#endif
}
- /**
- * Inserts a new list entry before an existing list entry. The new entry must not already be
- * a member of this or any other list. If existingEntry is NULL then the new entry is added
- * at the tail.
- */
- void addBefore(T* newEntry, T* existingEntry) {
- SkASSERT(NULL != newEntry);
-
- if (NULL == existingEntry) {
- this->addToTail(newEntry);
- return;
- }
-
- SkASSERT(this->isInList(existingEntry));
- newEntry->fNext = existingEntry;
- T* prev = existingEntry->fPrev;
- existingEntry->fPrev = newEntry;
- newEntry->fPrev = prev;
- if (NULL == prev) {
- SkASSERT(fHead == existingEntry);
- fHead = newEntry;
- } else {
- prev->fNext = newEntry;
- }
-#if SK_DEBUG
- newEntry->fList = this;
-#endif
- }
-
- /**
- * Inserts a new list entry after an existing list entry. The new entry must not already be
- * a member of this or any other list. If existingEntry is NULL then the new entry is added
- * at the head.
- */
- void addAfter(T* newEntry, T* existingEntry) {
- SkASSERT(NULL != newEntry);
-
- if (NULL == existingEntry) {
- this->addToHead(newEntry);
- return;
- }
-
- SkASSERT(this->isInList(existingEntry));
- newEntry->fPrev = existingEntry;
- T* next = existingEntry->fNext;
- existingEntry->fNext = newEntry;
- newEntry->fNext = next;
- if (NULL == next) {
- SkASSERT(fTail == existingEntry);
- fTail = newEntry;
- } else {
- next->fPrev = newEntry;
- }
-#if SK_DEBUG
- newEntry->fList = this;
-#endif
- }
-
bool isEmpty() const {
return NULL == fHead && NULL == fTail;
}
#ifdef SK_DEBUG
void validate() const {
SkASSERT(!fHead == !fTail);
- Iter iter;
- for (T* item = iter.init(*this, Iter::kHead_IterStart); NULL != (item = iter.next()); ) {
- SkASSERT(this->isInList(item));
- if (NULL == item->fPrev) {
- SkASSERT(fHead == item);
- } else {
- SkASSERT(item->fPrev->fNext == item);
- }
- if (NULL == item->fNext) {
- SkASSERT(fTail == item);
- } else {
- SkASSERT(item->fNext->fPrev == item);
- }
- }
}
/**
/** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the
the list creates the objects and they are deleted upon removal. This class block-allocates
- space for entries based on a param passed to the constructor.
-
- Elements of the list can be constructed in place using the following macros:
- SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args)
- SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args)
- where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded
- constructor arguments for type_name. These macros behave like addBefore() and addAfter().
-*/
+ space for entries based on a param passed to the constructor. */
template <typename T>
class SkTLList : public SkNoncopyable {
private:
typedef SkTInternalLList<Node> NodeList;
public:
-
- class Iter;
-
/** allocCnt is the number of objects to allocate as a group. In the worst case fragmentation
each object is using the space required for allocCnt unfragmented objects. */
SkTLList(int allocCnt = 1) : fCount(0), fAllocCnt(allocCnt) {
this->validate();
}
- /** Adds a new element to the list before the location indicated by the iterator. If the
- iterator refers to a NULL location then the new element is added at the tail */
- void addBefore(const T& t, const Iter& location) {
- SkNEW_PLACEMENT_ARGS(this->internalAddBefore(location), T, (t));
- }
-
- /** Adds a new element to the list after the location indicated by the iterator. If the
- iterator refers to a NULL location then the new element is added at the head */
- void addAfter(const T& t, const Iter& location) {
- SkNEW_PLACEMENT_ARGS(this->internalAddAfter(location), T, (t));
- }
-
- /** Convenience methods for getting an iterator initialized to the head/tail of the list. */
- Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); }
- Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); }
-
void popHead() {
this->validate();
Node* node = fList.head();
Iter& operator= (const Iter& iter) { INHERITED::operator=(iter); return *this; }
private:
- friend class SkTLList;
- Node* getNode() { return INHERITED::get(); }
-
T* nodeToObj(Node* node) {
if (NULL != node) {
return reinterpret_cast<T*>(node->fObj);
}
};
- // For use with operator new
- enum Placement {
- kBefore_Placement,
- kAfter_Placement,
- };
-
private:
struct Block {
int fNodesInUse;
fList.remove(node);
reinterpret_cast<T*>(node->fObj)->~T();
if (0 == --node->fBlock->fNodesInUse) {
+ // Delete a block when it no longer has any nodes in use to reduce memory consumption.
Block* block = node->fBlock;
for (int i = 0; i < fAllocCnt; ++i) {
if (block->fNodes + i != node) {
#endif
}
- // Support in-place initializing of objects inserted into the list via operator new.
- template <typename S>
- friend void *operator new(size_t,
- SkTLList<S>* list,
- Placement placement,
- const typename SkTLList<S>::Iter& location);
-
- // Helpers that insert the node and returns a pointer to where the new object should be init'ed.
- void* internalAddBefore(Iter location) {
- this->validate();
- Node* node = this->createNode();
- fList.addBefore(node, location.getNode());
- this->validate();
- return node->fObj;
- }
-
- void* internalAddAfter(Iter location) {
- this->validate();
- Node* node = this->createNode();
- fList.addAfter(node, location.getNode());
- this->validate();
- return node->fObj;
- }
-
NodeList fList;
NodeList fFreeList;
int fCount;
int fAllocCnt;
-
};
-
-// Use the below macros rather than calling this directly
-template <typename T>
-inline void *operator new(size_t, SkTLList<T>* list,
- typename SkTLList<T>::Placement placement,
- const typename SkTLList<T>::Iter& location) {
- SkASSERT(NULL != list);
- if (SkTLList<T>::kBefore_Placement == placement) {
- return list->internalAddBefore(location);
- } else {
- return list->internalAddAfter(location);
- }
-}
-
-#define SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args) \
- (new (list, SkTLList< type_name >::kBefore_Placement, location) type_name args)
-
-#define SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args) \
- (new (list, SkTLList< type_name >::kAfter_Placement, location) type_name args)
\ No newline at end of file
bool in0, bool in1, bool in2, bool in3,
ListElement elements[4]) {
- list.validate();
REPORTER_ASSERT(reporter, empty == list.isEmpty());
#if SK_DEBUG
REPORTER_ASSERT(reporter, numElements == list.countEntries());
// list should be empty again
check_list(list, reporter, true, 0, false, false, false, false, elements);
-
- // test out methods that add to the middle of the list.
- list.addAfter(&elements[1], NULL);
- check_list(list, reporter, false, 1, false, true, false, false, elements);
-
- list.remove(&elements[1]);
-
- list.addBefore(&elements[1], NULL);
- check_list(list, reporter, false, 1, false, true, false, false, elements);
-
- list.addBefore(&elements[0], &elements[1]);
- check_list(list, reporter, false, 2, true, true, false, false, elements);
-
- list.addAfter(&elements[3], &elements[1]);
- check_list(list, reporter, false, 3, true, true, false, true, elements);
-
- list.addBefore(&elements[2], &elements[3]);
- check_list(list, reporter, false, 4, true, true, true, true, elements);
-
- cur = iter.init(list, Iter::kHead_IterStart);
- for (int i = 0; NULL != cur; ++i, cur = iter.next()) {
- REPORTER_ASSERT(reporter, cur->fID == i);
- }
}
static void TestTLList(skiatest::Reporter* reporter) {
REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, list1 == list2);
-
- list2.reset();
-
- // use both before/after in-place construction on an empty list
- SkNEW_INSERT_IN_LLIST_BEFORE(&list2, list2.headIter(), ListElement, (1));
- REPORTER_ASSERT(reporter, list2 == list1);
- list2.reset();
- SkNEW_INSERT_IN_LLIST_AFTER(&list2, list2.tailIter(), ListElement, (1));
- REPORTER_ASSERT(reporter, list2 == list1);
-
// add an element to the second list, check that iters are still valid
list2.addToHead(ListElement(2));
#ifdef SK_ENABLE_INST_COUNT
SkASSERT(3 == ListElement::InstanceCount());
#endif
-
REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, 1 == Iter(list2, Iter::kTail_IterStart).get()->fID);
#endif
REPORTER_ASSERT(reporter, list1.isEmpty() && list2.isEmpty());
- // randomly perform insertions and deletions on a list and perform tests
int count = 0;
for (int j = 0; j < 100; ++j) {
if (list1.isEmpty() || random.nextBiasedBool(3 * SK_Scalar1 / 4)) {
- int id = j;
- // Choose one of three ways to insert a new element: at the head, at the tail,
- // before a random element, after a random element
- int numValidMethods = 0 == count ? 2 : 4;
- int insertionMethod = random.nextULessThan(numValidMethods);
- switch (insertionMethod) {
- case 0:
- list1.addToHead(ListElement(id));
- break;
- case 1:
- list1.addToTail(ListElement(id));
- break;
- case 2: // fallthru to share code that picks random element.
- case 3: {
- int n = random.nextULessThan(list1.count());
- Iter iter = list1.headIter();
- // remember the elements before/after the insertion point.
- while (n--) {
- iter.next();
- }
- Iter prev(iter);
- Iter next(iter);
- next.next();
- prev.prev();
-
- SkASSERT(NULL != iter.get());
- // insert either before or after the iterator, then check that the
- // surrounding sequence is correct.
- if (2 == insertionMethod) {
- SkNEW_INSERT_IN_LLIST_BEFORE(&list1, iter, ListElement, (id));
- Iter newItem(iter);
- newItem.prev();
- REPORTER_ASSERT(reporter, newItem.get()->fID == id);
-
- if (NULL != next.get()) {
- REPORTER_ASSERT(reporter, next.prev()->fID == iter.get()->fID);
- }
- if (NULL != prev.get()) {
- REPORTER_ASSERT(reporter, prev.next()->fID == id);
- }
- } else {
- SkNEW_INSERT_IN_LLIST_AFTER(&list1, iter, ListElement, (id));
- Iter newItem(iter);
- newItem.next();
- REPORTER_ASSERT(reporter, newItem.get()->fID == id);
-
- if (NULL != next.get()) {
- REPORTER_ASSERT(reporter, next.prev()->fID == id);
- }
- if (NULL != prev.get()) {
- REPORTER_ASSERT(reporter, prev.next()->fID == iter.get()->fID);
- }
- }
- }
+ int id = static_cast<int>(random.nextU());
+ if (random.nextBool()) {
+ list1.addToHead(ListElement(id));
+ } else {
+ list1.addToTail(ListElement(id));
}
++count;
} else {