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
- normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
- weight_eps;
- if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
- !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
- weight += bad_region_penalty_;
- graph.addEdges(v, v + 1, weight, weight);
- }
- if (y < img_size.height - 1)
- {
- float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
- normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
- weight_eps;
- if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
- !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
- weight += bad_region_penalty_;
- graph.addEdges(v, v + img_size.width, weight, weight);
- }
- }
- }
-}
-
-
+ const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)\r
+{\r
+ const Size img_size = img1.size();\r
+\r
+ // Set terminal weights\r
+ for (int y = 0; y < img_size.height; ++y)\r
+ {\r
+ for (int x = 0; x < img_size.width; ++x)\r
+ {\r
+ int v = graph.addVtx();\r
+ graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,\r
+ mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);\r
+ }\r
+ }\r
+\r
+ // Set regular edge weights\r
+ const float weight_eps = 1.f;\r
+ for (int y = 0; y < img_size.height; ++y)\r
+ {\r
+ for (int x = 0; x < img_size.width; ++x)\r
+ {\r
+ int v = y * img_size.width + x;\r
+ if (x < img_size.width - 1)\r
+ {\r
+ float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +\r
+ normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +\r
+ weight_eps;\r
+ if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||\r
+ !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))\r
+ weight += bad_region_penalty_;\r
+ graph.addEdges(v, v + 1, weight, weight);\r
+ }\r
+ if (y < img_size.height - 1)\r
+ {\r
+ float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +\r
+ normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +\r
+ weight_eps;\r
+ if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||\r
+ !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))\r
+ weight += bad_region_penalty_;\r
+ graph.addEdges(v, v + img_size.width, weight, weight);\r
+ }\r
+ }\r
+ }\r
+}\r
+\r
+\r
void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad(\r
- const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
- const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
- GCGraph<float> &graph)
-{
- const Size img_size = img1.size();
-
- // Set terminal weights
- for (int y = 0; y < img_size.height; ++y)
- {
- for (int x = 0; x < img_size.width; ++x)
- {
- int v = graph.addVtx();
- graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
- mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
- }
- }
-
- // Set regular edge weights
- const float weight_eps = 1e-3f;
- for (int y = 0; y < img_size.height; ++y)
- {
- for (int x = 0; x < img_size.width; ++x)
- {
- int v = y * img_size.width + x;
- if (x < img_size.width - 1)
- {
+ const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2, \r
+ const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2, \r
+ GCGraph<float> &graph)\r
+{\r
+ const Size img_size = img1.size();\r
+\r
+ // Set terminal weights\r
+ for (int y = 0; y < img_size.height; ++y)\r
+ {\r
+ for (int x = 0; x < img_size.width; ++x)\r
+ {\r
+ int v = graph.addVtx();\r
+ graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,\r
+ mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);\r
+ }\r
+ }\r
+\r
+ // Set regular edge weights\r
+ const float weight_eps = 1.f;\r
+ for (int y = 0; y < img_size.height; ++y)\r
+ {\r
+ for (int x = 0; x < img_size.width; ++x)\r
+ {\r
+ int v = y * img_size.width + x;\r
+ if (x < img_size.width - 1)\r
+ {\r
float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +\r
- dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
- float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
- normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
- weight_eps;
- if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
- !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
- weight += bad_region_penalty_;
- graph.addEdges(v, v + 1, weight, weight);
- }
- if (y < img_size.height - 1)
- {
+ dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;\r
+ float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +\r
+ normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad + \r
+ weight_eps;\r
+ if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||\r
+ !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))\r
+ weight += bad_region_penalty_;\r
+ graph.addEdges(v, v + 1, weight, weight);\r
+ }\r
+ if (y < img_size.height - 1)\r
+ {\r
float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) + \r
- dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
- float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
- normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
- weight_eps;
- if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
- !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
- weight += bad_region_penalty_;
- graph.addEdges(v, v + img_size.width, weight, weight);
- }
- }
- }
-}
-
-
-void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)
-{
- Mat img1 = images_[first], img2 = images_[second];
- Mat dx1 = dx_[first], dx2 = dx_[second];
- Mat dy1 = dy_[first], dy2 = dy_[second];
- Mat mask1 = masks_[first], mask2 = masks_[second];
- Point tl1 = corners_[first], tl2 = corners_[second];
-
- const int gap = 10;
- Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
- Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
- Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
- Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
- Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
- Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
- Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
- Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
-
- // Cut subimages and submasks with some gap
- for (int y = -gap; y < roi.height + gap; ++y)
- {
- for (int x = -gap; x < roi.width + gap; ++x)
- {
- int y1 = roi.y - tl1.y + y;
- int x1 = roi.x - tl1.x + x;
- if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
- {
- subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
- submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
- subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
- subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
- }
- else
- {
- subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
- submask1.at<uchar>(y + gap, x + gap) = 0;
- subdx1.at<float>(y + gap, x + gap) = 0.f;
- subdy1.at<float>(y + gap, x + gap) = 0.f;
- }
-
- int y2 = roi.y - tl2.y + y;
- int x2 = roi.x - tl2.x + x;
- if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
- {
- subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
- submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
- subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
- subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
- }
- else
- {
- subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
- submask2.at<uchar>(y + gap, x + gap) = 0;
- subdx2.at<float>(y + gap, x + gap) = 0.f;
- subdy2.at<float>(y + gap, x + gap) = 0.f;
- }
- }
- }
-
- const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);
- const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +
- (roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);
- GCGraph<float> graph(vertex_count, edge_count);
-
- switch (cost_type_)
- {
- case GraphCutSeamFinder::COST_COLOR:
- setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);
- break;
- case GraphCutSeamFinder::COST_COLOR_GRAD:
- setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
- submask1, submask2, graph);
- break;
- default:
- CV_Error(CV_StsBadArg, "unsupported pixel similarity measure");
- }
-
- graph.maxFlow();
-
- for (int y = 0; y < roi.height; ++y)
- {
- for (int x = 0; x < roi.width; ++x)
- {
- if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))
- {
- if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
- mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
- }
- else
- {
- if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
- mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
- }
- }
- }
-}
-
-
-GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)
- : impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}
-
-
-void GraphCutSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,
- vector<Mat> &masks)
-{
- impl_->find(src, corners, masks);
-}
+ dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;\r
+ float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) + \r
+ normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad + \r
+ weight_eps;\r
+ if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||\r
+ !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))\r
+ weight += bad_region_penalty_;\r
+ graph.addEdges(v, v + img_size.width, weight, weight);\r
+ }\r
+ }\r
+ }\r
+}\r
+\r
+\r
+void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)\r
+{\r
+ Mat img1 = images_[first], img2 = images_[second];\r
+ Mat dx1 = dx_[first], dx2 = dx_[second];\r
+ Mat dy1 = dy_[first], dy2 = dy_[second];\r
+ Mat mask1 = masks_[first], mask2 = masks_[second];\r
+ Point tl1 = corners_[first], tl2 = corners_[second];\r
+\r
+ const int gap = 10;\r
+ Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);\r
+ Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);\r
+ Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);\r
+ Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);\r
+ Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);\r
+ Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);\r
+ Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);\r
+ Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);\r
+\r
+ // Cut subimages and submasks with some gap\r
+ for (int y = -gap; y < roi.height + gap; ++y)\r
+ {\r
+ for (int x = -gap; x < roi.width + gap; ++x)\r
+ {\r
+ int y1 = roi.y - tl1.y + y;\r
+ int x1 = roi.x - tl1.x + x;\r
+ if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)\r
+ {\r
+ subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);\r
+ submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);\r
+ subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);\r
+ subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);\r
+ }\r
+ else\r
+ {\r
+ subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);\r
+ submask1.at<uchar>(y + gap, x + gap) = 0;\r
+ subdx1.at<float>(y + gap, x + gap) = 0.f;\r
+ subdy1.at<float>(y + gap, x + gap) = 0.f;\r
+ }\r
+\r
+ int y2 = roi.y - tl2.y + y;\r
+ int x2 = roi.x - tl2.x + x;\r
+ if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)\r
+ {\r
+ subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);\r
+ submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);\r
+ subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);\r
+ subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);\r
+ }\r
+ else\r
+ {\r
+ subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);\r
+ submask2.at<uchar>(y + gap, x + gap) = 0;\r
+ subdx2.at<float>(y + gap, x + gap) = 0.f;\r
+ subdy2.at<float>(y + gap, x + gap) = 0.f;\r
+ }\r
+ }\r
+ }\r
+\r
+ const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);\r
+ const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +\r
+ (roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);\r
+ GCGraph<float> graph(vertex_count, edge_count);\r
+\r
+ switch (cost_type_)\r
+ {\r
+ case GraphCutSeamFinder::COST_COLOR:\r
+ setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);\r
+ break;\r
+ case GraphCutSeamFinder::COST_COLOR_GRAD:\r
+ setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2, \r
+ submask1, submask2, graph);\r
+ break;\r
+ default:\r
+ CV_Error(CV_StsBadArg, "unsupported pixel similarity measure");\r
+ }\r
+\r
+ graph.maxFlow();\r
+\r
+ for (int y = 0; y < roi.height; ++y)\r
+ {\r
+ for (int x = 0; x < roi.width; ++x)\r
+ {\r
+ if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))\r
+ {\r
+ if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))\r
+ mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;\r
+ }\r
+ else\r
+ {\r
+ if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))\r
+ mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;\r
+ }\r
+ }\r
+ }\r
+}\r
+\r
+\r
+GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)\r
+ : impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}\r
+\r
+\r
+void GraphCutSeamFinder::find(const vector<Mat> &src, const vector<Point> &corners,\r
+ vector<Mat> &masks)\r
+{\r
+ impl_->find(src, corners, masks);\r
+}\r
// or tort (including negligence or otherwise) arising in any way out of\r
// the use of this software, even if advised of the possibility of such damage.\r
//\r
-//M*/
-#ifndef __OPENCV_WARPERS_HPP__
-#define __OPENCV_WARPERS_HPP__
-
-#include "precomp.hpp"
-
-class Warper
-{
-public:
- enum { PLANE, CYLINDRICAL, SPHERICAL };
- static cv::Ptr<Warper> createByCameraFocal(float focal, int type);
-
- virtual ~Warper() {}
- virtual cv::Point warp(const cv::Mat &src, float focal, const cv::Mat& R, cv::Mat &dst,
- int interp_mode = cv::INTER_LINEAR, int border_mode = cv::BORDER_REFLECT) = 0;
-};
-
-
-struct ProjectorBase
-{
- void setTransformation(const cv::Mat& R);
-
- cv::Size size;
- float focal;
- float r[9];
- float rinv[9];
- float scale;
-};
-
-
-template <class P>
-class WarperBase : public Warper
-{
-public:
- cv::Point warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,
- int interp_mode, int border_mode);
-
-protected:
- // Detects ROI of the destination image. It's correct for any projection.
- virtual void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
-
- // Detects ROI of the destination image by walking over image border.
- // Correctness for any projection isn't guaranteed.
- void detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br);
-
- cv::Size src_size_;
- P projector_;
-};
-
-
-struct PlaneProjector : ProjectorBase
-{
- void mapForward(float x, float y, float &u, float &v);
- void mapBackward(float u, float v, float &x, float &y);
-
- float plane_dist;
-};
-
-
-// Projects image onto z = plane_dist plane
-class PlaneWarper : public WarperBase<PlaneProjector>
-{
-public:
- PlaneWarper(float plane_dist = 1.f, float scale = 1.f)
- {
- projector_.plane_dist = plane_dist;
- projector_.scale = scale;
- }
-
-private:
- void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
-};
-
-
-struct SphericalProjector : ProjectorBase
-{
- void mapForward(float x, float y, float &u, float &v);
- void mapBackward(float u, float v, float &x, float &y);
-};
-
-
-// Projects image onto unit sphere with origin at (0, 0, 0).
-// Poles are located at (0, -1, 0) and (0, 1, 0) points.
-class SphericalWarper : public WarperBase<SphericalProjector>
-{
-public:
- SphericalWarper(float scale = 300.f) { projector_.scale = scale; }
-
-private:
- void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);
-};
-
-
-struct CylindricalProjector : ProjectorBase
-{
- void mapForward(float x, float y, float &u, float &v);
- void mapBackward(float u, float v, float &x, float &y);
-};
-
-
-// Projects image onto x * x + z * z = 1 cylinder
-class CylindricalWarper : public WarperBase<CylindricalProjector>
-{
-public:
- CylindricalWarper(float scale = 300.f) { projector_.scale = scale; }
-
-private:
- void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)
- {
- WarperBase<CylindricalProjector>::detectResultRoiByBorder(dst_tl, dst_br);
- }
-};
-
-#include "warpers_inl.hpp"
-
-#endif // __OPENCV_WARPERS_HPP__
+//M*/\r
+#ifndef __OPENCV_WARPERS_HPP__\r
+#define __OPENCV_WARPERS_HPP__\r
+\r
+#include "precomp.hpp"\r
+\r
+class Warper\r
+{\r
+public:\r
+ enum { PLANE, CYLINDRICAL, SPHERICAL };\r
+ static cv::Ptr<Warper> createByCameraFocal(float focal, int type);\r
+\r
+ virtual ~Warper() {}\r
+ virtual cv::Point warp(const cv::Mat &src, float focal, const cv::Mat& R, cv::Mat &dst,\r
+ int interp_mode = cv::INTER_LINEAR, int border_mode = cv::BORDER_REFLECT) = 0;\r
+ virtual cv::Rect warpRoi(const cv::Size &sz, float focal, const cv::Mat &R) = 0;\r
+};\r
+\r
+\r
+struct ProjectorBase\r
+{\r
+ void setTransformation(const cv::Mat& R);\r
+\r
+ cv::Size size;\r
+ float focal;\r
+ float r[9];\r
+ float rinv[9];\r
+ float scale;\r
+};\r
+\r
+\r
+template <class P>\r
+class WarperBase : public Warper\r
+{ \r
+public:\r
+ cv::Point warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,\r
+ int interp_mode, int border_mode);\r
+\r
+ cv::Rect warpRoi(const cv::Size &sz, float focal, const cv::Mat &R);\r
+\r
+protected:\r
+ // Detects ROI of the destination image. It's correct for any projection.\r
+ virtual void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);\r
+\r
+ // Detects ROI of the destination image by walking over image border.\r
+ // Correctness for any projection isn't guaranteed.\r
+ void detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br);\r
+\r
+ cv::Size src_size_;\r
+ P projector_;\r
+};\r
+\r
+\r
+struct PlaneProjector : ProjectorBase\r
+{\r
+ void mapForward(float x, float y, float &u, float &v);\r
+ void mapBackward(float u, float v, float &x, float &y);\r
+\r
+ float plane_dist;\r
+};\r
+\r
+\r
+// Projects image onto z = plane_dist plane\r
+class PlaneWarper : public WarperBase<PlaneProjector>\r
+{\r
+public:\r
+ PlaneWarper(float plane_dist = 1.f, float scale = 1.f)\r
+ {\r
+ projector_.plane_dist = plane_dist;\r
+ projector_.scale = scale;\r
+ }\r
+\r
+private:\r
+ void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);\r
+};\r
+\r
+\r
+struct SphericalProjector : ProjectorBase\r
+{\r
+ void mapForward(float x, float y, float &u, float &v);\r
+ void mapBackward(float u, float v, float &x, float &y);\r
+};\r
+\r
+\r
+// Projects image onto unit sphere with origin at (0, 0, 0).\r
+// Poles are located at (0, -1, 0) and (0, 1, 0) points.\r
+class SphericalWarper : public WarperBase<SphericalProjector>\r
+{\r
+public:\r
+ SphericalWarper(float scale = 300.f) { projector_.scale = scale; }\r
+\r
+private: \r
+ void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br);\r
+};\r
+\r
+\r
+struct CylindricalProjector : ProjectorBase\r
+{\r
+ void mapForward(float x, float y, float &u, float &v);\r
+ void mapBackward(float u, float v, float &x, float &y);\r
+};\r
+\r
+\r
+// Projects image onto x * x + z * z = 1 cylinder\r
+class CylindricalWarper : public WarperBase<CylindricalProjector>\r
+{\r
+public:\r
+ CylindricalWarper(float scale = 300.f) { projector_.scale = scale; }\r
+\r
+private:\r
+ void detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)\r
+ {\r
+ WarperBase<CylindricalProjector>::detectResultRoiByBorder(dst_tl, dst_br);\r
+ }\r
+};\r
+\r
+#include "warpers_inl.hpp"\r
+\r
+#endif // __OPENCV_WARPERS_HPP__\r
// or tort (including negligence or otherwise) arising in any way out of\r
// the use of this software, even if advised of the possibility of such damage.\r
//\r
-//M*/
-#ifndef __OPENCV_WARPERS_INL_HPP__
-#define __OPENCV_WARPERS_INL_HPP__
-
-#include "warpers.hpp" // Make your IDE see declarations
-
-template <class P>
-cv::Point WarperBase<P>::warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,
- int interp_mode, int border_mode)
-{
- src_size_ = src.size();
-
- projector_.size = src.size();
- projector_.focal = focal;
- projector_.setTransformation(R);
-
- cv::Point dst_tl, dst_br;
- detectResultRoi(dst_tl, dst_br);
-
- cv::Mat xmap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
- cv::Mat ymap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
-
- float x, y;
- for (int v = dst_tl.y; v <= dst_br.y; ++v)
- {
- for (int u = dst_tl.x; u <= dst_br.x; ++u)
- {
- projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
- xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
- ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
- }
- }
-
- dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());
- remap(src, dst, xmap, ymap, interp_mode, border_mode);
-
- return dst_tl;
-}
-
-
-template <class P>
-void WarperBase<P>::detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)
-{
- float tl_uf = std::numeric_limits<float>::max();
- float tl_vf = std::numeric_limits<float>::max();
- float br_uf = -std::numeric_limits<float>::max();
- float br_vf = -std::numeric_limits<float>::max();
-
- float u, v;
- for (int y = 0; y < src_size_.height; ++y)
- {
- for (int x = 0; x < src_size_.width; ++x)
- {
- projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
- tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
- br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
- }
- }
-
- dst_tl.x = static_cast<int>(tl_uf);
- dst_tl.y = static_cast<int>(tl_vf);
- dst_br.x = static_cast<int>(br_uf);
- dst_br.y = static_cast<int>(br_vf);
-}
-
-
-template <class P>
-void WarperBase<P>::detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br)
-{
- float tl_uf = std::numeric_limits<float>::max();
- float tl_vf = std::numeric_limits<float>::max();
- float br_uf = -std::numeric_limits<float>::max();
- float br_vf = -std::numeric_limits<float>::max();
-
- float u, v;
- for (float x = 0; x < src_size_.width; ++x)
- {
- projector_.mapForward(static_cast<float>(x), 0, u, v);
- tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
- br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
-
- projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size_.height - 1), u, v);
- tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
- br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
- }
- for (int y = 0; y < src_size_.height; ++y)
- {
- projector_.mapForward(0, static_cast<float>(y), u, v);
- tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
- br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
-
- projector_.mapForward(static_cast<float>(src_size_.width - 1), static_cast<float>(y), u, v);
- tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
- br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
- }
-
- dst_tl.x = static_cast<int>(tl_uf);
- dst_tl.y = static_cast<int>(tl_vf);
- dst_br.x = static_cast<int>(br_uf);
- dst_br.y = static_cast<int>(br_vf);
-}
-
-
-inline
-void PlaneProjector::mapForward(float x, float y, float &u, float &v)
-{
- x -= size.width * 0.5f;
- y -= size.height * 0.5f;
-
- float x_ = r[0] * x + r[1] * y + r[2] * focal;
- float y_ = r[3] * x + r[4] * y + r[5] * focal;
- float z_ = r[6] * x + r[7] * y + r[8] * focal;
-
- u = scale * x_ / z_ * plane_dist;
- v = scale * y_ / z_ * plane_dist;
-}
-
-
-inline
-void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
-{
- float x_ = u / scale;
- float y_ = v / scale;
-
- float z;
- x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * plane_dist;
- y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * plane_dist;
- z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * plane_dist;
-
- x = focal * x / z + size.width * 0.5f;
- y = focal * y / z + size.height * 0.5f;
-}
-
-
-inline
-void SphericalProjector::mapForward(float x, float y, float &u, float &v)
-{
- x -= size.width * 0.5f;
- y -= size.height * 0.5f;
-
- float x_ = r[0] * x + r[1] * y + r[2] * focal;
- float y_ = r[3] * x + r[4] * y + r[5] * focal;
- float z_ = r[6] * x + r[7] * y + r[8] * focal;
-
- u = scale * atan2f(x_, z_);
- v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));
-}
-
-
-inline
-void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
-{
- float sinv = sinf(static_cast<float>(CV_PI) - v / scale);
- float x_ = sinv * sinf(u / scale);
- float y_ = cosf(static_cast<float>(CV_PI) - v / scale);
- float z_ = sinv * cosf(u / scale);
-
- float z;
- x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;
- y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;
- z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;
-
- x = focal * x / z + size.width * 0.5f;
- y = focal * y / z + size.height * 0.5f;
-}
-
-
-inline
-void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
-{
- x -= size.width * 0.5f;
- y -= size.height * 0.5f;
-
- float x_ = r[0] * x + r[1] * y + r[2] * focal;
- float y_ = r[3] * x + r[4] * y + r[5] * focal;
- float z_ = r[6] * x + r[7] * y + r[8] * focal;
-
- u = scale * atan2f(x_, z_);
- v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
-}
-
-
-inline
-void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
-{
- float x_ = sinf(u / scale);
- float y_ = v / scale;
- float z_ = cosf(u / scale);
-
- float z;
- x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;
- y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;
- z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;
-
- x = focal * x / z + size.width * 0.5f;
- y = focal * y / z + size.height * 0.5f;
-}
-
-#endif // __OPENCV_WARPERS_INL_HPP__
+//M*/\r
+#ifndef __OPENCV_WARPERS_INL_HPP__\r
+#define __OPENCV_WARPERS_INL_HPP__\r
+\r
+#include "warpers.hpp" // Make your IDE see declarations\r
+\r
+template <class P>\r
+cv::Point WarperBase<P>::warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst,\r
+ int interp_mode, int border_mode)\r
+{\r
+ src_size_ = src.size();\r
+\r
+ projector_.size = src.size();\r
+ projector_.focal = focal;\r
+ projector_.setTransformation(R);\r
+\r
+ cv::Point dst_tl, dst_br;\r
+ detectResultRoi(dst_tl, dst_br);\r
+\r
+ cv::Mat xmap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);\r
+ cv::Mat ymap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);\r
+\r
+ float x, y;\r
+ for (int v = dst_tl.y; v <= dst_br.y; ++v)\r
+ {\r
+ for (int u = dst_tl.x; u <= dst_br.x; ++u)\r
+ {\r
+ projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);\r
+ xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;\r
+ ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;\r
+ }\r
+ }\r
+\r
+ dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type());\r
+ remap(src, dst, xmap, ymap, interp_mode, border_mode);\r
+\r
+ return dst_tl;\r
+}\r
+\r
+\r
+template <class P>\r
+cv::Rect WarperBase<P>::warpRoi(const cv::Size &sz, float focal, const cv::Mat &R)\r
+{\r
+ src_size_ = sz;\r
+\r
+ projector_.size = sz;\r
+ projector_.focal = focal;\r
+ projector_.setTransformation(R);\r
+\r
+ cv::Point dst_tl, dst_br;\r
+ detectResultRoi(dst_tl, dst_br);\r
+\r
+ return cv::Rect(dst_tl, cv::Point(dst_br.x + 1, dst_br.y + 1));\r
+}\r
+\r
+\r
+template <class P>\r
+void WarperBase<P>::detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br)\r
+{\r
+ float tl_uf = std::numeric_limits<float>::max();\r
+ float tl_vf = std::numeric_limits<float>::max();\r
+ float br_uf = -std::numeric_limits<float>::max();\r
+ float br_vf = -std::numeric_limits<float>::max();\r
+\r
+ float u, v;\r
+ for (int y = 0; y < src_size_.height; ++y)\r
+ {\r
+ for (int x = 0; x < src_size_.width; ++x)\r
+ {\r
+ projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);\r
+ tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);\r
+ br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);\r
+ }\r
+ }\r
+\r
+ dst_tl.x = static_cast<int>(tl_uf);\r
+ dst_tl.y = static_cast<int>(tl_vf);\r
+ dst_br.x = static_cast<int>(br_uf);\r
+ dst_br.y = static_cast<int>(br_vf);\r
+}\r
+\r
+\r
+template <class P>\r
+void WarperBase<P>::detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br)\r
+{\r
+ float tl_uf = std::numeric_limits<float>::max();\r
+ float tl_vf = std::numeric_limits<float>::max();\r
+ float br_uf = -std::numeric_limits<float>::max();\r
+ float br_vf = -std::numeric_limits<float>::max();\r
+\r
+ float u, v;\r
+ for (float x = 0; x < src_size_.width; ++x)\r
+ {\r
+ projector_.mapForward(static_cast<float>(x), 0, u, v);\r
+ tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);\r
+ br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);\r
+\r
+ projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size_.height - 1), u, v);\r
+ tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);\r
+ br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);\r
+ }\r
+ for (int y = 0; y < src_size_.height; ++y)\r
+ {\r
+ projector_.mapForward(0, static_cast<float>(y), u, v);\r
+ tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);\r
+ br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);\r
+\r
+ projector_.mapForward(static_cast<float>(src_size_.width - 1), static_cast<float>(y), u, v);\r
+ tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);\r
+ br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);\r
+ }\r
+\r
+ dst_tl.x = static_cast<int>(tl_uf);\r
+ dst_tl.y = static_cast<int>(tl_vf);\r
+ dst_br.x = static_cast<int>(br_uf);\r
+ dst_br.y = static_cast<int>(br_vf);\r
+}\r
+\r
+\r
+inline\r
+void PlaneProjector::mapForward(float x, float y, float &u, float &v)\r
+{\r
+ x -= size.width * 0.5f;\r
+ y -= size.height * 0.5f;\r
+\r
+ float x_ = r[0] * x + r[1] * y + r[2] * focal;\r
+ float y_ = r[3] * x + r[4] * y + r[5] * focal;\r
+ float z_ = r[6] * x + r[7] * y + r[8] * focal;\r
+\r
+ u = scale * x_ / z_ * plane_dist;\r
+ v = scale * y_ / z_ * plane_dist;\r
+}\r
+\r
+\r
+inline\r
+void PlaneProjector::mapBackward(float u, float v, float &x, float &y)\r
+{\r
+ float x_ = u / scale;\r
+ float y_ = v / scale;\r
+\r
+ float z;\r
+ x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * plane_dist;\r
+ y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * plane_dist;\r
+ z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * plane_dist;\r
+\r
+ x = focal * x / z + size.width * 0.5f;\r
+ y = focal * y / z + size.height * 0.5f;\r
+}\r
+\r
+\r
+inline\r
+void SphericalProjector::mapForward(float x, float y, float &u, float &v)\r
+{\r
+ x -= size.width * 0.5f;\r
+ y -= size.height * 0.5f;\r
+\r
+ float x_ = r[0] * x + r[1] * y + r[2] * focal;\r
+ float y_ = r[3] * x + r[4] * y + r[5] * focal;\r
+ float z_ = r[6] * x + r[7] * y + r[8] * focal;\r
+\r
+ u = scale * atan2f(x_, z_);\r
+ v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));\r
+}\r
+\r
+\r
+inline\r
+void SphericalProjector::mapBackward(float u, float v, float &x, float &y)\r
+{\r
+ float sinv = sinf(static_cast<float>(CV_PI) - v / scale);\r
+ float x_ = sinv * sinf(u / scale);\r
+ float y_ = cosf(static_cast<float>(CV_PI) - v / scale);\r
+ float z_ = sinv * cosf(u / scale);\r
+\r
+ float z;\r
+ x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;\r
+ y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;\r
+ z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;\r
+\r
+ x = focal * x / z + size.width * 0.5f;\r
+ y = focal * y / z + size.height * 0.5f;\r
+}\r
+\r
+\r
+inline\r
+void CylindricalProjector::mapForward(float x, float y, float &u, float &v)\r
+{\r
+ x -= size.width * 0.5f;\r
+ y -= size.height * 0.5f;\r
+\r
+ float x_ = r[0] * x + r[1] * y + r[2] * focal;\r
+ float y_ = r[3] * x + r[4] * y + r[5] * focal;\r
+ float z_ = r[6] * x + r[7] * y + r[8] * focal;\r
+\r
+ u = scale * atan2f(x_, z_);\r
+ v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);\r
+}\r
+\r
+\r
+inline\r
+void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)\r
+{\r
+ float x_ = sinf(u / scale);\r
+ float y_ = v / scale;\r
+ float z_ = cosf(u / scale);\r
+\r
+ float z;\r
+ x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_;\r
+ y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_;\r
+ z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_;\r
+\r
+ x = focal * x / z + size.width * 0.5f;\r
+ y = focal * y / z + size.height * 0.5f;\r
+}\r
+\r
+#endif // __OPENCV_WARPERS_INL_HPP__\r
\r
#include <cuda.h>\r
#include <cuda_runtime.h>\r
+#include <GL/gl.h>\r
+#include <cudaGL.h>\r
#include "opencv2/core/internal.hpp" // For TBB wrappers\r
+#include "tbb/tbb.h"\r
+#include "tbb/mutex.h"\r
\r
using namespace std;\r
using namespace cv;\r
}\r
\r
// Each GPU is associated with its own context\r
-CUcontext contexts[2];\r
+CUcontext contexts[/*2*/1];\r
\r
void inline contextOn(int id) \r
{\r
// CPU result\r
Mat result;\r
\r
+int some[2];\r
+\r
+tbb::mutex mutex;\r
+\r
int main(int argc, char** argv)\r
{\r
if (argc < 3)\r
}\r
\r
int num_devices = getCudaEnabledDeviceCount();\r
- if (num_devices < 2)\r
- {\r
- std::cout << "Two or more GPUs are required\n";\r
- return -1;\r
- }\r
+// if (num_devices < 2)\r
+// {\r
+// std::cout << "Two or more GPUs are required\n";\r
+// return -1;\r
+// }\r
\r
for (int i = 0; i < num_devices; ++i)\r
{\r
// Create context for GPU #0\r
CUdevice device;\r
safeCall(cuDeviceGet(&device, 0));\r
- safeCall(cuCtxCreate(&contexts[0], 0, device));\r
+ safeCall(cuGLCtxCreate(&contexts[0], 0, device));\r
+ //safeCall(cuCtxCreate(&contexts[0], 0, device));\r
contextOff();\r
\r
- // Create context for GPU #1\r
- safeCall(cuDeviceGet(&device, 1));\r
- safeCall(cuCtxCreate(&contexts[1], 0, device));\r
- contextOff();\r
+// // Create context for GPU #1\r
+// safeCall(cuDeviceGet(&device, 0));\r
+// safeCall(cuCtxCreate(&contexts[1], 0, device));\r
+// contextOff();\r
\r
// Split source images for processing on GPU #0\r
contextOn(0);\r
contextOff();\r
\r
// Split source images for processing on the GPU #1\r
- contextOn(1);\r
+ contextOn(0);\r
d_left[1].upload(left.rowRange(left.rows / 2, left.rows));\r
d_right[1].upload(right.rowRange(right.rows / 2, right.rows));\r
bm[1] = new StereoBM_GPU();\r
contextOff();\r
\r
+ some[0] = some[1] = 0;\r
// Execute calculation in two threads using two GPUs\r
- int devices[] = {0, 1};\r
- parallel_do(devices, devices + 2, Worker());\r
+ vector<int> devices;\r
+ for (int i = 0; i < 4; ++i)\r
+ devices.push_back(rand()%2);\r
+ tbb::parallel_do(&devices[0], &devices[devices.size() - 1], Worker());\r
+\r
+ cout << some[0] << " " << some[1] << endl;\r
\r
// Release the first GPU resources\r
contextOn(0);\r
contextOff();\r
\r
// Release the second GPU resources\r
- contextOn(1);\r
+ contextOn(0);\r
imshow("GPU #1 result", Mat(d_result[1]));\r
d_left[1].release();\r
d_right[1].release();\r
\r
void Worker::operator()(int device_id) const\r
{\r
- contextOn(device_id);\r
+ mutex.lock();\r
+\r
+ contextOn(0);\r
\r
bm[device_id]->operator()(d_left[device_id], d_right[device_id],\r
d_result[device_id]);\r
<< "): finished\n";\r
\r
contextOff();\r
+\r
+ mutex.unlock();\r
}\r
\r
\r
void destroyContexts()\r
{\r
safeCall(cuCtxDestroy(contexts[0]));\r
- safeCall(cuCtxDestroy(contexts[1]));\r
+ //safeCall(cuCtxDestroy(contexts[1]));\r
}\r
\r
#endif\r
+\r